npf_conn.c revision 1.19 1 1.19 kre /* $NetBSD: npf_conn.c,v 1.19 2016/12/10 09:26:16 kre Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.15 rmind * Copyright (c) 2014-2015 Mindaugas Rasiukevicius <rmind at netbsd org>
5 1.1 rmind * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
6 1.1 rmind * All rights reserved.
7 1.1 rmind *
8 1.1 rmind * This material is based upon work partially supported by The
9 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
10 1.1 rmind *
11 1.1 rmind * Redistribution and use in source and binary forms, with or without
12 1.1 rmind * modification, are permitted provided that the following conditions
13 1.1 rmind * are met:
14 1.1 rmind * 1. Redistributions of source code must retain the above copyright
15 1.1 rmind * notice, this list of conditions and the following disclaimer.
16 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 rmind * notice, this list of conditions and the following disclaimer in the
18 1.1 rmind * documentation and/or other materials provided with the distribution.
19 1.1 rmind *
20 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
31 1.1 rmind */
32 1.1 rmind
33 1.1 rmind /*
34 1.1 rmind * NPF connection tracking for stateful filtering and translation.
35 1.1 rmind *
36 1.1 rmind * Overview
37 1.1 rmind *
38 1.1 rmind * Connection direction is identified by the direction of its first
39 1.1 rmind * packet. Packets can be incoming or outgoing with respect to an
40 1.1 rmind * interface. To describe the packet in the context of connection
41 1.1 rmind * direction we will use the terms "forwards stream" and "backwards
42 1.1 rmind * stream". All connections have two keys and thus two entries:
43 1.1 rmind *
44 1.1 rmind * npf_conn_t::c_forw_entry for the forwards stream and
45 1.1 rmind * npf_conn_t::c_back_entry for the backwards stream.
46 1.1 rmind *
47 1.1 rmind * The keys are formed from the 5-tuple (source/destination address,
48 1.1 rmind * source/destination port and the protocol). Additional matching
49 1.1 rmind * is performed for the interface (a common behaviour is equivalent
50 1.1 rmind * to the 6-tuple lookup including the interface ID). Note that the
51 1.1 rmind * key may be formed using translated values in a case of NAT.
52 1.1 rmind *
53 1.1 rmind * Connections can serve two purposes: for the implicit passing or
54 1.1 rmind * to accommodate the dynamic NAT. Connections for the former purpose
55 1.1 rmind * are created by the rules with "stateful" attribute and are used for
56 1.1 rmind * stateful filtering. Such connections indicate that the packet of
57 1.1 rmind * the backwards stream should be passed without inspection of the
58 1.1 rmind * ruleset. The other purpose is to associate a dynamic NAT mechanism
59 1.1 rmind * with a connection. Such connections are created by the NAT policies
60 1.1 rmind * and they have a relationship with NAT translation structure via
61 1.1 rmind * npf_conn_t::c_nat. A single connection can serve both purposes,
62 1.1 rmind * which is a common case.
63 1.1 rmind *
64 1.1 rmind * Connection life-cycle
65 1.1 rmind *
66 1.1 rmind * Connections are established when a packet matches said rule or
67 1.1 rmind * NAT policy. Both keys of the established connection are inserted
68 1.1 rmind * into the connection database. A garbage collection thread
69 1.1 rmind * periodically scans all connections and depending on connection
70 1.1 rmind * properties (e.g. last activity time, protocol) removes connection
71 1.1 rmind * entries and expires the actual connections.
72 1.1 rmind *
73 1.1 rmind * Each connection has a reference count. The reference is acquired
74 1.1 rmind * on lookup and should be released by the caller. It guarantees that
75 1.1 rmind * the connection will not be destroyed, although it may be expired.
76 1.1 rmind *
77 1.1 rmind * Synchronisation
78 1.1 rmind *
79 1.1 rmind * Connection database is accessed in a lock-less manner by the main
80 1.1 rmind * routines: npf_conn_inspect() and npf_conn_establish(). Since they
81 1.1 rmind * are always called from a software interrupt, the database is
82 1.1 rmind * protected using passive serialisation. The main place which can
83 1.1 rmind * destroy a connection is npf_conn_worker(). The database itself
84 1.1 rmind * can be replaced and destroyed in npf_conn_reload().
85 1.1 rmind *
86 1.1 rmind * ALG support
87 1.1 rmind *
88 1.1 rmind * Application-level gateways (ALGs) can override generic connection
89 1.1 rmind * inspection (npf_alg_conn() call in npf_conn_inspect() function) by
90 1.1 rmind * performing their own lookup using different key. Recursive call
91 1.1 rmind * to npf_conn_inspect() is not allowed. The ALGs ought to use the
92 1.1 rmind * npf_conn_lookup() function for this purpose.
93 1.1 rmind *
94 1.1 rmind * Lock order
95 1.1 rmind *
96 1.6 rmind * npf_config_lock ->
97 1.6 rmind * conn_lock ->
98 1.6 rmind * npf_conn_t::c_lock
99 1.1 rmind */
100 1.1 rmind
101 1.1 rmind #include <sys/cdefs.h>
102 1.19 kre __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.19 2016/12/10 09:26:16 kre Exp $");
103 1.1 rmind
104 1.1 rmind #include <sys/param.h>
105 1.1 rmind #include <sys/types.h>
106 1.1 rmind
107 1.1 rmind #include <netinet/in.h>
108 1.1 rmind #include <netinet/tcp.h>
109 1.1 rmind
110 1.1 rmind #include <sys/atomic.h>
111 1.1 rmind #include <sys/condvar.h>
112 1.1 rmind #include <sys/kmem.h>
113 1.1 rmind #include <sys/kthread.h>
114 1.1 rmind #include <sys/mutex.h>
115 1.1 rmind #include <net/pfil.h>
116 1.1 rmind #include <sys/pool.h>
117 1.1 rmind #include <sys/queue.h>
118 1.1 rmind #include <sys/systm.h>
119 1.1 rmind
120 1.1 rmind #define __NPF_CONN_PRIVATE
121 1.1 rmind #include "npf_conn.h"
122 1.1 rmind #include "npf_impl.h"
123 1.1 rmind
124 1.1 rmind /*
125 1.1 rmind * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
126 1.1 rmind */
127 1.1 rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
128 1.1 rmind #define CONN_ACTIVE 0x004 /* visible on inspection */
129 1.1 rmind #define CONN_PASS 0x008 /* perform implicit passing */
130 1.1 rmind #define CONN_EXPIRE 0x010 /* explicitly expire */
131 1.1 rmind #define CONN_REMOVED 0x020 /* "forw/back" entries removed */
132 1.1 rmind
133 1.1 rmind /*
134 1.6 rmind * Connection tracking state: disabled (off) or enabled (on).
135 1.1 rmind */
136 1.6 rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
137 1.1 rmind static volatile int conn_tracking __cacheline_aligned;
138 1.1 rmind
139 1.1 rmind /* Connection tracking database, connection cache and the lock. */
140 1.1 rmind static npf_conndb_t * conn_db __read_mostly;
141 1.1 rmind static pool_cache_t conn_cache __read_mostly;
142 1.1 rmind static kmutex_t conn_lock __cacheline_aligned;
143 1.1 rmind
144 1.1 rmind static void npf_conn_worker(void);
145 1.1 rmind static void npf_conn_destroy(npf_conn_t *);
146 1.1 rmind
147 1.1 rmind /*
148 1.1 rmind * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
149 1.1 rmind */
150 1.1 rmind
151 1.1 rmind void
152 1.1 rmind npf_conn_sysinit(void)
153 1.1 rmind {
154 1.1 rmind conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
155 1.1 rmind 0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
156 1.1 rmind mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
157 1.1 rmind conn_tracking = CONN_TRACKING_OFF;
158 1.6 rmind conn_db = npf_conndb_create();
159 1.1 rmind
160 1.1 rmind npf_worker_register(npf_conn_worker);
161 1.1 rmind }
162 1.1 rmind
163 1.1 rmind void
164 1.1 rmind npf_conn_sysfini(void)
165 1.1 rmind {
166 1.6 rmind /* Note: the caller should have flushed the connections. */
167 1.6 rmind KASSERT(conn_tracking == CONN_TRACKING_OFF);
168 1.1 rmind npf_worker_unregister(npf_conn_worker);
169 1.1 rmind
170 1.6 rmind npf_conndb_destroy(conn_db);
171 1.1 rmind pool_cache_destroy(conn_cache);
172 1.1 rmind mutex_destroy(&conn_lock);
173 1.1 rmind }
174 1.1 rmind
175 1.1 rmind /*
176 1.6 rmind * npf_conn_load: perform the load by flushing the current connection
177 1.6 rmind * database and replacing it with the new one or just destroying.
178 1.1 rmind *
179 1.6 rmind * => The caller must disable the connection tracking and ensure that
180 1.6 rmind * there are no connection database lookups or references in-flight.
181 1.1 rmind */
182 1.6 rmind void
183 1.6 rmind npf_conn_load(npf_conndb_t *ndb, bool track)
184 1.1 rmind {
185 1.6 rmind npf_conndb_t *odb = NULL;
186 1.1 rmind
187 1.6 rmind KASSERT(npf_config_locked_p());
188 1.1 rmind
189 1.1 rmind /*
190 1.6 rmind * The connection database is in the quiescent state.
191 1.6 rmind * Prevent G/C thread from running and install a new database.
192 1.1 rmind */
193 1.6 rmind mutex_enter(&conn_lock);
194 1.6 rmind if (ndb) {
195 1.6 rmind KASSERT(conn_tracking == CONN_TRACKING_OFF);
196 1.6 rmind odb = conn_db;
197 1.6 rmind conn_db = ndb;
198 1.6 rmind membar_sync();
199 1.6 rmind }
200 1.6 rmind if (track) {
201 1.6 rmind /* After this point lookups start flying in. */
202 1.6 rmind conn_tracking = CONN_TRACKING_ON;
203 1.1 rmind }
204 1.6 rmind mutex_exit(&conn_lock);
205 1.1 rmind
206 1.1 rmind if (odb) {
207 1.6 rmind /*
208 1.6 rmind * Flush all, no sync since the caller did it for us.
209 1.6 rmind * Also, release the pool cache memory.
210 1.6 rmind */
211 1.6 rmind npf_conn_gc(odb, true, false);
212 1.1 rmind npf_conndb_destroy(odb);
213 1.6 rmind pool_cache_invalidate(conn_cache);
214 1.1 rmind }
215 1.1 rmind }
216 1.1 rmind
217 1.1 rmind /*
218 1.1 rmind * npf_conn_tracking: enable/disable connection tracking.
219 1.1 rmind */
220 1.1 rmind void
221 1.1 rmind npf_conn_tracking(bool track)
222 1.1 rmind {
223 1.6 rmind KASSERT(npf_config_locked_p());
224 1.6 rmind conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
225 1.1 rmind }
226 1.1 rmind
227 1.6 rmind static inline bool
228 1.1 rmind npf_conn_trackable_p(const npf_cache_t *npc)
229 1.1 rmind {
230 1.1 rmind /*
231 1.1 rmind * Check if connection tracking is on. Also, if layer 3 and 4 are
232 1.1 rmind * not cached - protocol is not supported or packet is invalid.
233 1.1 rmind */
234 1.1 rmind if (conn_tracking != CONN_TRACKING_ON) {
235 1.1 rmind return false;
236 1.1 rmind }
237 1.1 rmind if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
238 1.1 rmind return false;
239 1.1 rmind }
240 1.1 rmind return true;
241 1.1 rmind }
242 1.1 rmind
243 1.18 christos static uint32_t
244 1.18 christos connkey_setkey(npf_connkey_t *key, uint32_t proto, const void *ipv,
245 1.18 christos uint16_t *id, size_t alen, bool forw)
246 1.18 christos {
247 1.18 christos uint32_t isrc, idst;
248 1.18 christos const npf_addr_t * const *ips = ipv;
249 1.18 christos if (__predict_true(forw)) {
250 1.18 christos isrc = NPF_SRC, idst = NPF_DST;
251 1.18 christos } else {
252 1.18 christos isrc = NPF_DST, idst = NPF_SRC;
253 1.18 christos }
254 1.18 christos
255 1.18 christos /*
256 1.18 christos * Construct a key formed out of 32-bit integers. The key layout:
257 1.18 christos *
258 1.18 christos * Field: | proto | alen | src-id | dst-id | src-addr | dst-addr |
259 1.18 christos * +--------+--------+--------+--------+----------+----------+
260 1.18 christos * Bits: | 16 | 16 | 16 | 16 | 32-128 | 32-128 |
261 1.18 christos *
262 1.18 christos * The source and destination are inverted if they key is for the
263 1.18 christos * backwards stream (forw == false). The address length depends
264 1.18 christos * on the 'alen' field; it is a length in bytes, either 4 or 16.
265 1.18 christos */
266 1.18 christos
267 1.18 christos key->ck_key[0] = ((uint32_t)proto << 16) | (alen & 0xffff);
268 1.18 christos key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
269 1.18 christos
270 1.18 christos if (__predict_true(alen == sizeof(in_addr_t))) {
271 1.18 christos key->ck_key[2] = ips[isrc]->s6_addr32[0];
272 1.18 christos key->ck_key[3] = ips[idst]->s6_addr32[0];
273 1.18 christos return 4 * sizeof(uint32_t);
274 1.18 christos } else {
275 1.18 christos const u_int nwords = alen >> 2;
276 1.18 christos memcpy(&key->ck_key[2], ips[isrc], alen);
277 1.18 christos memcpy(&key->ck_key[2 + nwords], ips[idst], alen);
278 1.18 christos return (2 + (nwords * 2)) * sizeof(uint32_t);
279 1.18 christos }
280 1.18 christos }
281 1.18 christos
282 1.1 rmind /*
283 1.1 rmind * npf_conn_conkey: construct a key for the connection lookup.
284 1.8 rmind *
285 1.8 rmind * => Returns the key length in bytes or zero on failure.
286 1.1 rmind */
287 1.8 rmind unsigned
288 1.1 rmind npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
289 1.1 rmind {
290 1.1 rmind const u_int alen = npc->npc_alen;
291 1.1 rmind const struct tcphdr *th;
292 1.1 rmind const struct udphdr *uh;
293 1.1 rmind uint16_t id[2];
294 1.1 rmind
295 1.1 rmind switch (npc->npc_proto) {
296 1.1 rmind case IPPROTO_TCP:
297 1.1 rmind KASSERT(npf_iscached(npc, NPC_TCP));
298 1.1 rmind th = npc->npc_l4.tcp;
299 1.1 rmind id[NPF_SRC] = th->th_sport;
300 1.1 rmind id[NPF_DST] = th->th_dport;
301 1.1 rmind break;
302 1.1 rmind case IPPROTO_UDP:
303 1.1 rmind KASSERT(npf_iscached(npc, NPC_UDP));
304 1.1 rmind uh = npc->npc_l4.udp;
305 1.1 rmind id[NPF_SRC] = uh->uh_sport;
306 1.1 rmind id[NPF_DST] = uh->uh_dport;
307 1.1 rmind break;
308 1.1 rmind case IPPROTO_ICMP:
309 1.1 rmind if (npf_iscached(npc, NPC_ICMP_ID)) {
310 1.1 rmind const struct icmp *ic = npc->npc_l4.icmp;
311 1.1 rmind id[NPF_SRC] = ic->icmp_id;
312 1.1 rmind id[NPF_DST] = ic->icmp_id;
313 1.1 rmind break;
314 1.1 rmind }
315 1.8 rmind return 0;
316 1.1 rmind case IPPROTO_ICMPV6:
317 1.1 rmind if (npf_iscached(npc, NPC_ICMP_ID)) {
318 1.1 rmind const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
319 1.1 rmind id[NPF_SRC] = ic6->icmp6_id;
320 1.1 rmind id[NPF_DST] = ic6->icmp6_id;
321 1.1 rmind break;
322 1.1 rmind }
323 1.8 rmind return 0;
324 1.1 rmind default:
325 1.1 rmind /* Unsupported protocol. */
326 1.8 rmind return 0;
327 1.1 rmind }
328 1.1 rmind
329 1.18 christos return connkey_setkey(key, npc->npc_proto, npc->npc_ips, id, alen,
330 1.18 christos forw);
331 1.1 rmind }
332 1.1 rmind
333 1.3 christos static __inline void
334 1.1 rmind connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
335 1.1 rmind {
336 1.1 rmind const u_int alen = key->ck_key[0] & 0xffff;
337 1.1 rmind uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
338 1.1 rmind
339 1.1 rmind KASSERT(alen > 0);
340 1.1 rmind memcpy(addr, naddr, alen);
341 1.1 rmind }
342 1.1 rmind
343 1.3 christos static __inline void
344 1.1 rmind connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
345 1.1 rmind {
346 1.1 rmind const uint32_t oid = key->ck_key[1];
347 1.1 rmind const u_int shift = 16 * !di;
348 1.1 rmind const uint32_t mask = 0xffff0000 >> shift;
349 1.1 rmind
350 1.1 rmind key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
351 1.1 rmind }
352 1.1 rmind
353 1.1 rmind /*
354 1.18 christos * npf_conn_ok: check if the connection is active, and has the right direction.
355 1.18 christos */
356 1.18 christos static bool
357 1.18 christos npf_conn_ok(npf_conn_t *con, const int di, bool forw)
358 1.18 christos {
359 1.18 christos uint32_t flags = con->c_flags;
360 1.18 christos
361 1.18 christos /* Check if connection is active and not expired. */
362 1.18 christos bool ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
363 1.18 christos if (__predict_false(!ok)) {
364 1.18 christos return false;
365 1.18 christos }
366 1.18 christos
367 1.18 christos /* Check if the direction is consistent */
368 1.18 christos bool pforw = (flags & PFIL_ALL) == di;
369 1.18 christos if (__predict_false(forw != pforw)) {
370 1.18 christos return false;
371 1.18 christos }
372 1.18 christos return true;
373 1.18 christos }
374 1.18 christos
375 1.18 christos /*
376 1.1 rmind * npf_conn_lookup: lookup if there is an established connection.
377 1.1 rmind *
378 1.1 rmind * => If found, we will hold a reference for the caller.
379 1.1 rmind */
380 1.1 rmind npf_conn_t *
381 1.4 rmind npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
382 1.1 rmind {
383 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
384 1.1 rmind npf_conn_t *con;
385 1.1 rmind npf_connkey_t key;
386 1.18 christos u_int cifid;
387 1.1 rmind
388 1.1 rmind /* Construct a key and lookup for a connection in the store. */
389 1.1 rmind if (!npf_conn_conkey(npc, &key, true)) {
390 1.1 rmind return NULL;
391 1.1 rmind }
392 1.1 rmind con = npf_conndb_lookup(conn_db, &key, forw);
393 1.1 rmind if (con == NULL) {
394 1.1 rmind return NULL;
395 1.1 rmind }
396 1.1 rmind KASSERT(npc->npc_proto == con->c_proto);
397 1.1 rmind
398 1.1 rmind /* Check if connection is active and not expired. */
399 1.18 christos if (!npf_conn_ok(con, di, *forw)) {
400 1.1 rmind atomic_dec_uint(&con->c_refcnt);
401 1.1 rmind return NULL;
402 1.1 rmind }
403 1.1 rmind
404 1.1 rmind /*
405 1.1 rmind * Match the interface and the direction of the connection entry
406 1.1 rmind * and the packet.
407 1.1 rmind */
408 1.1 rmind cifid = con->c_ifid;
409 1.1 rmind if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
410 1.1 rmind atomic_dec_uint(&con->c_refcnt);
411 1.1 rmind return NULL;
412 1.1 rmind }
413 1.1 rmind
414 1.1 rmind /* Update the last activity time. */
415 1.1 rmind getnanouptime(&con->c_atime);
416 1.1 rmind return con;
417 1.1 rmind }
418 1.1 rmind
419 1.1 rmind /*
420 1.1 rmind * npf_conn_inspect: lookup a connection and inspecting the protocol data.
421 1.1 rmind *
422 1.1 rmind * => If found, we will hold a reference for the caller.
423 1.1 rmind */
424 1.1 rmind npf_conn_t *
425 1.4 rmind npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
426 1.1 rmind {
427 1.4 rmind nbuf_t *nbuf = npc->npc_nbuf;
428 1.1 rmind npf_conn_t *con;
429 1.1 rmind bool forw, ok;
430 1.1 rmind
431 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
432 1.1 rmind if (!npf_conn_trackable_p(npc)) {
433 1.1 rmind return NULL;
434 1.1 rmind }
435 1.1 rmind
436 1.1 rmind /* Query ALG which may lookup connection for us. */
437 1.4 rmind if ((con = npf_alg_conn(npc, di)) != NULL) {
438 1.1 rmind /* Note: reference is held. */
439 1.1 rmind return con;
440 1.1 rmind }
441 1.1 rmind if (nbuf_head_mbuf(nbuf) == NULL) {
442 1.1 rmind *error = ENOMEM;
443 1.1 rmind return NULL;
444 1.1 rmind }
445 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
446 1.1 rmind
447 1.1 rmind /* Main lookup of the connection. */
448 1.4 rmind if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
449 1.1 rmind return NULL;
450 1.1 rmind }
451 1.1 rmind
452 1.1 rmind /* Inspect the protocol data and handle state changes. */
453 1.1 rmind mutex_enter(&con->c_lock);
454 1.4 rmind ok = npf_state_inspect(npc, &con->c_state, forw);
455 1.1 rmind mutex_exit(&con->c_lock);
456 1.1 rmind
457 1.17 rmind /* If invalid state: let the rules deal with it. */
458 1.1 rmind if (__predict_false(!ok)) {
459 1.1 rmind npf_conn_release(con);
460 1.1 rmind npf_stats_inc(NPF_STAT_INVALID_STATE);
461 1.17 rmind return NULL;
462 1.17 rmind }
463 1.17 rmind
464 1.17 rmind /*
465 1.17 rmind * If this is multi-end state, then specially tag the packet
466 1.17 rmind * so it will be just passed-through on other interfaces.
467 1.17 rmind */
468 1.17 rmind if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
469 1.17 rmind npf_conn_release(con);
470 1.17 rmind *error = ENOMEM;
471 1.17 rmind return NULL;
472 1.1 rmind }
473 1.1 rmind return con;
474 1.1 rmind }
475 1.1 rmind
476 1.1 rmind /*
477 1.1 rmind * npf_conn_establish: create a new connection, insert into the global list.
478 1.1 rmind *
479 1.1 rmind * => Connection is created with the reference held for the caller.
480 1.1 rmind * => Connection will be activated on the first reference release.
481 1.1 rmind */
482 1.1 rmind npf_conn_t *
483 1.4 rmind npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
484 1.1 rmind {
485 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
486 1.1 rmind npf_conn_t *con;
487 1.15 rmind int error = 0;
488 1.1 rmind
489 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
490 1.1 rmind
491 1.1 rmind if (!npf_conn_trackable_p(npc)) {
492 1.1 rmind return NULL;
493 1.1 rmind }
494 1.1 rmind
495 1.1 rmind /* Allocate and initialise the new connection. */
496 1.1 rmind con = pool_cache_get(conn_cache, PR_NOWAIT);
497 1.1 rmind if (__predict_false(!con)) {
498 1.1 rmind return NULL;
499 1.1 rmind }
500 1.1 rmind NPF_PRINTF(("NPF: create conn %p\n", con));
501 1.6 rmind npf_stats_inc(NPF_STAT_CONN_CREATE);
502 1.1 rmind
503 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
504 1.1 rmind con->c_flags = (di & PFIL_ALL);
505 1.15 rmind con->c_refcnt = 0;
506 1.1 rmind con->c_rproc = NULL;
507 1.1 rmind con->c_nat = NULL;
508 1.1 rmind
509 1.15 rmind /* Initialize the protocol state. */
510 1.4 rmind if (!npf_state_init(npc, &con->c_state)) {
511 1.15 rmind npf_conn_destroy(con);
512 1.15 rmind return NULL;
513 1.1 rmind }
514 1.1 rmind
515 1.1 rmind KASSERT(npf_iscached(npc, NPC_IP46));
516 1.1 rmind npf_connkey_t *fw = &con->c_forw_entry;
517 1.1 rmind npf_connkey_t *bk = &con->c_back_entry;
518 1.1 rmind
519 1.1 rmind /*
520 1.1 rmind * Construct "forwards" and "backwards" keys. Also, set the
521 1.1 rmind * interface ID for this connection (unless it is global).
522 1.1 rmind */
523 1.15 rmind if (!npf_conn_conkey(npc, fw, true) ||
524 1.15 rmind !npf_conn_conkey(npc, bk, false)) {
525 1.15 rmind npf_conn_destroy(con);
526 1.15 rmind return NULL;
527 1.1 rmind }
528 1.1 rmind fw->ck_backptr = bk->ck_backptr = con;
529 1.1 rmind con->c_ifid = per_if ? nbuf->nb_ifid : 0;
530 1.1 rmind con->c_proto = npc->npc_proto;
531 1.1 rmind
532 1.15 rmind /*
533 1.15 rmind * Set last activity time for a new connection and acquire
534 1.15 rmind * a reference for the caller before we make it visible.
535 1.15 rmind */
536 1.1 rmind getnanouptime(&con->c_atime);
537 1.15 rmind con->c_refcnt = 1;
538 1.1 rmind
539 1.1 rmind /*
540 1.1 rmind * Insert both keys (entries representing directions) of the
541 1.15 rmind * connection. At this point it becomes visible, but we activate
542 1.15 rmind * the connection later.
543 1.1 rmind */
544 1.15 rmind mutex_enter(&con->c_lock);
545 1.1 rmind if (!npf_conndb_insert(conn_db, fw, con)) {
546 1.15 rmind error = EISCONN;
547 1.1 rmind goto err;
548 1.1 rmind }
549 1.1 rmind if (!npf_conndb_insert(conn_db, bk, con)) {
550 1.15 rmind npf_conn_t *ret __diagused;
551 1.15 rmind ret = npf_conndb_remove(conn_db, fw);
552 1.15 rmind KASSERT(ret == con);
553 1.15 rmind error = EISCONN;
554 1.15 rmind goto err;
555 1.15 rmind }
556 1.15 rmind err:
557 1.15 rmind /*
558 1.15 rmind * If we have hit the duplicate: mark the connection as expired
559 1.15 rmind * and let the G/C thread to take care of it. We cannot do it
560 1.15 rmind * here since there might be references acquired already.
561 1.15 rmind */
562 1.15 rmind if (error) {
563 1.16 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
564 1.16 rmind atomic_dec_uint(&con->c_refcnt);
565 1.6 rmind npf_stats_inc(NPF_STAT_RACE_CONN);
566 1.15 rmind } else {
567 1.15 rmind NPF_PRINTF(("NPF: establish conn %p\n", con));
568 1.1 rmind }
569 1.1 rmind
570 1.1 rmind /* Finally, insert into the connection list. */
571 1.1 rmind npf_conndb_enqueue(conn_db, con);
572 1.15 rmind mutex_exit(&con->c_lock);
573 1.15 rmind
574 1.15 rmind return error ? NULL : con;
575 1.1 rmind }
576 1.1 rmind
577 1.1 rmind static void
578 1.1 rmind npf_conn_destroy(npf_conn_t *con)
579 1.1 rmind {
580 1.15 rmind KASSERT(con->c_refcnt == 0);
581 1.15 rmind
582 1.1 rmind if (con->c_nat) {
583 1.1 rmind /* Release any NAT structures. */
584 1.1 rmind npf_nat_destroy(con->c_nat);
585 1.1 rmind }
586 1.1 rmind if (con->c_rproc) {
587 1.1 rmind /* Release the rule procedure. */
588 1.1 rmind npf_rproc_release(con->c_rproc);
589 1.1 rmind }
590 1.1 rmind
591 1.1 rmind /* Destroy the state. */
592 1.1 rmind npf_state_destroy(&con->c_state);
593 1.1 rmind mutex_destroy(&con->c_lock);
594 1.1 rmind
595 1.1 rmind /* Free the structure, increase the counter. */
596 1.1 rmind pool_cache_put(conn_cache, con);
597 1.6 rmind npf_stats_inc(NPF_STAT_CONN_DESTROY);
598 1.1 rmind NPF_PRINTF(("NPF: conn %p destroyed\n", con));
599 1.1 rmind }
600 1.1 rmind
601 1.1 rmind /*
602 1.1 rmind * npf_conn_setnat: associate NAT entry with the connection, update and
603 1.1 rmind * re-insert connection entry using the translation values.
604 1.16 rmind *
605 1.16 rmind * => The caller must be holding a reference.
606 1.1 rmind */
607 1.1 rmind int
608 1.1 rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
609 1.1 rmind npf_nat_t *nt, u_int ntype)
610 1.1 rmind {
611 1.1 rmind static const u_int nat_type_dimap[] = {
612 1.1 rmind [NPF_NATOUT] = NPF_DST,
613 1.1 rmind [NPF_NATIN] = NPF_SRC,
614 1.1 rmind };
615 1.1 rmind npf_connkey_t key, *bk;
616 1.2 rmind npf_conn_t *ret __diagused;
617 1.1 rmind npf_addr_t *taddr;
618 1.1 rmind in_port_t tport;
619 1.1 rmind u_int tidx;
620 1.1 rmind
621 1.1 rmind KASSERT(con->c_refcnt > 0);
622 1.1 rmind
623 1.1 rmind npf_nat_gettrans(nt, &taddr, &tport);
624 1.1 rmind KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
625 1.1 rmind tidx = nat_type_dimap[ntype];
626 1.1 rmind
627 1.1 rmind /* Construct a "backwards" key. */
628 1.1 rmind if (!npf_conn_conkey(npc, &key, false)) {
629 1.1 rmind return EINVAL;
630 1.1 rmind }
631 1.1 rmind
632 1.1 rmind /* Acquire the lock and check for the races. */
633 1.1 rmind mutex_enter(&con->c_lock);
634 1.1 rmind if (__predict_false(con->c_flags & CONN_EXPIRE)) {
635 1.1 rmind /* The connection got expired. */
636 1.1 rmind mutex_exit(&con->c_lock);
637 1.1 rmind return EINVAL;
638 1.1 rmind }
639 1.15 rmind KASSERT((con->c_flags & CONN_REMOVED) == 0);
640 1.15 rmind
641 1.1 rmind if (__predict_false(con->c_nat != NULL)) {
642 1.1 rmind /* Race with a duplicate packet. */
643 1.1 rmind mutex_exit(&con->c_lock);
644 1.1 rmind npf_stats_inc(NPF_STAT_RACE_NAT);
645 1.1 rmind return EISCONN;
646 1.1 rmind }
647 1.1 rmind
648 1.1 rmind /* Remove the "backwards" entry. */
649 1.15 rmind ret = npf_conndb_remove(conn_db, &con->c_back_entry);
650 1.1 rmind KASSERT(ret == con);
651 1.1 rmind
652 1.1 rmind /* Set the source/destination IDs to the translation values. */
653 1.1 rmind bk = &con->c_back_entry;
654 1.1 rmind connkey_set_addr(bk, taddr, tidx);
655 1.1 rmind if (tport) {
656 1.1 rmind connkey_set_id(bk, tport, tidx);
657 1.1 rmind }
658 1.1 rmind
659 1.1 rmind /* Finally, re-insert the "backwards" entry. */
660 1.1 rmind if (!npf_conndb_insert(conn_db, bk, con)) {
661 1.1 rmind /*
662 1.1 rmind * Race: we have hit the duplicate, remove the "forwards"
663 1.1 rmind * entry and expire our connection; it is no longer valid.
664 1.1 rmind */
665 1.15 rmind ret = npf_conndb_remove(conn_db, &con->c_forw_entry);
666 1.15 rmind KASSERT(ret == con);
667 1.15 rmind
668 1.1 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
669 1.1 rmind mutex_exit(&con->c_lock);
670 1.1 rmind
671 1.1 rmind npf_stats_inc(NPF_STAT_RACE_NAT);
672 1.1 rmind return EISCONN;
673 1.1 rmind }
674 1.1 rmind
675 1.1 rmind /* Associate the NAT entry and release the lock. */
676 1.1 rmind con->c_nat = nt;
677 1.1 rmind mutex_exit(&con->c_lock);
678 1.1 rmind return 0;
679 1.1 rmind }
680 1.1 rmind
681 1.1 rmind /*
682 1.1 rmind * npf_conn_expire: explicitly mark connection as expired.
683 1.1 rmind */
684 1.1 rmind void
685 1.1 rmind npf_conn_expire(npf_conn_t *con)
686 1.1 rmind {
687 1.1 rmind /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
688 1.1 rmind atomic_or_uint(&con->c_flags, CONN_EXPIRE);
689 1.1 rmind }
690 1.1 rmind
691 1.1 rmind /*
692 1.1 rmind * npf_conn_pass: return true if connection is "pass" one, otherwise false.
693 1.1 rmind */
694 1.1 rmind bool
695 1.1 rmind npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
696 1.1 rmind {
697 1.1 rmind KASSERT(con->c_refcnt > 0);
698 1.1 rmind if (__predict_true(con->c_flags & CONN_PASS)) {
699 1.1 rmind *rp = con->c_rproc;
700 1.1 rmind return true;
701 1.1 rmind }
702 1.1 rmind return false;
703 1.1 rmind }
704 1.1 rmind
705 1.1 rmind /*
706 1.1 rmind * npf_conn_setpass: mark connection as a "pass" one and associate the
707 1.1 rmind * rule procedure with it.
708 1.1 rmind */
709 1.1 rmind void
710 1.1 rmind npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
711 1.1 rmind {
712 1.1 rmind KASSERT((con->c_flags & CONN_ACTIVE) == 0);
713 1.1 rmind KASSERT(con->c_refcnt > 0);
714 1.1 rmind KASSERT(con->c_rproc == NULL);
715 1.1 rmind
716 1.1 rmind /*
717 1.1 rmind * No need for atomic since the connection is not yet active.
718 1.1 rmind * If rproc is set, the caller transfers its reference to us,
719 1.1 rmind * which will be released on npf_conn_destroy().
720 1.1 rmind */
721 1.14 rmind atomic_or_uint(&con->c_flags, CONN_PASS);
722 1.1 rmind con->c_rproc = rp;
723 1.1 rmind }
724 1.1 rmind
725 1.1 rmind /*
726 1.1 rmind * npf_conn_release: release a reference, which might allow G/C thread
727 1.1 rmind * to destroy this connection.
728 1.1 rmind */
729 1.1 rmind void
730 1.1 rmind npf_conn_release(npf_conn_t *con)
731 1.1 rmind {
732 1.1 rmind if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
733 1.1 rmind /* Activate: after this, connection is globally visible. */
734 1.14 rmind atomic_or_uint(&con->c_flags, CONN_ACTIVE);
735 1.1 rmind }
736 1.1 rmind KASSERT(con->c_refcnt > 0);
737 1.1 rmind atomic_dec_uint(&con->c_refcnt);
738 1.1 rmind }
739 1.1 rmind
740 1.1 rmind /*
741 1.13 rmind * npf_conn_getnat: return associated NAT data entry and indicate
742 1.1 rmind * whether it is a "forwards" or "backwards" stream.
743 1.1 rmind */
744 1.1 rmind npf_nat_t *
745 1.13 rmind npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
746 1.1 rmind {
747 1.1 rmind KASSERT(con->c_refcnt > 0);
748 1.1 rmind *forw = (con->c_flags & PFIL_ALL) == di;
749 1.1 rmind return con->c_nat;
750 1.1 rmind }
751 1.1 rmind
752 1.1 rmind /*
753 1.1 rmind * npf_conn_expired: criterion to check if connection is expired.
754 1.1 rmind */
755 1.1 rmind static inline bool
756 1.1 rmind npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
757 1.1 rmind {
758 1.1 rmind const int etime = npf_state_etime(&con->c_state, con->c_proto);
759 1.1 rmind struct timespec tsdiff;
760 1.1 rmind
761 1.1 rmind if (__predict_false(con->c_flags & CONN_EXPIRE)) {
762 1.1 rmind /* Explicitly marked to be expired. */
763 1.1 rmind return true;
764 1.1 rmind }
765 1.1 rmind timespecsub(tsnow, &con->c_atime, &tsdiff);
766 1.1 rmind return tsdiff.tv_sec > etime;
767 1.1 rmind }
768 1.1 rmind
769 1.1 rmind /*
770 1.6 rmind * npf_conn_gc: garbage collect the expired connections.
771 1.6 rmind *
772 1.6 rmind * => Must run in a single-threaded manner.
773 1.6 rmind * => If it is a flush request, then destroy all connections.
774 1.6 rmind * => If 'sync' is true, then perform passive serialisation.
775 1.1 rmind */
776 1.7 rmind void
777 1.6 rmind npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
778 1.1 rmind {
779 1.1 rmind npf_conn_t *con, *prev, *gclist = NULL;
780 1.1 rmind struct timespec tsnow;
781 1.1 rmind
782 1.1 rmind getnanouptime(&tsnow);
783 1.1 rmind
784 1.1 rmind /*
785 1.1 rmind * Scan all connections and check them for expiration.
786 1.1 rmind */
787 1.1 rmind prev = NULL;
788 1.1 rmind con = npf_conndb_getlist(cd);
789 1.1 rmind while (con) {
790 1.1 rmind npf_conn_t *next = con->c_next;
791 1.1 rmind
792 1.1 rmind /* Expired? Flushing all? */
793 1.6 rmind if (!npf_conn_expired(con, &tsnow) && !flush) {
794 1.1 rmind prev = con;
795 1.1 rmind con = next;
796 1.1 rmind continue;
797 1.1 rmind }
798 1.1 rmind
799 1.1 rmind /* Remove both entries of the connection. */
800 1.1 rmind mutex_enter(&con->c_lock);
801 1.1 rmind if ((con->c_flags & CONN_REMOVED) == 0) {
802 1.1 rmind npf_conn_t *ret __diagused;
803 1.1 rmind
804 1.1 rmind ret = npf_conndb_remove(cd, &con->c_forw_entry);
805 1.1 rmind KASSERT(ret == con);
806 1.1 rmind ret = npf_conndb_remove(cd, &con->c_back_entry);
807 1.1 rmind KASSERT(ret == con);
808 1.1 rmind }
809 1.1 rmind
810 1.1 rmind /* Flag the removal and expiration. */
811 1.1 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
812 1.1 rmind mutex_exit(&con->c_lock);
813 1.1 rmind
814 1.1 rmind /* Move to the G/C list. */
815 1.1 rmind npf_conndb_dequeue(cd, con, prev);
816 1.1 rmind con->c_next = gclist;
817 1.1 rmind gclist = con;
818 1.1 rmind
819 1.1 rmind /* Next.. */
820 1.1 rmind con = next;
821 1.1 rmind }
822 1.1 rmind npf_conndb_settail(cd, prev);
823 1.6 rmind
824 1.6 rmind /*
825 1.6 rmind * Ensure it is safe to destroy the connections.
826 1.6 rmind * Note: drop the conn_lock (see the lock order).
827 1.6 rmind */
828 1.6 rmind if (sync) {
829 1.6 rmind mutex_exit(&conn_lock);
830 1.6 rmind if (gclist) {
831 1.6 rmind npf_config_enter();
832 1.6 rmind npf_config_sync();
833 1.6 rmind npf_config_exit();
834 1.6 rmind }
835 1.1 rmind }
836 1.1 rmind
837 1.1 rmind /*
838 1.1 rmind * Garbage collect all expired connections.
839 1.1 rmind * May need to wait for the references to drain.
840 1.1 rmind */
841 1.1 rmind con = gclist;
842 1.1 rmind while (con) {
843 1.1 rmind npf_conn_t *next = con->c_next;
844 1.1 rmind
845 1.1 rmind /*
846 1.1 rmind * Destroy only if removed and no references.
847 1.1 rmind * Otherwise, wait for a tiny moment.
848 1.1 rmind */
849 1.1 rmind if (__predict_false(con->c_refcnt)) {
850 1.1 rmind kpause("npfcongc", false, 1, NULL);
851 1.1 rmind continue;
852 1.1 rmind }
853 1.1 rmind npf_conn_destroy(con);
854 1.1 rmind con = next;
855 1.1 rmind }
856 1.1 rmind }
857 1.1 rmind
858 1.6 rmind /*
859 1.6 rmind * npf_conn_worker: G/C to run from a worker thread.
860 1.6 rmind */
861 1.6 rmind static void
862 1.6 rmind npf_conn_worker(void)
863 1.1 rmind {
864 1.6 rmind mutex_enter(&conn_lock);
865 1.6 rmind /* Note: the conn_lock will be released (sync == true). */
866 1.6 rmind npf_conn_gc(conn_db, false, true);
867 1.1 rmind }
868 1.1 rmind
869 1.1 rmind /*
870 1.10 rmind * npf_conndb_export: construct a list of connections prepared for saving.
871 1.1 rmind * Note: this is expected to be an expensive operation.
872 1.1 rmind */
873 1.1 rmind int
874 1.10 rmind npf_conndb_export(prop_array_t conlist)
875 1.1 rmind {
876 1.1 rmind npf_conn_t *con, *prev;
877 1.1 rmind
878 1.1 rmind /*
879 1.1 rmind * Note: acquire conn_lock to prevent from the database
880 1.1 rmind * destruction and G/C thread.
881 1.1 rmind */
882 1.1 rmind mutex_enter(&conn_lock);
883 1.6 rmind if (conn_tracking != CONN_TRACKING_ON) {
884 1.1 rmind mutex_exit(&conn_lock);
885 1.1 rmind return 0;
886 1.1 rmind }
887 1.1 rmind prev = NULL;
888 1.1 rmind con = npf_conndb_getlist(conn_db);
889 1.1 rmind while (con) {
890 1.1 rmind npf_conn_t *next = con->c_next;
891 1.10 rmind prop_dictionary_t cdict;
892 1.1 rmind
893 1.10 rmind if ((cdict = npf_conn_export(con)) != NULL) {
894 1.10 rmind prop_array_add(conlist, cdict);
895 1.10 rmind prop_object_release(cdict);
896 1.1 rmind }
897 1.1 rmind prev = con;
898 1.1 rmind con = next;
899 1.1 rmind }
900 1.1 rmind npf_conndb_settail(conn_db, prev);
901 1.1 rmind mutex_exit(&conn_lock);
902 1.5 joerg return 0;
903 1.1 rmind }
904 1.1 rmind
905 1.1 rmind /*
906 1.10 rmind * npf_conn_export: serialise a single connection.
907 1.10 rmind */
908 1.10 rmind prop_dictionary_t
909 1.10 rmind npf_conn_export(const npf_conn_t *con)
910 1.10 rmind {
911 1.10 rmind prop_dictionary_t cdict;
912 1.10 rmind prop_data_t d;
913 1.10 rmind
914 1.10 rmind if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
915 1.10 rmind return NULL;
916 1.10 rmind }
917 1.10 rmind cdict = prop_dictionary_create();
918 1.10 rmind prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
919 1.10 rmind prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
920 1.10 rmind if (con->c_ifid) {
921 1.10 rmind const char *ifname = npf_ifmap_getname(con->c_ifid);
922 1.10 rmind prop_dictionary_set_cstring(cdict, "ifname", ifname);
923 1.10 rmind }
924 1.10 rmind
925 1.10 rmind d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
926 1.10 rmind prop_dictionary_set_and_rel(cdict, "state", d);
927 1.10 rmind
928 1.10 rmind const uint32_t *fkey = con->c_forw_entry.ck_key;
929 1.10 rmind d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
930 1.10 rmind prop_dictionary_set_and_rel(cdict, "forw-key", d);
931 1.10 rmind
932 1.10 rmind const uint32_t *bkey = con->c_back_entry.ck_key;
933 1.10 rmind d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
934 1.10 rmind prop_dictionary_set_and_rel(cdict, "back-key", d);
935 1.10 rmind
936 1.10 rmind if (con->c_nat) {
937 1.10 rmind npf_nat_export(cdict, con->c_nat);
938 1.10 rmind }
939 1.10 rmind return cdict;
940 1.10 rmind }
941 1.10 rmind
942 1.18 christos static uint32_t
943 1.18 christos npf_connkey_import(prop_dictionary_t idict, npf_connkey_t *key, uint16_t *dir)
944 1.18 christos {
945 1.18 christos uint16_t proto;
946 1.18 christos prop_object_t sobj, dobj;
947 1.18 christos uint16_t id[2];
948 1.18 christos npf_addr_t const * ips[2];
949 1.18 christos
950 1.18 christos prop_dictionary_get_uint16(idict, "proto", &proto);
951 1.18 christos prop_dictionary_get_uint16(idict, "direction", dir);
952 1.18 christos
953 1.18 christos prop_dictionary_get_uint16(idict, "sport", &id[NPF_SRC]);
954 1.18 christos prop_dictionary_get_uint16(idict, "dport", &id[NPF_DST]);
955 1.18 christos
956 1.18 christos sobj = prop_dictionary_get(idict, "saddr");
957 1.18 christos if ((ips[NPF_SRC] = prop_data_data_nocopy(sobj)) == NULL)
958 1.18 christos return 0;
959 1.18 christos
960 1.18 christos dobj = prop_dictionary_get(idict, "daddr");
961 1.18 christos if ((ips[NPF_DST] = prop_data_data_nocopy(dobj)) == NULL)
962 1.18 christos return 0;
963 1.18 christos
964 1.18 christos size_t alen = prop_data_size(sobj);
965 1.18 christos if (alen != prop_data_size(dobj))
966 1.18 christos return 0;
967 1.19 kre
968 1.18 christos return connkey_setkey(key, proto, ips, id, alen, true);
969 1.18 christos }
970 1.18 christos
971 1.18 christos int
972 1.18 christos npf_conn_find(prop_dictionary_t idict, prop_dictionary_t *odict)
973 1.18 christos {
974 1.18 christos npf_connkey_t key;
975 1.18 christos npf_conn_t *con;
976 1.18 christos uint16_t dir;
977 1.18 christos bool forw;
978 1.18 christos
979 1.18 christos if (!npf_connkey_import(idict, &key, &dir)) {
980 1.18 christos return EINVAL;
981 1.18 christos }
982 1.18 christos
983 1.18 christos con = npf_conndb_lookup(conn_db, &key, &forw);
984 1.18 christos if (con == NULL) {
985 1.18 christos return ESRCH;
986 1.18 christos }
987 1.18 christos
988 1.18 christos dir = dir == PFIL_IN ? PFIL_OUT : PFIL_IN;
989 1.18 christos if (!npf_conn_ok(con, dir, true)) {
990 1.18 christos atomic_dec_uint(&con->c_refcnt);
991 1.18 christos return ESRCH;
992 1.18 christos }
993 1.18 christos
994 1.18 christos *odict = npf_conn_export(con);
995 1.18 christos if (*odict == NULL) {
996 1.18 christos atomic_dec_uint(&con->c_refcnt);
997 1.18 christos return ENOSPC;
998 1.18 christos }
999 1.18 christos atomic_dec_uint(&con->c_refcnt);
1000 1.18 christos
1001 1.18 christos return 0;
1002 1.18 christos }
1003 1.18 christos
1004 1.10 rmind /*
1005 1.6 rmind * npf_conn_import: fully reconstruct a single connection from a
1006 1.6 rmind * directory and insert into the given database.
1007 1.1 rmind */
1008 1.1 rmind int
1009 1.6 rmind npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
1010 1.6 rmind npf_ruleset_t *natlist)
1011 1.1 rmind {
1012 1.1 rmind npf_conn_t *con;
1013 1.1 rmind npf_connkey_t *fw, *bk;
1014 1.1 rmind prop_object_t obj;
1015 1.10 rmind const char *ifname;
1016 1.1 rmind const void *d;
1017 1.1 rmind
1018 1.1 rmind /* Allocate a connection and initialise it (clear first). */
1019 1.1 rmind con = pool_cache_get(conn_cache, PR_WAITOK);
1020 1.1 rmind memset(con, 0, sizeof(npf_conn_t));
1021 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
1022 1.12 rmind npf_stats_inc(NPF_STAT_CONN_CREATE);
1023 1.1 rmind
1024 1.1 rmind prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
1025 1.1 rmind prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
1026 1.1 rmind con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
1027 1.1 rmind getnanouptime(&con->c_atime);
1028 1.1 rmind
1029 1.10 rmind if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) &&
1030 1.10 rmind (con->c_ifid = npf_ifmap_register(ifname)) == 0) {
1031 1.10 rmind goto err;
1032 1.10 rmind }
1033 1.10 rmind
1034 1.1 rmind obj = prop_dictionary_get(cdict, "state");
1035 1.1 rmind if ((d = prop_data_data_nocopy(obj)) == NULL ||
1036 1.1 rmind prop_data_size(obj) != sizeof(npf_state_t)) {
1037 1.1 rmind goto err;
1038 1.1 rmind }
1039 1.1 rmind memcpy(&con->c_state, d, sizeof(npf_state_t));
1040 1.1 rmind
1041 1.11 rmind /* Reconstruct NAT association, if any. */
1042 1.11 rmind if ((obj = prop_dictionary_get(cdict, "nat")) != NULL &&
1043 1.11 rmind (con->c_nat = npf_nat_import(obj, natlist, con)) == NULL) {
1044 1.11 rmind goto err;
1045 1.11 rmind }
1046 1.1 rmind
1047 1.1 rmind /*
1048 1.1 rmind * Fetch and copy the keys for each direction.
1049 1.1 rmind */
1050 1.1 rmind obj = prop_dictionary_get(cdict, "forw-key");
1051 1.1 rmind if ((d = prop_data_data_nocopy(obj)) == NULL ||
1052 1.1 rmind prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
1053 1.1 rmind goto err;
1054 1.1 rmind }
1055 1.1 rmind fw = &con->c_forw_entry;
1056 1.1 rmind memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
1057 1.1 rmind
1058 1.1 rmind obj = prop_dictionary_get(cdict, "back-key");
1059 1.1 rmind if ((d = prop_data_data_nocopy(obj)) == NULL ||
1060 1.1 rmind prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
1061 1.1 rmind goto err;
1062 1.1 rmind }
1063 1.1 rmind bk = &con->c_back_entry;
1064 1.1 rmind memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
1065 1.1 rmind
1066 1.1 rmind fw->ck_backptr = bk->ck_backptr = con;
1067 1.1 rmind
1068 1.1 rmind /* Insert the entries and the connection itself. */
1069 1.1 rmind if (!npf_conndb_insert(cd, fw, con)) {
1070 1.1 rmind goto err;
1071 1.1 rmind }
1072 1.1 rmind if (!npf_conndb_insert(cd, bk, con)) {
1073 1.1 rmind npf_conndb_remove(cd, fw);
1074 1.1 rmind goto err;
1075 1.1 rmind }
1076 1.12 rmind
1077 1.12 rmind NPF_PRINTF(("NPF: imported conn %p\n", con));
1078 1.1 rmind npf_conndb_enqueue(cd, con);
1079 1.1 rmind return 0;
1080 1.1 rmind err:
1081 1.1 rmind npf_conn_destroy(con);
1082 1.1 rmind return EINVAL;
1083 1.1 rmind }
1084 1.1 rmind
1085 1.1 rmind #if defined(DDB) || defined(_NPF_TESTING)
1086 1.1 rmind
1087 1.1 rmind void
1088 1.1 rmind npf_conn_print(const npf_conn_t *con)
1089 1.1 rmind {
1090 1.1 rmind const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
1091 1.1 rmind const uint32_t *fkey = con->c_forw_entry.ck_key;
1092 1.1 rmind const uint32_t *bkey = con->c_back_entry.ck_key;
1093 1.1 rmind const u_int proto = con->c_proto;
1094 1.1 rmind struct timespec tsnow, tsdiff;
1095 1.1 rmind const void *src, *dst;
1096 1.1 rmind int etime;
1097 1.1 rmind
1098 1.1 rmind getnanouptime(&tsnow);
1099 1.1 rmind timespecsub(&tsnow, &con->c_atime, &tsdiff);
1100 1.1 rmind etime = npf_state_etime(&con->c_state, proto);
1101 1.1 rmind
1102 1.1 rmind printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
1103 1.1 rmind con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
1104 1.1 rmind
1105 1.1 rmind src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
1106 1.1 rmind printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
1107 1.1 rmind printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
1108 1.1 rmind
1109 1.1 rmind src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
1110 1.1 rmind printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
1111 1.1 rmind printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
1112 1.1 rmind
1113 1.1 rmind npf_state_dump(&con->c_state);
1114 1.1 rmind if (con->c_nat) {
1115 1.1 rmind npf_nat_dump(con->c_nat);
1116 1.1 rmind }
1117 1.1 rmind }
1118 1.1 rmind
1119 1.1 rmind #endif
1120