Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.10.2.3
      1  1.10.2.3   msaitoh /*	$NetBSD: npf_conn.c,v 1.10.2.3 2014/12/22 02:10:30 msaitoh Exp $	*/
      2       1.1     rmind 
      3       1.1     rmind /*-
      4       1.1     rmind  * Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
      5       1.1     rmind  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      6       1.1     rmind  * All rights reserved.
      7       1.1     rmind  *
      8       1.1     rmind  * This material is based upon work partially supported by The
      9       1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
     10       1.1     rmind  *
     11       1.1     rmind  * Redistribution and use in source and binary forms, with or without
     12       1.1     rmind  * modification, are permitted provided that the following conditions
     13       1.1     rmind  * are met:
     14       1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     15       1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     16       1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     18       1.1     rmind  *    documentation and/or other materials provided with the distribution.
     19       1.1     rmind  *
     20       1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21       1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22       1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23       1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24       1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25       1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26       1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27       1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28       1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29       1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30       1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     31       1.1     rmind  */
     32       1.1     rmind 
     33       1.1     rmind /*
     34       1.1     rmind  * NPF connection tracking for stateful filtering and translation.
     35       1.1     rmind  *
     36       1.1     rmind  * Overview
     37       1.1     rmind  *
     38       1.1     rmind  *	Connection direction is identified by the direction of its first
     39       1.1     rmind  *	packet.  Packets can be incoming or outgoing with respect to an
     40       1.1     rmind  *	interface.  To describe the packet in the context of connection
     41       1.1     rmind  *	direction we will use the terms "forwards stream" and "backwards
     42       1.1     rmind  *	stream".  All connections have two keys and thus two entries:
     43       1.1     rmind  *
     44       1.1     rmind  *		npf_conn_t::c_forw_entry for the forwards stream and
     45       1.1     rmind  *		npf_conn_t::c_back_entry for the backwards stream.
     46       1.1     rmind  *
     47       1.1     rmind  *	The keys are formed from the 5-tuple (source/destination address,
     48       1.1     rmind  *	source/destination port and the protocol).  Additional matching
     49       1.1     rmind  *	is performed for the interface (a common behaviour is equivalent
     50       1.1     rmind  *	to the 6-tuple lookup including the interface ID).  Note that the
     51       1.1     rmind  *	key may be formed using translated values in a case of NAT.
     52       1.1     rmind  *
     53       1.1     rmind  *	Connections can serve two purposes: for the implicit passing or
     54       1.1     rmind  *	to accommodate the dynamic NAT.  Connections for the former purpose
     55       1.1     rmind  *	are created by the rules with "stateful" attribute and are used for
     56       1.1     rmind  *	stateful filtering.  Such connections indicate that the packet of
     57       1.1     rmind  *	the backwards stream should be passed without inspection of the
     58       1.1     rmind  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     59       1.1     rmind  *	with a connection.  Such connections are created by the NAT policies
     60       1.1     rmind  *	and they have a relationship with NAT translation structure via
     61       1.1     rmind  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     62       1.1     rmind  *	which is a common case.
     63       1.1     rmind  *
     64       1.1     rmind  * Connection life-cycle
     65       1.1     rmind  *
     66       1.1     rmind  *	Connections are established when a packet matches said rule or
     67       1.1     rmind  *	NAT policy.  Both keys of the established connection are inserted
     68       1.1     rmind  *	into the connection database.  A garbage collection thread
     69       1.1     rmind  *	periodically scans all connections and depending on connection
     70       1.1     rmind  *	properties (e.g. last activity time, protocol) removes connection
     71       1.1     rmind  *	entries and expires the actual connections.
     72       1.1     rmind  *
     73       1.1     rmind  *	Each connection has a reference count.  The reference is acquired
     74       1.1     rmind  *	on lookup and should be released by the caller.  It guarantees that
     75       1.1     rmind  *	the connection will not be destroyed, although it may be expired.
     76       1.1     rmind  *
     77       1.1     rmind  * Synchronisation
     78       1.1     rmind  *
     79       1.1     rmind  *	Connection database is accessed in a lock-less manner by the main
     80       1.1     rmind  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     81       1.1     rmind  *	are always called from a software interrupt, the database is
     82       1.1     rmind  *	protected using passive serialisation.  The main place which can
     83       1.1     rmind  *	destroy a connection is npf_conn_worker().  The database itself
     84       1.1     rmind  *	can be replaced and destroyed in npf_conn_reload().
     85       1.1     rmind  *
     86       1.1     rmind  * ALG support
     87       1.1     rmind  *
     88       1.1     rmind  *	Application-level gateways (ALGs) can override generic connection
     89       1.1     rmind  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     90       1.1     rmind  *	performing their own lookup using different key.  Recursive call
     91       1.1     rmind  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     92       1.1     rmind  *	npf_conn_lookup() function for this purpose.
     93       1.1     rmind  *
     94       1.1     rmind  * Lock order
     95       1.1     rmind  *
     96       1.6     rmind  *	npf_config_lock ->
     97       1.6     rmind  *		conn_lock ->
     98       1.6     rmind  *			npf_conn_t::c_lock
     99       1.1     rmind  */
    100       1.1     rmind 
    101       1.1     rmind #include <sys/cdefs.h>
    102  1.10.2.3   msaitoh __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.10.2.3 2014/12/22 02:10:30 msaitoh Exp $");
    103       1.1     rmind 
    104       1.1     rmind #include <sys/param.h>
    105       1.1     rmind #include <sys/types.h>
    106       1.1     rmind 
    107       1.1     rmind #include <netinet/in.h>
    108       1.1     rmind #include <netinet/tcp.h>
    109       1.1     rmind 
    110       1.1     rmind #include <sys/atomic.h>
    111       1.1     rmind #include <sys/condvar.h>
    112       1.1     rmind #include <sys/kmem.h>
    113       1.1     rmind #include <sys/kthread.h>
    114       1.1     rmind #include <sys/mutex.h>
    115       1.1     rmind #include <net/pfil.h>
    116       1.1     rmind #include <sys/pool.h>
    117       1.1     rmind #include <sys/queue.h>
    118       1.1     rmind #include <sys/systm.h>
    119       1.1     rmind 
    120       1.1     rmind #define __NPF_CONN_PRIVATE
    121       1.1     rmind #include "npf_conn.h"
    122       1.1     rmind #include "npf_impl.h"
    123       1.1     rmind 
    124       1.1     rmind /*
    125       1.1     rmind  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    126       1.1     rmind  */
    127       1.1     rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
    128       1.1     rmind #define	CONN_ACTIVE	0x004	/* visible on inspection */
    129       1.1     rmind #define	CONN_PASS	0x008	/* perform implicit passing */
    130       1.1     rmind #define	CONN_EXPIRE	0x010	/* explicitly expire */
    131       1.1     rmind #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    132       1.1     rmind 
    133       1.1     rmind /*
    134       1.6     rmind  * Connection tracking state: disabled (off) or enabled (on).
    135       1.1     rmind  */
    136       1.6     rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    137       1.1     rmind static volatile int	conn_tracking	__cacheline_aligned;
    138       1.1     rmind 
    139       1.1     rmind /* Connection tracking database, connection cache and the lock. */
    140       1.1     rmind static npf_conndb_t *	conn_db		__read_mostly;
    141       1.1     rmind static pool_cache_t	conn_cache	__read_mostly;
    142       1.1     rmind static kmutex_t		conn_lock	__cacheline_aligned;
    143       1.1     rmind 
    144       1.1     rmind static void	npf_conn_worker(void);
    145       1.1     rmind static void	npf_conn_destroy(npf_conn_t *);
    146       1.1     rmind 
    147       1.1     rmind /*
    148       1.1     rmind  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    149       1.1     rmind  */
    150       1.1     rmind 
    151       1.1     rmind void
    152       1.1     rmind npf_conn_sysinit(void)
    153       1.1     rmind {
    154       1.1     rmind 	conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
    155       1.1     rmind 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
    156       1.1     rmind 	mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
    157       1.1     rmind 	conn_tracking = CONN_TRACKING_OFF;
    158       1.6     rmind 	conn_db = npf_conndb_create();
    159       1.1     rmind 
    160       1.1     rmind 	npf_worker_register(npf_conn_worker);
    161       1.1     rmind }
    162       1.1     rmind 
    163       1.1     rmind void
    164       1.1     rmind npf_conn_sysfini(void)
    165       1.1     rmind {
    166       1.6     rmind 	/* Note: the caller should have flushed the connections. */
    167       1.6     rmind 	KASSERT(conn_tracking == CONN_TRACKING_OFF);
    168       1.1     rmind 	npf_worker_unregister(npf_conn_worker);
    169       1.1     rmind 
    170       1.6     rmind 	npf_conndb_destroy(conn_db);
    171       1.1     rmind 	pool_cache_destroy(conn_cache);
    172       1.1     rmind 	mutex_destroy(&conn_lock);
    173       1.1     rmind }
    174       1.1     rmind 
    175       1.1     rmind /*
    176       1.6     rmind  * npf_conn_load: perform the load by flushing the current connection
    177       1.6     rmind  * database and replacing it with the new one or just destroying.
    178       1.1     rmind  *
    179       1.6     rmind  * => The caller must disable the connection tracking and ensure that
    180       1.6     rmind  *    there are no connection database lookups or references in-flight.
    181       1.1     rmind  */
    182       1.6     rmind void
    183       1.6     rmind npf_conn_load(npf_conndb_t *ndb, bool track)
    184       1.1     rmind {
    185       1.6     rmind 	npf_conndb_t *odb = NULL;
    186       1.1     rmind 
    187       1.6     rmind 	KASSERT(npf_config_locked_p());
    188       1.1     rmind 
    189       1.1     rmind 	/*
    190       1.6     rmind 	 * The connection database is in the quiescent state.
    191       1.6     rmind 	 * Prevent G/C thread from running and install a new database.
    192       1.1     rmind 	 */
    193       1.6     rmind 	mutex_enter(&conn_lock);
    194       1.6     rmind 	if (ndb) {
    195       1.6     rmind 		KASSERT(conn_tracking == CONN_TRACKING_OFF);
    196       1.6     rmind 		odb = conn_db;
    197       1.6     rmind 		conn_db = ndb;
    198       1.6     rmind 		membar_sync();
    199       1.6     rmind 	}
    200       1.6     rmind 	if (track) {
    201       1.6     rmind 		/* After this point lookups start flying in. */
    202       1.6     rmind 		conn_tracking = CONN_TRACKING_ON;
    203       1.1     rmind 	}
    204       1.6     rmind 	mutex_exit(&conn_lock);
    205       1.1     rmind 
    206       1.1     rmind 	if (odb) {
    207       1.6     rmind 		/*
    208       1.6     rmind 		 * Flush all, no sync since the caller did it for us.
    209       1.6     rmind 		 * Also, release the pool cache memory.
    210       1.6     rmind 		 */
    211       1.6     rmind 		npf_conn_gc(odb, true, false);
    212       1.1     rmind 		npf_conndb_destroy(odb);
    213       1.6     rmind 		pool_cache_invalidate(conn_cache);
    214       1.1     rmind 	}
    215       1.1     rmind }
    216       1.1     rmind 
    217       1.1     rmind /*
    218       1.1     rmind  * npf_conn_tracking: enable/disable connection tracking.
    219       1.1     rmind  */
    220       1.1     rmind void
    221       1.1     rmind npf_conn_tracking(bool track)
    222       1.1     rmind {
    223       1.6     rmind 	KASSERT(npf_config_locked_p());
    224       1.6     rmind 	conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
    225       1.1     rmind }
    226       1.1     rmind 
    227       1.6     rmind static inline bool
    228       1.1     rmind npf_conn_trackable_p(const npf_cache_t *npc)
    229       1.1     rmind {
    230       1.1     rmind 	/*
    231       1.1     rmind 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    232       1.1     rmind 	 * not cached - protocol is not supported or packet is invalid.
    233       1.1     rmind 	 */
    234       1.1     rmind 	if (conn_tracking != CONN_TRACKING_ON) {
    235       1.1     rmind 		return false;
    236       1.1     rmind 	}
    237       1.1     rmind 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    238       1.1     rmind 		return false;
    239       1.1     rmind 	}
    240       1.1     rmind 	return true;
    241       1.1     rmind }
    242       1.1     rmind 
    243       1.1     rmind /*
    244       1.1     rmind  * npf_conn_conkey: construct a key for the connection lookup.
    245       1.8     rmind  *
    246       1.8     rmind  * => Returns the key length in bytes or zero on failure.
    247       1.1     rmind  */
    248       1.8     rmind unsigned
    249       1.1     rmind npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
    250       1.1     rmind {
    251       1.1     rmind 	const u_int alen = npc->npc_alen;
    252       1.1     rmind 	const struct tcphdr *th;
    253       1.1     rmind 	const struct udphdr *uh;
    254       1.1     rmind 	u_int keylen, isrc, idst;
    255       1.1     rmind 	uint16_t id[2];
    256       1.1     rmind 
    257       1.1     rmind 	switch (npc->npc_proto) {
    258       1.1     rmind 	case IPPROTO_TCP:
    259       1.1     rmind 		KASSERT(npf_iscached(npc, NPC_TCP));
    260       1.1     rmind 		th = npc->npc_l4.tcp;
    261       1.1     rmind 		id[NPF_SRC] = th->th_sport;
    262       1.1     rmind 		id[NPF_DST] = th->th_dport;
    263       1.1     rmind 		break;
    264       1.1     rmind 	case IPPROTO_UDP:
    265       1.1     rmind 		KASSERT(npf_iscached(npc, NPC_UDP));
    266       1.1     rmind 		uh = npc->npc_l4.udp;
    267       1.1     rmind 		id[NPF_SRC] = uh->uh_sport;
    268       1.1     rmind 		id[NPF_DST] = uh->uh_dport;
    269       1.1     rmind 		break;
    270       1.1     rmind 	case IPPROTO_ICMP:
    271       1.1     rmind 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    272       1.1     rmind 			const struct icmp *ic = npc->npc_l4.icmp;
    273       1.1     rmind 			id[NPF_SRC] = ic->icmp_id;
    274       1.1     rmind 			id[NPF_DST] = ic->icmp_id;
    275       1.1     rmind 			break;
    276       1.1     rmind 		}
    277       1.8     rmind 		return 0;
    278       1.1     rmind 	case IPPROTO_ICMPV6:
    279       1.1     rmind 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    280       1.1     rmind 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    281       1.1     rmind 			id[NPF_SRC] = ic6->icmp6_id;
    282       1.1     rmind 			id[NPF_DST] = ic6->icmp6_id;
    283       1.1     rmind 			break;
    284       1.1     rmind 		}
    285       1.8     rmind 		return 0;
    286       1.1     rmind 	default:
    287       1.1     rmind 		/* Unsupported protocol. */
    288       1.8     rmind 		return 0;
    289       1.1     rmind 	}
    290       1.1     rmind 
    291       1.1     rmind 	if (__predict_true(forw)) {
    292       1.1     rmind 		isrc = NPF_SRC, idst = NPF_DST;
    293       1.1     rmind 	} else {
    294       1.1     rmind 		isrc = NPF_DST, idst = NPF_SRC;
    295       1.1     rmind 	}
    296       1.1     rmind 
    297       1.8     rmind 	/*
    298       1.8     rmind 	 * Construct a key formed out of 32-bit integers.  The key layout:
    299       1.8     rmind 	 *
    300       1.9     rmind 	 * Field: | proto  |  alen  | src-id | dst-id | src-addr | dst-addr |
    301       1.9     rmind 	 *        +--------+--------+--------+--------+----------+----------+
    302       1.9     rmind 	 * Bits:  |   16   |   16   |   16   |   16   |  32-128  |  32-128  |
    303       1.8     rmind 	 *
    304       1.8     rmind 	 * The source and destination are inverted if they key is for the
    305       1.8     rmind 	 * backwards stream (forw == false).  The address length depends
    306       1.8     rmind 	 * on the 'alen' field; it is a length in bytes, either 4 or 16.
    307       1.8     rmind 	 */
    308       1.8     rmind 
    309       1.1     rmind 	key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff);
    310       1.1     rmind 	key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    311       1.1     rmind 
    312       1.1     rmind 	if (__predict_true(alen == sizeof(in_addr_t))) {
    313       1.1     rmind 		key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0];
    314       1.1     rmind 		key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0];
    315       1.1     rmind 		keylen = 4 * sizeof(uint32_t);
    316       1.1     rmind 	} else {
    317       1.1     rmind 		const u_int nwords = alen >> 2;
    318       1.1     rmind 		memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen);
    319       1.1     rmind 		memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen);
    320       1.1     rmind 		keylen = (2 + (nwords * 2)) * sizeof(uint32_t);
    321       1.1     rmind 	}
    322       1.8     rmind 	return keylen;
    323       1.1     rmind }
    324       1.1     rmind 
    325       1.3  christos static __inline void
    326       1.1     rmind connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
    327       1.1     rmind {
    328       1.1     rmind 	const u_int alen = key->ck_key[0] & 0xffff;
    329       1.1     rmind 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
    330       1.1     rmind 
    331       1.1     rmind 	KASSERT(alen > 0);
    332       1.1     rmind 	memcpy(addr, naddr, alen);
    333       1.1     rmind }
    334       1.1     rmind 
    335       1.3  christos static __inline void
    336       1.1     rmind connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
    337       1.1     rmind {
    338       1.1     rmind 	const uint32_t oid = key->ck_key[1];
    339       1.1     rmind 	const u_int shift = 16 * !di;
    340       1.1     rmind 	const uint32_t mask = 0xffff0000 >> shift;
    341       1.1     rmind 
    342       1.1     rmind 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
    343       1.1     rmind }
    344       1.1     rmind 
    345       1.1     rmind /*
    346       1.1     rmind  * npf_conn_lookup: lookup if there is an established connection.
    347       1.1     rmind  *
    348       1.1     rmind  * => If found, we will hold a reference for the caller.
    349       1.1     rmind  */
    350       1.1     rmind npf_conn_t *
    351       1.4     rmind npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
    352       1.1     rmind {
    353       1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    354       1.1     rmind 	npf_conn_t *con;
    355       1.1     rmind 	npf_connkey_t key;
    356       1.1     rmind 	u_int flags, cifid;
    357       1.1     rmind 	bool ok, pforw;
    358       1.1     rmind 
    359       1.1     rmind 	/* Construct a key and lookup for a connection in the store. */
    360       1.1     rmind 	if (!npf_conn_conkey(npc, &key, true)) {
    361       1.1     rmind 		return NULL;
    362       1.1     rmind 	}
    363       1.1     rmind 	con = npf_conndb_lookup(conn_db, &key, forw);
    364       1.1     rmind 	if (con == NULL) {
    365       1.1     rmind 		return NULL;
    366       1.1     rmind 	}
    367       1.1     rmind 	KASSERT(npc->npc_proto == con->c_proto);
    368       1.1     rmind 
    369       1.1     rmind 	/* Check if connection is active and not expired. */
    370       1.1     rmind 	flags = con->c_flags;
    371       1.1     rmind 	ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    372       1.1     rmind 
    373       1.1     rmind 	if (__predict_false(!ok)) {
    374       1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    375       1.1     rmind 		return NULL;
    376       1.1     rmind 	}
    377       1.1     rmind 
    378       1.1     rmind 	/*
    379       1.1     rmind 	 * Match the interface and the direction of the connection entry
    380       1.1     rmind 	 * and the packet.
    381       1.1     rmind 	 */
    382       1.1     rmind 	cifid = con->c_ifid;
    383       1.1     rmind 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
    384       1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    385       1.1     rmind 		return NULL;
    386       1.1     rmind 	}
    387       1.1     rmind 	pforw = (flags & PFIL_ALL) == di;
    388       1.1     rmind 	if (__predict_false(*forw != pforw)) {
    389       1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    390       1.1     rmind 		return NULL;
    391       1.1     rmind 	}
    392       1.1     rmind 
    393       1.1     rmind 	/* Update the last activity time. */
    394       1.1     rmind 	getnanouptime(&con->c_atime);
    395       1.1     rmind 	return con;
    396       1.1     rmind }
    397       1.1     rmind 
    398       1.1     rmind /*
    399       1.1     rmind  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    400       1.1     rmind  *
    401       1.1     rmind  * => If found, we will hold a reference for the caller.
    402       1.1     rmind  */
    403       1.1     rmind npf_conn_t *
    404       1.4     rmind npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
    405       1.1     rmind {
    406       1.4     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    407       1.1     rmind 	npf_conn_t *con;
    408       1.1     rmind 	bool forw, ok;
    409       1.1     rmind 
    410       1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    411       1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    412       1.1     rmind 		return NULL;
    413       1.1     rmind 	}
    414       1.1     rmind 
    415       1.1     rmind 	/* Query ALG which may lookup connection for us. */
    416       1.4     rmind 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    417       1.1     rmind 		/* Note: reference is held. */
    418       1.1     rmind 		return con;
    419       1.1     rmind 	}
    420       1.1     rmind 	if (nbuf_head_mbuf(nbuf) == NULL) {
    421       1.1     rmind 		*error = ENOMEM;
    422       1.1     rmind 		return NULL;
    423       1.1     rmind 	}
    424       1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    425       1.1     rmind 
    426       1.1     rmind 	/* Main lookup of the connection. */
    427       1.4     rmind 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
    428       1.1     rmind 		return NULL;
    429       1.1     rmind 	}
    430       1.1     rmind 
    431       1.1     rmind 	/* Inspect the protocol data and handle state changes. */
    432       1.1     rmind 	mutex_enter(&con->c_lock);
    433       1.4     rmind 	ok = npf_state_inspect(npc, &con->c_state, forw);
    434       1.1     rmind 	mutex_exit(&con->c_lock);
    435       1.1     rmind 
    436       1.1     rmind 	if (__predict_false(!ok)) {
    437       1.1     rmind 		/* Invalid: let the rules deal with it. */
    438       1.1     rmind 		npf_conn_release(con);
    439       1.1     rmind 		npf_stats_inc(NPF_STAT_INVALID_STATE);
    440       1.1     rmind 		con = NULL;
    441       1.1     rmind 	}
    442       1.1     rmind 	return con;
    443       1.1     rmind }
    444       1.1     rmind 
    445       1.1     rmind /*
    446       1.1     rmind  * npf_conn_establish: create a new connection, insert into the global list.
    447       1.1     rmind  *
    448       1.1     rmind  * => Connection is created with the reference held for the caller.
    449       1.1     rmind  * => Connection will be activated on the first reference release.
    450       1.1     rmind  */
    451       1.1     rmind npf_conn_t *
    452       1.4     rmind npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
    453       1.1     rmind {
    454       1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    455       1.1     rmind 	npf_conn_t *con;
    456       1.1     rmind 
    457       1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    458       1.1     rmind 
    459       1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    460       1.1     rmind 		return NULL;
    461       1.1     rmind 	}
    462       1.1     rmind 
    463       1.1     rmind 	/* Allocate and initialise the new connection. */
    464       1.1     rmind 	con = pool_cache_get(conn_cache, PR_NOWAIT);
    465       1.1     rmind 	if (__predict_false(!con)) {
    466       1.1     rmind 		return NULL;
    467       1.1     rmind 	}
    468       1.1     rmind 	NPF_PRINTF(("NPF: create conn %p\n", con));
    469       1.6     rmind 	npf_stats_inc(NPF_STAT_CONN_CREATE);
    470       1.1     rmind 
    471       1.1     rmind 	/* Reference count and flags (indicate direction). */
    472       1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    473       1.1     rmind 	con->c_flags = (di & PFIL_ALL);
    474       1.1     rmind 	con->c_refcnt = 1;
    475       1.1     rmind 	con->c_rproc = NULL;
    476       1.1     rmind 	con->c_nat = NULL;
    477       1.1     rmind 
    478       1.1     rmind 	/* Initialize protocol state. */
    479       1.4     rmind 	if (!npf_state_init(npc, &con->c_state)) {
    480       1.1     rmind 		goto err;
    481       1.1     rmind 	}
    482       1.1     rmind 
    483       1.1     rmind 	KASSERT(npf_iscached(npc, NPC_IP46));
    484       1.1     rmind 	npf_connkey_t *fw = &con->c_forw_entry;
    485       1.1     rmind 	npf_connkey_t *bk = &con->c_back_entry;
    486       1.1     rmind 
    487       1.1     rmind 	/*
    488       1.1     rmind 	 * Construct "forwards" and "backwards" keys.  Also, set the
    489       1.1     rmind 	 * interface ID for this connection (unless it is global).
    490       1.1     rmind 	 */
    491       1.1     rmind 	if (!npf_conn_conkey(npc, fw, true)) {
    492       1.1     rmind 		goto err;
    493       1.1     rmind 	}
    494       1.1     rmind 	if (!npf_conn_conkey(npc, bk, false)) {
    495       1.1     rmind 		goto err;
    496       1.1     rmind 	}
    497       1.1     rmind 	fw->ck_backptr = bk->ck_backptr = con;
    498       1.1     rmind 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
    499       1.1     rmind 	con->c_proto = npc->npc_proto;
    500       1.1     rmind 
    501       1.1     rmind 	/* Set last activity time for a new connection. */
    502       1.1     rmind 	getnanouptime(&con->c_atime);
    503       1.1     rmind 
    504       1.1     rmind 	/*
    505       1.1     rmind 	 * Insert both keys (entries representing directions) of the
    506       1.1     rmind 	 * connection.  At this point, it becomes visible.
    507       1.1     rmind 	 */
    508       1.1     rmind 	if (!npf_conndb_insert(conn_db, fw, con)) {
    509       1.1     rmind 		goto err;
    510       1.1     rmind 	}
    511       1.1     rmind 	if (!npf_conndb_insert(conn_db, bk, con)) {
    512       1.1     rmind 		/* We have hit the duplicate. */
    513       1.1     rmind 		npf_conndb_remove(conn_db, fw);
    514       1.6     rmind 		npf_stats_inc(NPF_STAT_RACE_CONN);
    515       1.1     rmind 		goto err;
    516       1.1     rmind 	}
    517       1.1     rmind 
    518       1.1     rmind 	/* Finally, insert into the connection list. */
    519       1.1     rmind 	NPF_PRINTF(("NPF: establish conn %p\n", con));
    520       1.1     rmind 	npf_conndb_enqueue(conn_db, con);
    521       1.1     rmind 	return con;
    522       1.1     rmind err:
    523       1.1     rmind 	npf_conn_destroy(con);
    524       1.1     rmind 	return NULL;
    525       1.1     rmind }
    526       1.1     rmind 
    527       1.1     rmind static void
    528       1.1     rmind npf_conn_destroy(npf_conn_t *con)
    529       1.1     rmind {
    530       1.1     rmind 	if (con->c_nat) {
    531       1.1     rmind 		/* Release any NAT structures. */
    532       1.1     rmind 		npf_nat_destroy(con->c_nat);
    533       1.1     rmind 	}
    534       1.1     rmind 	if (con->c_rproc) {
    535       1.1     rmind 		/* Release the rule procedure. */
    536       1.1     rmind 		npf_rproc_release(con->c_rproc);
    537       1.1     rmind 	}
    538       1.1     rmind 
    539       1.1     rmind 	/* Destroy the state. */
    540       1.1     rmind 	npf_state_destroy(&con->c_state);
    541       1.1     rmind 	mutex_destroy(&con->c_lock);
    542       1.1     rmind 
    543       1.1     rmind 	/* Free the structure, increase the counter. */
    544       1.1     rmind 	pool_cache_put(conn_cache, con);
    545       1.6     rmind 	npf_stats_inc(NPF_STAT_CONN_DESTROY);
    546       1.1     rmind 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    547       1.1     rmind }
    548       1.1     rmind 
    549       1.1     rmind /*
    550       1.1     rmind  * npf_conn_setnat: associate NAT entry with the connection, update and
    551       1.1     rmind  * re-insert connection entry using the translation values.
    552       1.1     rmind  */
    553       1.1     rmind int
    554       1.1     rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    555       1.1     rmind     npf_nat_t *nt, u_int ntype)
    556       1.1     rmind {
    557       1.1     rmind 	static const u_int nat_type_dimap[] = {
    558       1.1     rmind 		[NPF_NATOUT] = NPF_DST,
    559       1.1     rmind 		[NPF_NATIN] = NPF_SRC,
    560       1.1     rmind 	};
    561       1.1     rmind 	npf_connkey_t key, *bk;
    562       1.2     rmind 	npf_conn_t *ret __diagused;
    563       1.1     rmind 	npf_addr_t *taddr;
    564       1.1     rmind 	in_port_t tport;
    565       1.1     rmind 	u_int tidx;
    566       1.1     rmind 
    567       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    568       1.1     rmind 
    569       1.1     rmind 	npf_nat_gettrans(nt, &taddr, &tport);
    570       1.1     rmind 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    571       1.1     rmind 	tidx = nat_type_dimap[ntype];
    572       1.1     rmind 
    573       1.1     rmind 	/* Construct a "backwards" key. */
    574       1.1     rmind 	if (!npf_conn_conkey(npc, &key, false)) {
    575       1.1     rmind 		return EINVAL;
    576       1.1     rmind 	}
    577       1.1     rmind 
    578       1.1     rmind 	/* Acquire the lock and check for the races. */
    579       1.1     rmind 	mutex_enter(&con->c_lock);
    580       1.1     rmind 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    581       1.1     rmind 		/* The connection got expired. */
    582       1.1     rmind 		mutex_exit(&con->c_lock);
    583       1.1     rmind 		return EINVAL;
    584       1.1     rmind 	}
    585       1.1     rmind 	if (__predict_false(con->c_nat != NULL)) {
    586       1.1     rmind 		/* Race with a duplicate packet. */
    587       1.1     rmind 		mutex_exit(&con->c_lock);
    588       1.1     rmind 		npf_stats_inc(NPF_STAT_RACE_NAT);
    589       1.1     rmind 		return EISCONN;
    590       1.1     rmind 	}
    591       1.1     rmind 
    592       1.1     rmind 	/* Remove the "backwards" entry. */
    593       1.1     rmind 	ret = npf_conndb_remove(conn_db, &key);
    594       1.1     rmind 	KASSERT(ret == con);
    595       1.1     rmind 
    596       1.1     rmind 	/* Set the source/destination IDs to the translation values. */
    597       1.1     rmind 	bk = &con->c_back_entry;
    598       1.1     rmind 	connkey_set_addr(bk, taddr, tidx);
    599       1.1     rmind 	if (tport) {
    600       1.1     rmind 		connkey_set_id(bk, tport, tidx);
    601       1.1     rmind 	}
    602       1.1     rmind 
    603       1.1     rmind 	/* Finally, re-insert the "backwards" entry. */
    604       1.1     rmind 	if (!npf_conndb_insert(conn_db, bk, con)) {
    605       1.1     rmind 		/*
    606       1.1     rmind 		 * Race: we have hit the duplicate, remove the "forwards"
    607       1.1     rmind 		 * entry and expire our connection; it is no longer valid.
    608       1.1     rmind 		 */
    609       1.1     rmind 		(void)npf_conndb_remove(conn_db, &con->c_forw_entry);
    610       1.1     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    611       1.1     rmind 		mutex_exit(&con->c_lock);
    612       1.1     rmind 
    613       1.1     rmind 		npf_stats_inc(NPF_STAT_RACE_NAT);
    614       1.1     rmind 		return EISCONN;
    615       1.1     rmind 	}
    616       1.1     rmind 
    617       1.1     rmind 	/* Associate the NAT entry and release the lock. */
    618       1.1     rmind 	con->c_nat = nt;
    619       1.1     rmind 	mutex_exit(&con->c_lock);
    620       1.1     rmind 	return 0;
    621       1.1     rmind }
    622       1.1     rmind 
    623       1.1     rmind /*
    624       1.1     rmind  * npf_conn_expire: explicitly mark connection as expired.
    625       1.1     rmind  */
    626       1.1     rmind void
    627       1.1     rmind npf_conn_expire(npf_conn_t *con)
    628       1.1     rmind {
    629       1.1     rmind 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    630       1.1     rmind 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    631       1.1     rmind }
    632       1.1     rmind 
    633       1.1     rmind /*
    634       1.1     rmind  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    635       1.1     rmind  */
    636       1.1     rmind bool
    637       1.1     rmind npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
    638       1.1     rmind {
    639       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    640       1.1     rmind 	if (__predict_true(con->c_flags & CONN_PASS)) {
    641       1.1     rmind 		*rp = con->c_rproc;
    642       1.1     rmind 		return true;
    643       1.1     rmind 	}
    644       1.1     rmind 	return false;
    645       1.1     rmind }
    646       1.1     rmind 
    647       1.1     rmind /*
    648       1.1     rmind  * npf_conn_setpass: mark connection as a "pass" one and associate the
    649       1.1     rmind  * rule procedure with it.
    650       1.1     rmind  */
    651       1.1     rmind void
    652       1.1     rmind npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
    653       1.1     rmind {
    654       1.1     rmind 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    655       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    656       1.1     rmind 	KASSERT(con->c_rproc == NULL);
    657       1.1     rmind 
    658       1.1     rmind 	/*
    659       1.1     rmind 	 * No need for atomic since the connection is not yet active.
    660       1.1     rmind 	 * If rproc is set, the caller transfers its reference to us,
    661       1.1     rmind 	 * which will be released on npf_conn_destroy().
    662       1.1     rmind 	 */
    663  1.10.2.3   msaitoh 	atomic_or_uint(&con->c_flags, CONN_PASS);
    664       1.1     rmind 	con->c_rproc = rp;
    665       1.1     rmind }
    666       1.1     rmind 
    667       1.1     rmind /*
    668       1.1     rmind  * npf_conn_release: release a reference, which might allow G/C thread
    669       1.1     rmind  * to destroy this connection.
    670       1.1     rmind  */
    671       1.1     rmind void
    672       1.1     rmind npf_conn_release(npf_conn_t *con)
    673       1.1     rmind {
    674       1.1     rmind 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    675       1.1     rmind 		/* Activate: after this, connection is globally visible. */
    676  1.10.2.3   msaitoh 		atomic_or_uint(&con->c_flags, CONN_ACTIVE);
    677       1.1     rmind 	}
    678       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    679       1.1     rmind 	atomic_dec_uint(&con->c_refcnt);
    680       1.1     rmind }
    681       1.1     rmind 
    682       1.1     rmind /*
    683  1.10.2.2    martin  * npf_conn_getnat: return associated NAT data entry and indicate
    684       1.1     rmind  * whether it is a "forwards" or "backwards" stream.
    685       1.1     rmind  */
    686       1.1     rmind npf_nat_t *
    687  1.10.2.2    martin npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
    688       1.1     rmind {
    689       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    690       1.1     rmind 	*forw = (con->c_flags & PFIL_ALL) == di;
    691       1.1     rmind 	return con->c_nat;
    692       1.1     rmind }
    693       1.1     rmind 
    694       1.1     rmind /*
    695       1.1     rmind  * npf_conn_expired: criterion to check if connection is expired.
    696       1.1     rmind  */
    697       1.1     rmind static inline bool
    698       1.1     rmind npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
    699       1.1     rmind {
    700       1.1     rmind 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
    701       1.1     rmind 	struct timespec tsdiff;
    702       1.1     rmind 
    703       1.1     rmind 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    704       1.1     rmind 		/* Explicitly marked to be expired. */
    705       1.1     rmind 		return true;
    706       1.1     rmind 	}
    707       1.1     rmind 	timespecsub(tsnow, &con->c_atime, &tsdiff);
    708       1.1     rmind 	return tsdiff.tv_sec > etime;
    709       1.1     rmind }
    710       1.1     rmind 
    711       1.1     rmind /*
    712       1.6     rmind  * npf_conn_gc: garbage collect the expired connections.
    713       1.6     rmind  *
    714       1.6     rmind  * => Must run in a single-threaded manner.
    715       1.6     rmind  * => If it is a flush request, then destroy all connections.
    716       1.6     rmind  * => If 'sync' is true, then perform passive serialisation.
    717       1.1     rmind  */
    718       1.7     rmind void
    719       1.6     rmind npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
    720       1.1     rmind {
    721       1.1     rmind 	npf_conn_t *con, *prev, *gclist = NULL;
    722       1.1     rmind 	struct timespec tsnow;
    723       1.1     rmind 
    724       1.1     rmind 	getnanouptime(&tsnow);
    725       1.1     rmind 
    726       1.1     rmind 	/*
    727       1.1     rmind 	 * Scan all connections and check them for expiration.
    728       1.1     rmind 	 */
    729       1.1     rmind 	prev = NULL;
    730       1.1     rmind 	con = npf_conndb_getlist(cd);
    731       1.1     rmind 	while (con) {
    732       1.1     rmind 		npf_conn_t *next = con->c_next;
    733       1.1     rmind 
    734       1.1     rmind 		/* Expired?  Flushing all? */
    735       1.6     rmind 		if (!npf_conn_expired(con, &tsnow) && !flush) {
    736       1.1     rmind 			prev = con;
    737       1.1     rmind 			con = next;
    738       1.1     rmind 			continue;
    739       1.1     rmind 		}
    740       1.1     rmind 
    741       1.1     rmind 		/* Remove both entries of the connection. */
    742       1.1     rmind 		mutex_enter(&con->c_lock);
    743       1.1     rmind 		if ((con->c_flags & CONN_REMOVED) == 0) {
    744       1.1     rmind 			npf_conn_t *ret __diagused;
    745       1.1     rmind 
    746       1.1     rmind 			ret = npf_conndb_remove(cd, &con->c_forw_entry);
    747       1.1     rmind 			KASSERT(ret == con);
    748       1.1     rmind 			ret = npf_conndb_remove(cd, &con->c_back_entry);
    749       1.1     rmind 			KASSERT(ret == con);
    750       1.1     rmind 		}
    751       1.1     rmind 
    752       1.1     rmind 		/* Flag the removal and expiration. */
    753       1.1     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    754       1.1     rmind 		mutex_exit(&con->c_lock);
    755       1.1     rmind 
    756       1.1     rmind 		/* Move to the G/C list. */
    757       1.1     rmind 		npf_conndb_dequeue(cd, con, prev);
    758       1.1     rmind 		con->c_next = gclist;
    759       1.1     rmind 		gclist = con;
    760       1.1     rmind 
    761       1.1     rmind 		/* Next.. */
    762       1.1     rmind 		con = next;
    763       1.1     rmind 	}
    764       1.1     rmind 	npf_conndb_settail(cd, prev);
    765       1.6     rmind 
    766       1.6     rmind 	/*
    767       1.6     rmind 	 * Ensure it is safe to destroy the connections.
    768       1.6     rmind 	 * Note: drop the conn_lock (see the lock order).
    769       1.6     rmind 	 */
    770       1.6     rmind 	if (sync) {
    771       1.6     rmind 		mutex_exit(&conn_lock);
    772       1.6     rmind 		if (gclist) {
    773       1.6     rmind 			npf_config_enter();
    774       1.6     rmind 			npf_config_sync();
    775       1.6     rmind 			npf_config_exit();
    776       1.6     rmind 		}
    777       1.1     rmind 	}
    778       1.1     rmind 
    779       1.1     rmind 	/*
    780       1.1     rmind 	 * Garbage collect all expired connections.
    781       1.1     rmind 	 * May need to wait for the references to drain.
    782       1.1     rmind 	 */
    783       1.1     rmind 	con = gclist;
    784       1.1     rmind 	while (con) {
    785       1.1     rmind 		npf_conn_t *next = con->c_next;
    786       1.1     rmind 
    787       1.1     rmind 		/*
    788       1.1     rmind 		 * Destroy only if removed and no references.
    789       1.1     rmind 		 * Otherwise, wait for a tiny moment.
    790       1.1     rmind 		 */
    791       1.1     rmind 		if (__predict_false(con->c_refcnt)) {
    792       1.1     rmind 			kpause("npfcongc", false, 1, NULL);
    793       1.1     rmind 			continue;
    794       1.1     rmind 		}
    795       1.1     rmind 		npf_conn_destroy(con);
    796       1.1     rmind 		con = next;
    797       1.1     rmind 	}
    798       1.1     rmind }
    799       1.1     rmind 
    800       1.6     rmind /*
    801       1.6     rmind  * npf_conn_worker: G/C to run from a worker thread.
    802       1.6     rmind  */
    803       1.6     rmind static void
    804       1.6     rmind npf_conn_worker(void)
    805       1.1     rmind {
    806       1.6     rmind 	mutex_enter(&conn_lock);
    807       1.6     rmind 	/* Note: the conn_lock will be released (sync == true). */
    808       1.6     rmind 	npf_conn_gc(conn_db, false, true);
    809       1.1     rmind }
    810       1.1     rmind 
    811       1.1     rmind /*
    812      1.10     rmind  * npf_conndb_export: construct a list of connections prepared for saving.
    813       1.1     rmind  * Note: this is expected to be an expensive operation.
    814       1.1     rmind  */
    815       1.1     rmind int
    816      1.10     rmind npf_conndb_export(prop_array_t conlist)
    817       1.1     rmind {
    818       1.1     rmind 	npf_conn_t *con, *prev;
    819       1.1     rmind 
    820       1.1     rmind 	/*
    821       1.1     rmind 	 * Note: acquire conn_lock to prevent from the database
    822       1.1     rmind 	 * destruction and G/C thread.
    823       1.1     rmind 	 */
    824       1.1     rmind 	mutex_enter(&conn_lock);
    825       1.6     rmind 	if (conn_tracking != CONN_TRACKING_ON) {
    826       1.1     rmind 		mutex_exit(&conn_lock);
    827       1.1     rmind 		return 0;
    828       1.1     rmind 	}
    829       1.1     rmind 	prev = NULL;
    830       1.1     rmind 	con = npf_conndb_getlist(conn_db);
    831       1.1     rmind 	while (con) {
    832       1.1     rmind 		npf_conn_t *next = con->c_next;
    833      1.10     rmind 		prop_dictionary_t cdict;
    834       1.1     rmind 
    835      1.10     rmind 		if ((cdict = npf_conn_export(con)) != NULL) {
    836      1.10     rmind 			prop_array_add(conlist, cdict);
    837      1.10     rmind 			prop_object_release(cdict);
    838       1.1     rmind 		}
    839       1.1     rmind 		prev = con;
    840       1.1     rmind 		con = next;
    841       1.1     rmind 	}
    842       1.1     rmind 	npf_conndb_settail(conn_db, prev);
    843       1.1     rmind 	mutex_exit(&conn_lock);
    844       1.5     joerg 	return 0;
    845       1.1     rmind }
    846       1.1     rmind 
    847       1.1     rmind /*
    848      1.10     rmind  * npf_conn_export: serialise a single connection.
    849      1.10     rmind  */
    850      1.10     rmind prop_dictionary_t
    851      1.10     rmind npf_conn_export(const npf_conn_t *con)
    852      1.10     rmind {
    853      1.10     rmind 	prop_dictionary_t cdict;
    854      1.10     rmind 	prop_data_t d;
    855      1.10     rmind 
    856      1.10     rmind 	if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
    857      1.10     rmind 		return NULL;
    858      1.10     rmind 	}
    859      1.10     rmind 	cdict = prop_dictionary_create();
    860      1.10     rmind 	prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
    861      1.10     rmind 	prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
    862      1.10     rmind 	if (con->c_ifid) {
    863      1.10     rmind 		const char *ifname = npf_ifmap_getname(con->c_ifid);
    864      1.10     rmind 		prop_dictionary_set_cstring(cdict, "ifname", ifname);
    865      1.10     rmind 	}
    866      1.10     rmind 
    867      1.10     rmind 	d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
    868      1.10     rmind 	prop_dictionary_set_and_rel(cdict, "state", d);
    869      1.10     rmind 
    870      1.10     rmind 	const uint32_t *fkey = con->c_forw_entry.ck_key;
    871      1.10     rmind 	d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
    872      1.10     rmind 	prop_dictionary_set_and_rel(cdict, "forw-key", d);
    873      1.10     rmind 
    874      1.10     rmind 	const uint32_t *bkey = con->c_back_entry.ck_key;
    875      1.10     rmind 	d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
    876      1.10     rmind 	prop_dictionary_set_and_rel(cdict, "back-key", d);
    877      1.10     rmind 
    878      1.10     rmind 	if (con->c_nat) {
    879      1.10     rmind 		npf_nat_export(cdict, con->c_nat);
    880      1.10     rmind 	}
    881      1.10     rmind 	return cdict;
    882      1.10     rmind }
    883      1.10     rmind 
    884      1.10     rmind /*
    885       1.6     rmind  * npf_conn_import: fully reconstruct a single connection from a
    886       1.6     rmind  * directory and insert into the given database.
    887       1.1     rmind  */
    888       1.1     rmind int
    889       1.6     rmind npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
    890       1.6     rmind     npf_ruleset_t *natlist)
    891       1.1     rmind {
    892       1.1     rmind 	npf_conn_t *con;
    893       1.1     rmind 	npf_connkey_t *fw, *bk;
    894       1.1     rmind 	prop_object_t obj;
    895      1.10     rmind 	const char *ifname;
    896       1.1     rmind 	const void *d;
    897       1.1     rmind 
    898       1.1     rmind 	/* Allocate a connection and initialise it (clear first). */
    899       1.1     rmind 	con = pool_cache_get(conn_cache, PR_WAITOK);
    900       1.1     rmind 	memset(con, 0, sizeof(npf_conn_t));
    901       1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    902  1.10.2.1    martin 	npf_stats_inc(NPF_STAT_CONN_CREATE);
    903       1.1     rmind 
    904       1.1     rmind 	prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
    905       1.1     rmind 	prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
    906       1.1     rmind 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
    907       1.1     rmind 	getnanouptime(&con->c_atime);
    908       1.1     rmind 
    909      1.10     rmind 	if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) &&
    910      1.10     rmind 	    (con->c_ifid = npf_ifmap_register(ifname)) == 0) {
    911      1.10     rmind 		goto err;
    912      1.10     rmind 	}
    913      1.10     rmind 
    914       1.1     rmind 	obj = prop_dictionary_get(cdict, "state");
    915       1.1     rmind 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    916       1.1     rmind 	    prop_data_size(obj) != sizeof(npf_state_t)) {
    917       1.1     rmind 		goto err;
    918       1.1     rmind 	}
    919       1.1     rmind 	memcpy(&con->c_state, d, sizeof(npf_state_t));
    920       1.1     rmind 
    921  1.10.2.1    martin 	/* Reconstruct NAT association, if any. */
    922  1.10.2.1    martin 	if ((obj = prop_dictionary_get(cdict, "nat")) != NULL &&
    923  1.10.2.1    martin 	    (con->c_nat = npf_nat_import(obj, natlist, con)) == NULL) {
    924  1.10.2.1    martin 		goto err;
    925  1.10.2.1    martin 	}
    926       1.1     rmind 
    927       1.1     rmind 	/*
    928       1.1     rmind 	 * Fetch and copy the keys for each direction.
    929       1.1     rmind 	 */
    930       1.1     rmind 	obj = prop_dictionary_get(cdict, "forw-key");
    931       1.1     rmind 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    932       1.1     rmind 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    933       1.1     rmind 		goto err;
    934       1.1     rmind 	}
    935       1.1     rmind 	fw = &con->c_forw_entry;
    936       1.1     rmind 	memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
    937       1.1     rmind 
    938       1.1     rmind 	obj = prop_dictionary_get(cdict, "back-key");
    939       1.1     rmind 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    940       1.1     rmind 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    941       1.1     rmind 		goto err;
    942       1.1     rmind 	}
    943       1.1     rmind 	bk = &con->c_back_entry;
    944       1.1     rmind 	memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
    945       1.1     rmind 
    946       1.1     rmind 	fw->ck_backptr = bk->ck_backptr = con;
    947       1.1     rmind 
    948       1.1     rmind 	/* Insert the entries and the connection itself. */
    949       1.1     rmind 	if (!npf_conndb_insert(cd, fw, con)) {
    950       1.1     rmind 		goto err;
    951       1.1     rmind 	}
    952       1.1     rmind 	if (!npf_conndb_insert(cd, bk, con)) {
    953       1.1     rmind 		npf_conndb_remove(cd, fw);
    954       1.1     rmind 		goto err;
    955       1.1     rmind 	}
    956  1.10.2.1    martin 
    957  1.10.2.1    martin 	NPF_PRINTF(("NPF: imported conn %p\n", con));
    958       1.1     rmind 	npf_conndb_enqueue(cd, con);
    959       1.1     rmind 	return 0;
    960       1.1     rmind err:
    961       1.1     rmind 	npf_conn_destroy(con);
    962       1.1     rmind 	return EINVAL;
    963       1.1     rmind }
    964       1.1     rmind 
    965       1.1     rmind #if defined(DDB) || defined(_NPF_TESTING)
    966       1.1     rmind 
    967       1.1     rmind void
    968       1.1     rmind npf_conn_print(const npf_conn_t *con)
    969       1.1     rmind {
    970       1.1     rmind 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
    971       1.1     rmind 	const uint32_t *fkey = con->c_forw_entry.ck_key;
    972       1.1     rmind 	const uint32_t *bkey = con->c_back_entry.ck_key;
    973       1.1     rmind 	const u_int proto = con->c_proto;
    974       1.1     rmind 	struct timespec tsnow, tsdiff;
    975       1.1     rmind 	const void *src, *dst;
    976       1.1     rmind 	int etime;
    977       1.1     rmind 
    978       1.1     rmind 	getnanouptime(&tsnow);
    979       1.1     rmind 	timespecsub(&tsnow, &con->c_atime, &tsdiff);
    980       1.1     rmind 	etime = npf_state_etime(&con->c_state, proto);
    981       1.1     rmind 
    982       1.1     rmind 	printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
    983       1.1     rmind 	    con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
    984       1.1     rmind 
    985       1.1     rmind 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
    986       1.1     rmind 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
    987       1.1     rmind 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
    988       1.1     rmind 
    989       1.1     rmind 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
    990       1.1     rmind 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
    991       1.1     rmind 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
    992       1.1     rmind 
    993       1.1     rmind 	npf_state_dump(&con->c_state);
    994       1.1     rmind 	if (con->c_nat) {
    995       1.1     rmind 		npf_nat_dump(con->c_nat);
    996       1.1     rmind 	}
    997       1.1     rmind }
    998       1.1     rmind 
    999       1.1     rmind #endif
   1000