Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.22.2.1
      1  1.22.2.1    bouyer /*	$NetBSD: npf_conn.c,v 1.22.2.1 2017/04/21 16:54:05 bouyer Exp $	*/
      2       1.1     rmind 
      3       1.1     rmind /*-
      4      1.15     rmind  * Copyright (c) 2014-2015 Mindaugas Rasiukevicius <rmind at netbsd org>
      5       1.1     rmind  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      6       1.1     rmind  * All rights reserved.
      7       1.1     rmind  *
      8       1.1     rmind  * This material is based upon work partially supported by The
      9       1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
     10       1.1     rmind  *
     11       1.1     rmind  * Redistribution and use in source and binary forms, with or without
     12       1.1     rmind  * modification, are permitted provided that the following conditions
     13       1.1     rmind  * are met:
     14       1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     15       1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     16       1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     17       1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     18       1.1     rmind  *    documentation and/or other materials provided with the distribution.
     19       1.1     rmind  *
     20       1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21       1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22       1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23       1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24       1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25       1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26       1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27       1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28       1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29       1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30       1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     31       1.1     rmind  */
     32       1.1     rmind 
     33       1.1     rmind /*
     34       1.1     rmind  * NPF connection tracking for stateful filtering and translation.
     35       1.1     rmind  *
     36       1.1     rmind  * Overview
     37       1.1     rmind  *
     38       1.1     rmind  *	Connection direction is identified by the direction of its first
     39       1.1     rmind  *	packet.  Packets can be incoming or outgoing with respect to an
     40       1.1     rmind  *	interface.  To describe the packet in the context of connection
     41       1.1     rmind  *	direction we will use the terms "forwards stream" and "backwards
     42       1.1     rmind  *	stream".  All connections have two keys and thus two entries:
     43       1.1     rmind  *
     44       1.1     rmind  *		npf_conn_t::c_forw_entry for the forwards stream and
     45       1.1     rmind  *		npf_conn_t::c_back_entry for the backwards stream.
     46       1.1     rmind  *
     47       1.1     rmind  *	The keys are formed from the 5-tuple (source/destination address,
     48       1.1     rmind  *	source/destination port and the protocol).  Additional matching
     49       1.1     rmind  *	is performed for the interface (a common behaviour is equivalent
     50       1.1     rmind  *	to the 6-tuple lookup including the interface ID).  Note that the
     51       1.1     rmind  *	key may be formed using translated values in a case of NAT.
     52       1.1     rmind  *
     53       1.1     rmind  *	Connections can serve two purposes: for the implicit passing or
     54       1.1     rmind  *	to accommodate the dynamic NAT.  Connections for the former purpose
     55       1.1     rmind  *	are created by the rules with "stateful" attribute and are used for
     56       1.1     rmind  *	stateful filtering.  Such connections indicate that the packet of
     57       1.1     rmind  *	the backwards stream should be passed without inspection of the
     58       1.1     rmind  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     59       1.1     rmind  *	with a connection.  Such connections are created by the NAT policies
     60       1.1     rmind  *	and they have a relationship with NAT translation structure via
     61       1.1     rmind  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     62       1.1     rmind  *	which is a common case.
     63       1.1     rmind  *
     64       1.1     rmind  * Connection life-cycle
     65       1.1     rmind  *
     66       1.1     rmind  *	Connections are established when a packet matches said rule or
     67       1.1     rmind  *	NAT policy.  Both keys of the established connection are inserted
     68       1.1     rmind  *	into the connection database.  A garbage collection thread
     69       1.1     rmind  *	periodically scans all connections and depending on connection
     70       1.1     rmind  *	properties (e.g. last activity time, protocol) removes connection
     71       1.1     rmind  *	entries and expires the actual connections.
     72       1.1     rmind  *
     73       1.1     rmind  *	Each connection has a reference count.  The reference is acquired
     74       1.1     rmind  *	on lookup and should be released by the caller.  It guarantees that
     75       1.1     rmind  *	the connection will not be destroyed, although it may be expired.
     76       1.1     rmind  *
     77       1.1     rmind  * Synchronisation
     78       1.1     rmind  *
     79       1.1     rmind  *	Connection database is accessed in a lock-less manner by the main
     80       1.1     rmind  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     81       1.1     rmind  *	are always called from a software interrupt, the database is
     82       1.1     rmind  *	protected using passive serialisation.  The main place which can
     83       1.1     rmind  *	destroy a connection is npf_conn_worker().  The database itself
     84       1.1     rmind  *	can be replaced and destroyed in npf_conn_reload().
     85       1.1     rmind  *
     86       1.1     rmind  * ALG support
     87       1.1     rmind  *
     88       1.1     rmind  *	Application-level gateways (ALGs) can override generic connection
     89       1.1     rmind  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     90       1.1     rmind  *	performing their own lookup using different key.  Recursive call
     91       1.1     rmind  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     92       1.1     rmind  *	npf_conn_lookup() function for this purpose.
     93       1.1     rmind  *
     94       1.1     rmind  * Lock order
     95       1.1     rmind  *
     96       1.6     rmind  *	npf_config_lock ->
     97       1.6     rmind  *		conn_lock ->
     98       1.6     rmind  *			npf_conn_t::c_lock
     99       1.1     rmind  */
    100       1.1     rmind 
    101      1.22  christos #ifdef _KERNEL
    102       1.1     rmind #include <sys/cdefs.h>
    103  1.22.2.1    bouyer __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.22.2.1 2017/04/21 16:54:05 bouyer Exp $");
    104       1.1     rmind 
    105       1.1     rmind #include <sys/param.h>
    106       1.1     rmind #include <sys/types.h>
    107       1.1     rmind 
    108       1.1     rmind #include <netinet/in.h>
    109       1.1     rmind #include <netinet/tcp.h>
    110       1.1     rmind 
    111       1.1     rmind #include <sys/atomic.h>
    112       1.1     rmind #include <sys/condvar.h>
    113       1.1     rmind #include <sys/kmem.h>
    114       1.1     rmind #include <sys/kthread.h>
    115       1.1     rmind #include <sys/mutex.h>
    116       1.1     rmind #include <net/pfil.h>
    117       1.1     rmind #include <sys/pool.h>
    118       1.1     rmind #include <sys/queue.h>
    119       1.1     rmind #include <sys/systm.h>
    120      1.22  christos #endif
    121       1.1     rmind 
    122       1.1     rmind #define __NPF_CONN_PRIVATE
    123       1.1     rmind #include "npf_conn.h"
    124       1.1     rmind #include "npf_impl.h"
    125       1.1     rmind 
    126       1.1     rmind /*
    127       1.1     rmind  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    128       1.1     rmind  */
    129       1.1     rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
    130       1.1     rmind #define	CONN_ACTIVE	0x004	/* visible on inspection */
    131       1.1     rmind #define	CONN_PASS	0x008	/* perform implicit passing */
    132       1.1     rmind #define	CONN_EXPIRE	0x010	/* explicitly expire */
    133       1.1     rmind #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    134       1.1     rmind 
    135       1.6     rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    136       1.1     rmind 
    137      1.22  christos static void	npf_conn_destroy(npf_t *, npf_conn_t *);
    138       1.1     rmind 
    139       1.1     rmind /*
    140       1.1     rmind  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    141       1.1     rmind  */
    142       1.1     rmind 
    143       1.1     rmind void
    144      1.22  christos npf_conn_init(npf_t *npf, int flags)
    145       1.1     rmind {
    146      1.22  christos 	npf->conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
    147       1.1     rmind 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
    148      1.22  christos 	mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
    149      1.22  christos 	npf->conn_tracking = CONN_TRACKING_OFF;
    150      1.22  christos 	npf->conn_db = npf_conndb_create();
    151       1.1     rmind 
    152      1.22  christos 	if ((flags & NPF_NO_GC) == 0) {
    153      1.22  christos 		npf_worker_register(npf, npf_conn_worker);
    154      1.22  christos 	}
    155       1.1     rmind }
    156       1.1     rmind 
    157       1.1     rmind void
    158      1.22  christos npf_conn_fini(npf_t *npf)
    159       1.1     rmind {
    160       1.6     rmind 	/* Note: the caller should have flushed the connections. */
    161      1.22  christos 	KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
    162      1.22  christos 	npf_worker_unregister(npf, npf_conn_worker);
    163       1.1     rmind 
    164      1.22  christos 	npf_conndb_destroy(npf->conn_db);
    165      1.22  christos 	pool_cache_destroy(npf->conn_cache);
    166      1.22  christos 	mutex_destroy(&npf->conn_lock);
    167       1.1     rmind }
    168       1.1     rmind 
    169       1.1     rmind /*
    170       1.6     rmind  * npf_conn_load: perform the load by flushing the current connection
    171       1.6     rmind  * database and replacing it with the new one or just destroying.
    172       1.1     rmind  *
    173       1.6     rmind  * => The caller must disable the connection tracking and ensure that
    174       1.6     rmind  *    there are no connection database lookups or references in-flight.
    175       1.1     rmind  */
    176       1.6     rmind void
    177      1.22  christos npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
    178       1.1     rmind {
    179       1.6     rmind 	npf_conndb_t *odb = NULL;
    180       1.1     rmind 
    181      1.22  christos 	KASSERT(npf_config_locked_p(npf));
    182       1.1     rmind 
    183       1.1     rmind 	/*
    184       1.6     rmind 	 * The connection database is in the quiescent state.
    185       1.6     rmind 	 * Prevent G/C thread from running and install a new database.
    186       1.1     rmind 	 */
    187      1.22  christos 	mutex_enter(&npf->conn_lock);
    188       1.6     rmind 	if (ndb) {
    189      1.22  christos 		KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
    190      1.22  christos 		odb = npf->conn_db;
    191      1.22  christos 		npf->conn_db = ndb;
    192       1.6     rmind 		membar_sync();
    193       1.6     rmind 	}
    194       1.6     rmind 	if (track) {
    195       1.6     rmind 		/* After this point lookups start flying in. */
    196      1.22  christos 		npf->conn_tracking = CONN_TRACKING_ON;
    197       1.1     rmind 	}
    198      1.22  christos 	mutex_exit(&npf->conn_lock);
    199       1.1     rmind 
    200       1.1     rmind 	if (odb) {
    201       1.6     rmind 		/*
    202       1.6     rmind 		 * Flush all, no sync since the caller did it for us.
    203       1.6     rmind 		 * Also, release the pool cache memory.
    204       1.6     rmind 		 */
    205      1.22  christos 		npf_conn_gc(npf, odb, true, false);
    206       1.1     rmind 		npf_conndb_destroy(odb);
    207      1.22  christos 		pool_cache_invalidate(npf->conn_cache);
    208       1.1     rmind 	}
    209       1.1     rmind }
    210       1.1     rmind 
    211       1.1     rmind /*
    212       1.1     rmind  * npf_conn_tracking: enable/disable connection tracking.
    213       1.1     rmind  */
    214       1.1     rmind void
    215      1.22  christos npf_conn_tracking(npf_t *npf, bool track)
    216       1.1     rmind {
    217      1.22  christos 	KASSERT(npf_config_locked_p(npf));
    218      1.22  christos 	npf->conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
    219       1.1     rmind }
    220       1.1     rmind 
    221       1.6     rmind static inline bool
    222       1.1     rmind npf_conn_trackable_p(const npf_cache_t *npc)
    223       1.1     rmind {
    224      1.22  christos 	const npf_t *npf = npc->npc_ctx;
    225      1.22  christos 
    226       1.1     rmind 	/*
    227       1.1     rmind 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    228       1.1     rmind 	 * not cached - protocol is not supported or packet is invalid.
    229       1.1     rmind 	 */
    230      1.22  christos 	if (npf->conn_tracking != CONN_TRACKING_ON) {
    231       1.1     rmind 		return false;
    232       1.1     rmind 	}
    233       1.1     rmind 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    234       1.1     rmind 		return false;
    235       1.1     rmind 	}
    236       1.1     rmind 	return true;
    237       1.1     rmind }
    238       1.1     rmind 
    239      1.18  christos static uint32_t
    240      1.20  christos connkey_setkey(npf_connkey_t *key, uint16_t proto, const void *ipv,
    241      1.22  christos     const uint16_t *id, unsigned alen, bool forw)
    242      1.18  christos {
    243      1.20  christos 	uint32_t isrc, idst, *k = key->ck_key;
    244      1.18  christos 	const npf_addr_t * const *ips = ipv;
    245      1.22  christos 
    246      1.18  christos 	if (__predict_true(forw)) {
    247      1.18  christos 		isrc = NPF_SRC, idst = NPF_DST;
    248      1.18  christos 	} else {
    249      1.18  christos 		isrc = NPF_DST, idst = NPF_SRC;
    250      1.18  christos 	}
    251      1.18  christos 
    252      1.18  christos 	/*
    253      1.18  christos 	 * Construct a key formed out of 32-bit integers.  The key layout:
    254      1.18  christos 	 *
    255      1.18  christos 	 * Field: | proto  |  alen  | src-id | dst-id | src-addr | dst-addr |
    256      1.18  christos 	 *        +--------+--------+--------+--------+----------+----------+
    257      1.18  christos 	 * Bits:  |   16   |   16   |   16   |   16   |  32-128  |  32-128  |
    258      1.18  christos 	 *
    259      1.18  christos 	 * The source and destination are inverted if they key is for the
    260      1.18  christos 	 * backwards stream (forw == false).  The address length depends
    261      1.18  christos 	 * on the 'alen' field; it is a length in bytes, either 4 or 16.
    262      1.18  christos 	 */
    263      1.18  christos 
    264      1.20  christos 	k[0] = ((uint32_t)proto << 16) | (alen & 0xffff);
    265      1.20  christos 	k[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    266      1.18  christos 
    267      1.18  christos 	if (__predict_true(alen == sizeof(in_addr_t))) {
    268      1.22  christos 		k[2] = ips[isrc]->word32[0];
    269      1.22  christos 		k[3] = ips[idst]->word32[0];
    270      1.18  christos 		return 4 * sizeof(uint32_t);
    271      1.18  christos 	} else {
    272      1.18  christos 		const u_int nwords = alen >> 2;
    273      1.20  christos 		memcpy(&k[2], ips[isrc], alen);
    274      1.20  christos 		memcpy(&k[2 + nwords], ips[idst], alen);
    275      1.18  christos 		return (2 + (nwords * 2)) * sizeof(uint32_t);
    276      1.18  christos 	}
    277      1.18  christos }
    278      1.18  christos 
    279      1.20  christos static void
    280      1.20  christos connkey_getkey(const npf_connkey_t *key, uint16_t *proto, npf_addr_t *ips,
    281      1.20  christos     uint16_t *id, uint16_t *alen)
    282      1.20  christos {
    283      1.20  christos 	const uint32_t *k = key->ck_key;
    284      1.20  christos 
    285      1.20  christos 	*proto = k[0] >> 16;
    286      1.20  christos 	*alen = k[0] & 0xffff;
    287      1.20  christos 	id[NPF_SRC] = k[1] >> 16;
    288      1.20  christos 	id[NPF_DST] = k[1] & 0xffff;
    289      1.20  christos 
    290      1.20  christos 	switch (*alen) {
    291      1.20  christos 	case sizeof(struct in6_addr):
    292      1.20  christos 	case sizeof(struct in_addr):
    293      1.20  christos 		memcpy(&ips[NPF_SRC], &k[2], *alen);
    294      1.20  christos 		memcpy(&ips[NPF_DST], &k[2 + ((unsigned)*alen >> 2)], *alen);
    295      1.20  christos 		return;
    296      1.20  christos 	default:
    297      1.20  christos 		KASSERT(0);
    298      1.20  christos 	}
    299      1.20  christos }
    300      1.20  christos 
    301       1.1     rmind /*
    302       1.1     rmind  * npf_conn_conkey: construct a key for the connection lookup.
    303       1.8     rmind  *
    304       1.8     rmind  * => Returns the key length in bytes or zero on failure.
    305       1.1     rmind  */
    306       1.8     rmind unsigned
    307       1.1     rmind npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
    308       1.1     rmind {
    309      1.22  christos 	const u_int proto = npc->npc_proto;
    310      1.22  christos 	const u_int alen = npc->npc_alen;
    311       1.1     rmind 	const struct tcphdr *th;
    312       1.1     rmind 	const struct udphdr *uh;
    313       1.1     rmind 	uint16_t id[2];
    314       1.1     rmind 
    315      1.22  christos 	switch (proto) {
    316       1.1     rmind 	case IPPROTO_TCP:
    317       1.1     rmind 		KASSERT(npf_iscached(npc, NPC_TCP));
    318       1.1     rmind 		th = npc->npc_l4.tcp;
    319       1.1     rmind 		id[NPF_SRC] = th->th_sport;
    320       1.1     rmind 		id[NPF_DST] = th->th_dport;
    321       1.1     rmind 		break;
    322       1.1     rmind 	case IPPROTO_UDP:
    323       1.1     rmind 		KASSERT(npf_iscached(npc, NPC_UDP));
    324       1.1     rmind 		uh = npc->npc_l4.udp;
    325       1.1     rmind 		id[NPF_SRC] = uh->uh_sport;
    326       1.1     rmind 		id[NPF_DST] = uh->uh_dport;
    327       1.1     rmind 		break;
    328       1.1     rmind 	case IPPROTO_ICMP:
    329       1.1     rmind 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    330       1.1     rmind 			const struct icmp *ic = npc->npc_l4.icmp;
    331       1.1     rmind 			id[NPF_SRC] = ic->icmp_id;
    332       1.1     rmind 			id[NPF_DST] = ic->icmp_id;
    333       1.1     rmind 			break;
    334       1.1     rmind 		}
    335       1.8     rmind 		return 0;
    336       1.1     rmind 	case IPPROTO_ICMPV6:
    337       1.1     rmind 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    338       1.1     rmind 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    339       1.1     rmind 			id[NPF_SRC] = ic6->icmp6_id;
    340       1.1     rmind 			id[NPF_DST] = ic6->icmp6_id;
    341       1.1     rmind 			break;
    342       1.1     rmind 		}
    343       1.8     rmind 		return 0;
    344       1.1     rmind 	default:
    345       1.1     rmind 		/* Unsupported protocol. */
    346       1.8     rmind 		return 0;
    347       1.1     rmind 	}
    348      1.22  christos 	return connkey_setkey(key, proto, npc->npc_ips, id, alen, forw);
    349       1.1     rmind }
    350       1.1     rmind 
    351       1.3  christos static __inline void
    352       1.1     rmind connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
    353       1.1     rmind {
    354       1.1     rmind 	const u_int alen = key->ck_key[0] & 0xffff;
    355       1.1     rmind 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
    356       1.1     rmind 
    357       1.1     rmind 	KASSERT(alen > 0);
    358       1.1     rmind 	memcpy(addr, naddr, alen);
    359       1.1     rmind }
    360       1.1     rmind 
    361       1.3  christos static __inline void
    362       1.1     rmind connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
    363       1.1     rmind {
    364       1.1     rmind 	const uint32_t oid = key->ck_key[1];
    365       1.1     rmind 	const u_int shift = 16 * !di;
    366       1.1     rmind 	const uint32_t mask = 0xffff0000 >> shift;
    367       1.1     rmind 
    368       1.1     rmind 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
    369       1.1     rmind }
    370       1.1     rmind 
    371      1.22  christos static inline void
    372      1.22  christos conn_update_atime(npf_conn_t *con)
    373      1.22  christos {
    374      1.22  christos 	struct timespec tsnow;
    375      1.22  christos 
    376      1.22  christos 	getnanouptime(&tsnow);
    377      1.22  christos 	con->c_atime = tsnow.tv_sec;
    378      1.22  christos }
    379      1.22  christos 
    380       1.1     rmind /*
    381      1.18  christos  * npf_conn_ok: check if the connection is active, and has the right direction.
    382      1.18  christos  */
    383      1.18  christos static bool
    384      1.22  christos npf_conn_ok(const npf_conn_t *con, const int di, bool forw)
    385      1.18  christos {
    386      1.22  christos 	const uint32_t flags = con->c_flags;
    387      1.18  christos 
    388      1.18  christos 	/* Check if connection is active and not expired. */
    389      1.18  christos 	bool ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    390      1.18  christos 	if (__predict_false(!ok)) {
    391      1.18  christos 		return false;
    392      1.18  christos 	}
    393      1.18  christos 
    394      1.18  christos 	/* Check if the direction is consistent */
    395      1.22  christos 	bool pforw = (flags & PFIL_ALL) == (unsigned)di;
    396      1.18  christos 	if (__predict_false(forw != pforw)) {
    397      1.18  christos 		return false;
    398      1.18  christos 	}
    399      1.18  christos 	return true;
    400      1.18  christos }
    401      1.18  christos 
    402      1.18  christos /*
    403       1.1     rmind  * npf_conn_lookup: lookup if there is an established connection.
    404       1.1     rmind  *
    405       1.1     rmind  * => If found, we will hold a reference for the caller.
    406       1.1     rmind  */
    407       1.1     rmind npf_conn_t *
    408       1.4     rmind npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
    409       1.1     rmind {
    410      1.22  christos 	npf_t *npf = npc->npc_ctx;
    411       1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    412       1.1     rmind 	npf_conn_t *con;
    413       1.1     rmind 	npf_connkey_t key;
    414      1.18  christos 	u_int cifid;
    415       1.1     rmind 
    416       1.1     rmind 	/* Construct a key and lookup for a connection in the store. */
    417       1.1     rmind 	if (!npf_conn_conkey(npc, &key, true)) {
    418       1.1     rmind 		return NULL;
    419       1.1     rmind 	}
    420      1.22  christos 	con = npf_conndb_lookup(npf->conn_db, &key, forw);
    421       1.1     rmind 	if (con == NULL) {
    422       1.1     rmind 		return NULL;
    423       1.1     rmind 	}
    424       1.1     rmind 	KASSERT(npc->npc_proto == con->c_proto);
    425       1.1     rmind 
    426       1.1     rmind 	/* Check if connection is active and not expired. */
    427      1.18  christos 	if (!npf_conn_ok(con, di, *forw)) {
    428       1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    429       1.1     rmind 		return NULL;
    430       1.1     rmind 	}
    431       1.1     rmind 
    432       1.1     rmind 	/*
    433       1.1     rmind 	 * Match the interface and the direction of the connection entry
    434       1.1     rmind 	 * and the packet.
    435       1.1     rmind 	 */
    436       1.1     rmind 	cifid = con->c_ifid;
    437       1.1     rmind 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
    438       1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    439       1.1     rmind 		return NULL;
    440       1.1     rmind 	}
    441       1.1     rmind 
    442       1.1     rmind 	/* Update the last activity time. */
    443      1.22  christos 	conn_update_atime(con);
    444       1.1     rmind 	return con;
    445       1.1     rmind }
    446       1.1     rmind 
    447       1.1     rmind /*
    448       1.1     rmind  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    449       1.1     rmind  *
    450       1.1     rmind  * => If found, we will hold a reference for the caller.
    451       1.1     rmind  */
    452       1.1     rmind npf_conn_t *
    453       1.4     rmind npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
    454       1.1     rmind {
    455       1.4     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    456       1.1     rmind 	npf_conn_t *con;
    457       1.1     rmind 	bool forw, ok;
    458       1.1     rmind 
    459       1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    460       1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    461       1.1     rmind 		return NULL;
    462       1.1     rmind 	}
    463       1.1     rmind 
    464       1.1     rmind 	/* Query ALG which may lookup connection for us. */
    465       1.4     rmind 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    466       1.1     rmind 		/* Note: reference is held. */
    467       1.1     rmind 		return con;
    468       1.1     rmind 	}
    469       1.1     rmind 	if (nbuf_head_mbuf(nbuf) == NULL) {
    470       1.1     rmind 		*error = ENOMEM;
    471       1.1     rmind 		return NULL;
    472       1.1     rmind 	}
    473       1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    474       1.1     rmind 
    475       1.1     rmind 	/* Main lookup of the connection. */
    476       1.4     rmind 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
    477       1.1     rmind 		return NULL;
    478       1.1     rmind 	}
    479       1.1     rmind 
    480       1.1     rmind 	/* Inspect the protocol data and handle state changes. */
    481       1.1     rmind 	mutex_enter(&con->c_lock);
    482       1.4     rmind 	ok = npf_state_inspect(npc, &con->c_state, forw);
    483       1.1     rmind 	mutex_exit(&con->c_lock);
    484       1.1     rmind 
    485      1.17     rmind 	/* If invalid state: let the rules deal with it. */
    486       1.1     rmind 	if (__predict_false(!ok)) {
    487       1.1     rmind 		npf_conn_release(con);
    488      1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
    489      1.17     rmind 		return NULL;
    490      1.17     rmind 	}
    491      1.17     rmind 
    492      1.17     rmind 	/*
    493      1.17     rmind 	 * If this is multi-end state, then specially tag the packet
    494      1.17     rmind 	 * so it will be just passed-through on other interfaces.
    495      1.17     rmind 	 */
    496      1.17     rmind 	if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
    497      1.17     rmind 		npf_conn_release(con);
    498      1.17     rmind 		*error = ENOMEM;
    499      1.17     rmind 		return NULL;
    500       1.1     rmind 	}
    501       1.1     rmind 	return con;
    502       1.1     rmind }
    503       1.1     rmind 
    504       1.1     rmind /*
    505       1.1     rmind  * npf_conn_establish: create a new connection, insert into the global list.
    506       1.1     rmind  *
    507       1.1     rmind  * => Connection is created with the reference held for the caller.
    508       1.1     rmind  * => Connection will be activated on the first reference release.
    509       1.1     rmind  */
    510       1.1     rmind npf_conn_t *
    511       1.4     rmind npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
    512       1.1     rmind {
    513      1.22  christos 	npf_t *npf = npc->npc_ctx;
    514       1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    515       1.1     rmind 	npf_conn_t *con;
    516      1.15     rmind 	int error = 0;
    517       1.1     rmind 
    518       1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    519       1.1     rmind 
    520       1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    521       1.1     rmind 		return NULL;
    522       1.1     rmind 	}
    523       1.1     rmind 
    524       1.1     rmind 	/* Allocate and initialise the new connection. */
    525      1.22  christos 	con = pool_cache_get(npf->conn_cache, PR_NOWAIT);
    526       1.1     rmind 	if (__predict_false(!con)) {
    527      1.22  christos 		npf_worker_signal(npf);
    528       1.1     rmind 		return NULL;
    529       1.1     rmind 	}
    530       1.1     rmind 	NPF_PRINTF(("NPF: create conn %p\n", con));
    531      1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    532       1.1     rmind 
    533       1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    534       1.1     rmind 	con->c_flags = (di & PFIL_ALL);
    535      1.15     rmind 	con->c_refcnt = 0;
    536       1.1     rmind 	con->c_rproc = NULL;
    537       1.1     rmind 	con->c_nat = NULL;
    538       1.1     rmind 
    539      1.15     rmind 	/* Initialize the protocol state. */
    540       1.4     rmind 	if (!npf_state_init(npc, &con->c_state)) {
    541      1.22  christos 		npf_conn_destroy(npf, con);
    542      1.15     rmind 		return NULL;
    543       1.1     rmind 	}
    544       1.1     rmind 
    545       1.1     rmind 	KASSERT(npf_iscached(npc, NPC_IP46));
    546       1.1     rmind 	npf_connkey_t *fw = &con->c_forw_entry;
    547       1.1     rmind 	npf_connkey_t *bk = &con->c_back_entry;
    548       1.1     rmind 
    549       1.1     rmind 	/*
    550       1.1     rmind 	 * Construct "forwards" and "backwards" keys.  Also, set the
    551       1.1     rmind 	 * interface ID for this connection (unless it is global).
    552       1.1     rmind 	 */
    553      1.15     rmind 	if (!npf_conn_conkey(npc, fw, true) ||
    554      1.15     rmind 	    !npf_conn_conkey(npc, bk, false)) {
    555      1.22  christos 		npf_conn_destroy(npf, con);
    556      1.15     rmind 		return NULL;
    557       1.1     rmind 	}
    558       1.1     rmind 	fw->ck_backptr = bk->ck_backptr = con;
    559       1.1     rmind 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
    560       1.1     rmind 	con->c_proto = npc->npc_proto;
    561       1.1     rmind 
    562      1.15     rmind 	/*
    563      1.15     rmind 	 * Set last activity time for a new connection and acquire
    564      1.15     rmind 	 * a reference for the caller before we make it visible.
    565      1.15     rmind 	 */
    566      1.22  christos 	conn_update_atime(con);
    567      1.15     rmind 	con->c_refcnt = 1;
    568       1.1     rmind 
    569       1.1     rmind 	/*
    570       1.1     rmind 	 * Insert both keys (entries representing directions) of the
    571      1.15     rmind 	 * connection.  At this point it becomes visible, but we activate
    572      1.15     rmind 	 * the connection later.
    573       1.1     rmind 	 */
    574      1.15     rmind 	mutex_enter(&con->c_lock);
    575      1.22  christos 	if (!npf_conndb_insert(npf->conn_db, fw, con)) {
    576      1.15     rmind 		error = EISCONN;
    577       1.1     rmind 		goto err;
    578       1.1     rmind 	}
    579      1.22  christos 	if (!npf_conndb_insert(npf->conn_db, bk, con)) {
    580      1.15     rmind 		npf_conn_t *ret __diagused;
    581      1.22  christos 		ret = npf_conndb_remove(npf->conn_db, fw);
    582      1.15     rmind 		KASSERT(ret == con);
    583      1.15     rmind 		error = EISCONN;
    584      1.15     rmind 		goto err;
    585      1.15     rmind 	}
    586      1.15     rmind err:
    587      1.15     rmind 	/*
    588      1.15     rmind 	 * If we have hit the duplicate: mark the connection as expired
    589      1.15     rmind 	 * and let the G/C thread to take care of it.  We cannot do it
    590      1.15     rmind 	 * here since there might be references acquired already.
    591      1.15     rmind 	 */
    592      1.15     rmind 	if (error) {
    593      1.16     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    594      1.16     rmind 		atomic_dec_uint(&con->c_refcnt);
    595      1.22  christos 		npf_stats_inc(npf, NPF_STAT_RACE_CONN);
    596      1.15     rmind 	} else {
    597      1.15     rmind 		NPF_PRINTF(("NPF: establish conn %p\n", con));
    598       1.1     rmind 	}
    599       1.1     rmind 
    600       1.1     rmind 	/* Finally, insert into the connection list. */
    601      1.22  christos 	npf_conndb_enqueue(npf->conn_db, con);
    602      1.15     rmind 	mutex_exit(&con->c_lock);
    603      1.15     rmind 
    604      1.15     rmind 	return error ? NULL : con;
    605       1.1     rmind }
    606       1.1     rmind 
    607       1.1     rmind static void
    608      1.22  christos npf_conn_destroy(npf_t *npf, npf_conn_t *con)
    609       1.1     rmind {
    610      1.15     rmind 	KASSERT(con->c_refcnt == 0);
    611      1.15     rmind 
    612       1.1     rmind 	if (con->c_nat) {
    613       1.1     rmind 		/* Release any NAT structures. */
    614       1.1     rmind 		npf_nat_destroy(con->c_nat);
    615       1.1     rmind 	}
    616       1.1     rmind 	if (con->c_rproc) {
    617       1.1     rmind 		/* Release the rule procedure. */
    618       1.1     rmind 		npf_rproc_release(con->c_rproc);
    619       1.1     rmind 	}
    620       1.1     rmind 
    621       1.1     rmind 	/* Destroy the state. */
    622       1.1     rmind 	npf_state_destroy(&con->c_state);
    623       1.1     rmind 	mutex_destroy(&con->c_lock);
    624       1.1     rmind 
    625       1.1     rmind 	/* Free the structure, increase the counter. */
    626      1.22  christos 	pool_cache_put(npf->conn_cache, con);
    627      1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
    628       1.1     rmind 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    629       1.1     rmind }
    630       1.1     rmind 
    631       1.1     rmind /*
    632       1.1     rmind  * npf_conn_setnat: associate NAT entry with the connection, update and
    633       1.1     rmind  * re-insert connection entry using the translation values.
    634      1.16     rmind  *
    635      1.16     rmind  * => The caller must be holding a reference.
    636       1.1     rmind  */
    637       1.1     rmind int
    638       1.1     rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    639       1.1     rmind     npf_nat_t *nt, u_int ntype)
    640       1.1     rmind {
    641       1.1     rmind 	static const u_int nat_type_dimap[] = {
    642       1.1     rmind 		[NPF_NATOUT] = NPF_DST,
    643       1.1     rmind 		[NPF_NATIN] = NPF_SRC,
    644       1.1     rmind 	};
    645      1.22  christos 	npf_t *npf = npc->npc_ctx;
    646       1.1     rmind 	npf_connkey_t key, *bk;
    647       1.2     rmind 	npf_conn_t *ret __diagused;
    648       1.1     rmind 	npf_addr_t *taddr;
    649       1.1     rmind 	in_port_t tport;
    650       1.1     rmind 	u_int tidx;
    651       1.1     rmind 
    652       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    653       1.1     rmind 
    654       1.1     rmind 	npf_nat_gettrans(nt, &taddr, &tport);
    655       1.1     rmind 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    656       1.1     rmind 	tidx = nat_type_dimap[ntype];
    657       1.1     rmind 
    658       1.1     rmind 	/* Construct a "backwards" key. */
    659       1.1     rmind 	if (!npf_conn_conkey(npc, &key, false)) {
    660       1.1     rmind 		return EINVAL;
    661       1.1     rmind 	}
    662       1.1     rmind 
    663       1.1     rmind 	/* Acquire the lock and check for the races. */
    664       1.1     rmind 	mutex_enter(&con->c_lock);
    665       1.1     rmind 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    666       1.1     rmind 		/* The connection got expired. */
    667       1.1     rmind 		mutex_exit(&con->c_lock);
    668       1.1     rmind 		return EINVAL;
    669       1.1     rmind 	}
    670      1.15     rmind 	KASSERT((con->c_flags & CONN_REMOVED) == 0);
    671      1.15     rmind 
    672       1.1     rmind 	if (__predict_false(con->c_nat != NULL)) {
    673       1.1     rmind 		/* Race with a duplicate packet. */
    674       1.1     rmind 		mutex_exit(&con->c_lock);
    675      1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    676       1.1     rmind 		return EISCONN;
    677       1.1     rmind 	}
    678       1.1     rmind 
    679       1.1     rmind 	/* Remove the "backwards" entry. */
    680      1.22  christos 	ret = npf_conndb_remove(npf->conn_db, &con->c_back_entry);
    681       1.1     rmind 	KASSERT(ret == con);
    682       1.1     rmind 
    683       1.1     rmind 	/* Set the source/destination IDs to the translation values. */
    684       1.1     rmind 	bk = &con->c_back_entry;
    685       1.1     rmind 	connkey_set_addr(bk, taddr, tidx);
    686       1.1     rmind 	if (tport) {
    687       1.1     rmind 		connkey_set_id(bk, tport, tidx);
    688       1.1     rmind 	}
    689       1.1     rmind 
    690       1.1     rmind 	/* Finally, re-insert the "backwards" entry. */
    691      1.22  christos 	if (!npf_conndb_insert(npf->conn_db, bk, con)) {
    692       1.1     rmind 		/*
    693       1.1     rmind 		 * Race: we have hit the duplicate, remove the "forwards"
    694       1.1     rmind 		 * entry and expire our connection; it is no longer valid.
    695       1.1     rmind 		 */
    696      1.22  christos 		ret = npf_conndb_remove(npf->conn_db, &con->c_forw_entry);
    697      1.15     rmind 		KASSERT(ret == con);
    698      1.15     rmind 
    699       1.1     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    700       1.1     rmind 		mutex_exit(&con->c_lock);
    701       1.1     rmind 
    702      1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    703       1.1     rmind 		return EISCONN;
    704       1.1     rmind 	}
    705       1.1     rmind 
    706       1.1     rmind 	/* Associate the NAT entry and release the lock. */
    707       1.1     rmind 	con->c_nat = nt;
    708       1.1     rmind 	mutex_exit(&con->c_lock);
    709       1.1     rmind 	return 0;
    710       1.1     rmind }
    711       1.1     rmind 
    712       1.1     rmind /*
    713       1.1     rmind  * npf_conn_expire: explicitly mark connection as expired.
    714       1.1     rmind  */
    715       1.1     rmind void
    716       1.1     rmind npf_conn_expire(npf_conn_t *con)
    717       1.1     rmind {
    718       1.1     rmind 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    719       1.1     rmind 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    720       1.1     rmind }
    721       1.1     rmind 
    722       1.1     rmind /*
    723       1.1     rmind  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    724       1.1     rmind  */
    725       1.1     rmind bool
    726  1.22.2.1    bouyer npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
    727       1.1     rmind {
    728       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    729       1.1     rmind 	if (__predict_true(con->c_flags & CONN_PASS)) {
    730  1.22.2.1    bouyer 		*mi = con->c_mi;
    731       1.1     rmind 		*rp = con->c_rproc;
    732       1.1     rmind 		return true;
    733       1.1     rmind 	}
    734       1.1     rmind 	return false;
    735       1.1     rmind }
    736       1.1     rmind 
    737       1.1     rmind /*
    738       1.1     rmind  * npf_conn_setpass: mark connection as a "pass" one and associate the
    739       1.1     rmind  * rule procedure with it.
    740       1.1     rmind  */
    741       1.1     rmind void
    742  1.22.2.1    bouyer npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
    743       1.1     rmind {
    744       1.1     rmind 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    745       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    746       1.1     rmind 	KASSERT(con->c_rproc == NULL);
    747       1.1     rmind 
    748       1.1     rmind 	/*
    749       1.1     rmind 	 * No need for atomic since the connection is not yet active.
    750       1.1     rmind 	 * If rproc is set, the caller transfers its reference to us,
    751       1.1     rmind 	 * which will be released on npf_conn_destroy().
    752       1.1     rmind 	 */
    753      1.14     rmind 	atomic_or_uint(&con->c_flags, CONN_PASS);
    754       1.1     rmind 	con->c_rproc = rp;
    755  1.22.2.1    bouyer 	if (rp)
    756  1.22.2.1    bouyer 		con->c_mi = *mi;
    757       1.1     rmind }
    758       1.1     rmind 
    759       1.1     rmind /*
    760       1.1     rmind  * npf_conn_release: release a reference, which might allow G/C thread
    761       1.1     rmind  * to destroy this connection.
    762       1.1     rmind  */
    763       1.1     rmind void
    764       1.1     rmind npf_conn_release(npf_conn_t *con)
    765       1.1     rmind {
    766       1.1     rmind 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    767       1.1     rmind 		/* Activate: after this, connection is globally visible. */
    768      1.14     rmind 		atomic_or_uint(&con->c_flags, CONN_ACTIVE);
    769       1.1     rmind 	}
    770       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    771       1.1     rmind 	atomic_dec_uint(&con->c_refcnt);
    772       1.1     rmind }
    773       1.1     rmind 
    774       1.1     rmind /*
    775      1.13     rmind  * npf_conn_getnat: return associated NAT data entry and indicate
    776       1.1     rmind  * whether it is a "forwards" or "backwards" stream.
    777       1.1     rmind  */
    778       1.1     rmind npf_nat_t *
    779      1.13     rmind npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
    780       1.1     rmind {
    781       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    782      1.22  christos 	*forw = (con->c_flags & PFIL_ALL) == (u_int)di;
    783       1.1     rmind 	return con->c_nat;
    784       1.1     rmind }
    785       1.1     rmind 
    786       1.1     rmind /*
    787       1.1     rmind  * npf_conn_expired: criterion to check if connection is expired.
    788       1.1     rmind  */
    789       1.1     rmind static inline bool
    790      1.22  christos npf_conn_expired(const npf_conn_t *con, uint64_t tsnow)
    791       1.1     rmind {
    792       1.1     rmind 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
    793      1.22  christos 	int elapsed;
    794       1.1     rmind 
    795       1.1     rmind 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    796       1.1     rmind 		/* Explicitly marked to be expired. */
    797       1.1     rmind 		return true;
    798       1.1     rmind 	}
    799      1.22  christos 
    800      1.22  christos 	/*
    801      1.22  christos 	 * Note: another thread may update 'atime' and it might
    802      1.22  christos 	 * become greater than 'now'.
    803      1.22  christos 	 */
    804      1.22  christos 	elapsed = (int64_t)tsnow - con->c_atime;
    805      1.22  christos 	return elapsed > etime;
    806       1.1     rmind }
    807       1.1     rmind 
    808       1.1     rmind /*
    809       1.6     rmind  * npf_conn_gc: garbage collect the expired connections.
    810       1.6     rmind  *
    811       1.6     rmind  * => Must run in a single-threaded manner.
    812       1.6     rmind  * => If it is a flush request, then destroy all connections.
    813       1.6     rmind  * => If 'sync' is true, then perform passive serialisation.
    814       1.1     rmind  */
    815       1.7     rmind void
    816      1.22  christos npf_conn_gc(npf_t *npf, npf_conndb_t *cd, bool flush, bool sync)
    817       1.1     rmind {
    818       1.1     rmind 	npf_conn_t *con, *prev, *gclist = NULL;
    819       1.1     rmind 	struct timespec tsnow;
    820       1.1     rmind 
    821       1.1     rmind 	getnanouptime(&tsnow);
    822       1.1     rmind 
    823       1.1     rmind 	/*
    824       1.1     rmind 	 * Scan all connections and check them for expiration.
    825       1.1     rmind 	 */
    826       1.1     rmind 	prev = NULL;
    827       1.1     rmind 	con = npf_conndb_getlist(cd);
    828       1.1     rmind 	while (con) {
    829       1.1     rmind 		npf_conn_t *next = con->c_next;
    830       1.1     rmind 
    831       1.1     rmind 		/* Expired?  Flushing all? */
    832      1.22  christos 		if (!npf_conn_expired(con, tsnow.tv_sec) && !flush) {
    833       1.1     rmind 			prev = con;
    834       1.1     rmind 			con = next;
    835       1.1     rmind 			continue;
    836       1.1     rmind 		}
    837       1.1     rmind 
    838       1.1     rmind 		/* Remove both entries of the connection. */
    839       1.1     rmind 		mutex_enter(&con->c_lock);
    840       1.1     rmind 		if ((con->c_flags & CONN_REMOVED) == 0) {
    841       1.1     rmind 			npf_conn_t *ret __diagused;
    842       1.1     rmind 
    843       1.1     rmind 			ret = npf_conndb_remove(cd, &con->c_forw_entry);
    844       1.1     rmind 			KASSERT(ret == con);
    845       1.1     rmind 			ret = npf_conndb_remove(cd, &con->c_back_entry);
    846       1.1     rmind 			KASSERT(ret == con);
    847       1.1     rmind 		}
    848       1.1     rmind 
    849       1.1     rmind 		/* Flag the removal and expiration. */
    850       1.1     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    851       1.1     rmind 		mutex_exit(&con->c_lock);
    852       1.1     rmind 
    853       1.1     rmind 		/* Move to the G/C list. */
    854       1.1     rmind 		npf_conndb_dequeue(cd, con, prev);
    855       1.1     rmind 		con->c_next = gclist;
    856       1.1     rmind 		gclist = con;
    857       1.1     rmind 
    858       1.1     rmind 		/* Next.. */
    859       1.1     rmind 		con = next;
    860       1.1     rmind 	}
    861       1.1     rmind 	npf_conndb_settail(cd, prev);
    862       1.6     rmind 
    863       1.6     rmind 	/*
    864       1.6     rmind 	 * Ensure it is safe to destroy the connections.
    865       1.6     rmind 	 * Note: drop the conn_lock (see the lock order).
    866       1.6     rmind 	 */
    867       1.6     rmind 	if (sync) {
    868      1.22  christos 		mutex_exit(&npf->conn_lock);
    869       1.6     rmind 		if (gclist) {
    870      1.22  christos 			npf_config_enter(npf);
    871      1.22  christos 			npf_config_sync(npf);
    872      1.22  christos 			npf_config_exit(npf);
    873       1.6     rmind 		}
    874       1.1     rmind 	}
    875       1.1     rmind 
    876       1.1     rmind 	/*
    877       1.1     rmind 	 * Garbage collect all expired connections.
    878       1.1     rmind 	 * May need to wait for the references to drain.
    879       1.1     rmind 	 */
    880       1.1     rmind 	con = gclist;
    881       1.1     rmind 	while (con) {
    882       1.1     rmind 		npf_conn_t *next = con->c_next;
    883       1.1     rmind 
    884       1.1     rmind 		/*
    885       1.1     rmind 		 * Destroy only if removed and no references.
    886       1.1     rmind 		 * Otherwise, wait for a tiny moment.
    887       1.1     rmind 		 */
    888       1.1     rmind 		if (__predict_false(con->c_refcnt)) {
    889       1.1     rmind 			kpause("npfcongc", false, 1, NULL);
    890       1.1     rmind 			continue;
    891       1.1     rmind 		}
    892      1.22  christos 		npf_conn_destroy(npf, con);
    893       1.1     rmind 		con = next;
    894       1.1     rmind 	}
    895       1.1     rmind }
    896       1.1     rmind 
    897       1.6     rmind /*
    898       1.6     rmind  * npf_conn_worker: G/C to run from a worker thread.
    899       1.6     rmind  */
    900      1.22  christos void
    901      1.22  christos npf_conn_worker(npf_t *npf)
    902       1.1     rmind {
    903      1.22  christos 	mutex_enter(&npf->conn_lock);
    904       1.6     rmind 	/* Note: the conn_lock will be released (sync == true). */
    905      1.22  christos 	npf_conn_gc(npf, npf->conn_db, false, true);
    906       1.1     rmind }
    907       1.1     rmind 
    908       1.1     rmind /*
    909      1.10     rmind  * npf_conndb_export: construct a list of connections prepared for saving.
    910       1.1     rmind  * Note: this is expected to be an expensive operation.
    911       1.1     rmind  */
    912       1.1     rmind int
    913      1.22  christos npf_conndb_export(npf_t *npf, prop_array_t conlist)
    914       1.1     rmind {
    915       1.1     rmind 	npf_conn_t *con, *prev;
    916       1.1     rmind 
    917       1.1     rmind 	/*
    918       1.1     rmind 	 * Note: acquire conn_lock to prevent from the database
    919       1.1     rmind 	 * destruction and G/C thread.
    920       1.1     rmind 	 */
    921      1.22  christos 	mutex_enter(&npf->conn_lock);
    922      1.22  christos 	if (npf->conn_tracking != CONN_TRACKING_ON) {
    923      1.22  christos 		mutex_exit(&npf->conn_lock);
    924       1.1     rmind 		return 0;
    925       1.1     rmind 	}
    926       1.1     rmind 	prev = NULL;
    927      1.22  christos 	con = npf_conndb_getlist(npf->conn_db);
    928       1.1     rmind 	while (con) {
    929       1.1     rmind 		npf_conn_t *next = con->c_next;
    930      1.10     rmind 		prop_dictionary_t cdict;
    931       1.1     rmind 
    932      1.22  christos 		if ((cdict = npf_conn_export(npf, con)) != NULL) {
    933      1.10     rmind 			prop_array_add(conlist, cdict);
    934      1.10     rmind 			prop_object_release(cdict);
    935       1.1     rmind 		}
    936       1.1     rmind 		prev = con;
    937       1.1     rmind 		con = next;
    938       1.1     rmind 	}
    939      1.22  christos 	npf_conndb_settail(npf->conn_db, prev);
    940      1.22  christos 	mutex_exit(&npf->conn_lock);
    941       1.5     joerg 	return 0;
    942       1.1     rmind }
    943       1.1     rmind 
    944      1.20  christos static prop_dictionary_t
    945      1.20  christos npf_connkey_export(const npf_connkey_t *key)
    946      1.20  christos {
    947      1.20  christos 	uint16_t id[2], alen, proto;
    948      1.22  christos 	prop_dictionary_t kdict;
    949      1.20  christos 	npf_addr_t ips[2];
    950      1.20  christos 	prop_data_t d;
    951      1.20  christos 
    952      1.22  christos 	kdict = prop_dictionary_create();
    953      1.20  christos 	connkey_getkey(key, &proto, ips, id, &alen);
    954      1.20  christos 
    955      1.20  christos 	prop_dictionary_set_uint16(kdict, "proto", proto);
    956      1.20  christos 
    957      1.20  christos 	prop_dictionary_set_uint16(kdict, "sport", id[NPF_SRC]);
    958      1.20  christos 	prop_dictionary_set_uint16(kdict, "dport", id[NPF_DST]);
    959      1.20  christos 
    960      1.20  christos 	d = prop_data_create_data(&ips[NPF_SRC], alen);
    961      1.20  christos 	prop_dictionary_set_and_rel(kdict, "saddr", d);
    962      1.20  christos 
    963      1.20  christos 	d = prop_data_create_data(&ips[NPF_DST], alen);
    964      1.20  christos 	prop_dictionary_set_and_rel(kdict, "daddr", d);
    965      1.20  christos 
    966      1.20  christos 	return kdict;
    967      1.20  christos }
    968      1.20  christos 
    969       1.1     rmind /*
    970      1.10     rmind  * npf_conn_export: serialise a single connection.
    971      1.10     rmind  */
    972      1.10     rmind prop_dictionary_t
    973      1.22  christos npf_conn_export(npf_t *npf, const npf_conn_t *con)
    974      1.10     rmind {
    975      1.20  christos 	prop_dictionary_t cdict, kdict;
    976      1.10     rmind 	prop_data_t d;
    977      1.10     rmind 
    978      1.10     rmind 	if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
    979      1.10     rmind 		return NULL;
    980      1.10     rmind 	}
    981      1.10     rmind 	cdict = prop_dictionary_create();
    982      1.10     rmind 	prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
    983      1.10     rmind 	prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
    984      1.10     rmind 	if (con->c_ifid) {
    985      1.22  christos 		const char *ifname = npf_ifmap_getname(npf, con->c_ifid);
    986      1.10     rmind 		prop_dictionary_set_cstring(cdict, "ifname", ifname);
    987      1.10     rmind 	}
    988      1.10     rmind 
    989      1.10     rmind 	d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
    990      1.10     rmind 	prop_dictionary_set_and_rel(cdict, "state", d);
    991      1.10     rmind 
    992      1.20  christos 	kdict = npf_connkey_export(&con->c_forw_entry);
    993      1.20  christos 	prop_dictionary_set_and_rel(cdict, "forw-key", kdict);
    994      1.10     rmind 
    995      1.20  christos 	kdict = npf_connkey_export(&con->c_back_entry);
    996      1.20  christos 	prop_dictionary_set_and_rel(cdict, "back-key", kdict);
    997      1.10     rmind 
    998      1.10     rmind 	if (con->c_nat) {
    999      1.10     rmind 		npf_nat_export(cdict, con->c_nat);
   1000      1.10     rmind 	}
   1001      1.10     rmind 	return cdict;
   1002      1.10     rmind }
   1003      1.10     rmind 
   1004      1.18  christos static uint32_t
   1005      1.20  christos npf_connkey_import(prop_dictionary_t kdict, npf_connkey_t *key)
   1006      1.18  christos {
   1007      1.18  christos 	prop_object_t sobj, dobj;
   1008      1.18  christos 	npf_addr_t const * ips[2];
   1009      1.22  christos 	uint16_t alen, proto, id[2];
   1010      1.18  christos 
   1011      1.20  christos 	if (!prop_dictionary_get_uint16(kdict, "proto", &proto))
   1012      1.20  christos 		return 0;
   1013      1.20  christos 
   1014      1.20  christos 	if (!prop_dictionary_get_uint16(kdict, "sport", &id[NPF_SRC]))
   1015      1.20  christos 		return 0;
   1016      1.18  christos 
   1017      1.20  christos 	if (!prop_dictionary_get_uint16(kdict, "dport", &id[NPF_DST]))
   1018      1.20  christos 		return 0;
   1019      1.18  christos 
   1020      1.20  christos 	sobj = prop_dictionary_get(kdict, "saddr");
   1021      1.18  christos 	if ((ips[NPF_SRC] = prop_data_data_nocopy(sobj)) == NULL)
   1022      1.18  christos 		return 0;
   1023      1.18  christos 
   1024      1.20  christos 	dobj = prop_dictionary_get(kdict, "daddr");
   1025      1.18  christos 	if ((ips[NPF_DST] = prop_data_data_nocopy(dobj)) == NULL)
   1026      1.18  christos 		return 0;
   1027      1.18  christos 
   1028      1.22  christos 	alen = prop_data_size(sobj);
   1029      1.18  christos 	if (alen != prop_data_size(dobj))
   1030      1.18  christos 		return 0;
   1031      1.19       kre 
   1032      1.18  christos 	return connkey_setkey(key, proto, ips, id, alen, true);
   1033      1.18  christos }
   1034      1.18  christos 
   1035      1.10     rmind /*
   1036       1.6     rmind  * npf_conn_import: fully reconstruct a single connection from a
   1037       1.6     rmind  * directory and insert into the given database.
   1038       1.1     rmind  */
   1039       1.1     rmind int
   1040      1.22  christos npf_conn_import(npf_t *npf, npf_conndb_t *cd, prop_dictionary_t cdict,
   1041       1.6     rmind     npf_ruleset_t *natlist)
   1042       1.1     rmind {
   1043       1.1     rmind 	npf_conn_t *con;
   1044       1.1     rmind 	npf_connkey_t *fw, *bk;
   1045       1.1     rmind 	prop_object_t obj;
   1046      1.10     rmind 	const char *ifname;
   1047       1.1     rmind 	const void *d;
   1048       1.1     rmind 
   1049       1.1     rmind 	/* Allocate a connection and initialise it (clear first). */
   1050      1.22  christos 	con = pool_cache_get(npf->conn_cache, PR_WAITOK);
   1051       1.1     rmind 	memset(con, 0, sizeof(npf_conn_t));
   1052       1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   1053      1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
   1054       1.1     rmind 
   1055       1.1     rmind 	prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
   1056       1.1     rmind 	prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
   1057       1.1     rmind 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
   1058      1.22  christos 	conn_update_atime(con);
   1059       1.1     rmind 
   1060      1.10     rmind 	if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) &&
   1061      1.22  christos 	    (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
   1062      1.10     rmind 		goto err;
   1063      1.10     rmind 	}
   1064      1.10     rmind 
   1065       1.1     rmind 	obj = prop_dictionary_get(cdict, "state");
   1066       1.1     rmind 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
   1067       1.1     rmind 	    prop_data_size(obj) != sizeof(npf_state_t)) {
   1068       1.1     rmind 		goto err;
   1069       1.1     rmind 	}
   1070       1.1     rmind 	memcpy(&con->c_state, d, sizeof(npf_state_t));
   1071       1.1     rmind 
   1072      1.11     rmind 	/* Reconstruct NAT association, if any. */
   1073      1.11     rmind 	if ((obj = prop_dictionary_get(cdict, "nat")) != NULL &&
   1074      1.22  christos 	    (con->c_nat = npf_nat_import(npf, obj, natlist, con)) == NULL) {
   1075      1.11     rmind 		goto err;
   1076      1.11     rmind 	}
   1077       1.1     rmind 
   1078       1.1     rmind 	/*
   1079       1.1     rmind 	 * Fetch and copy the keys for each direction.
   1080       1.1     rmind 	 */
   1081       1.1     rmind 	obj = prop_dictionary_get(cdict, "forw-key");
   1082      1.20  christos 	fw = &con->c_forw_entry;
   1083      1.20  christos 	if (obj == NULL || !npf_connkey_import(obj, fw)) {
   1084       1.1     rmind 		goto err;
   1085       1.1     rmind 	}
   1086       1.1     rmind 
   1087       1.1     rmind 	obj = prop_dictionary_get(cdict, "back-key");
   1088      1.20  christos 	bk = &con->c_back_entry;
   1089      1.20  christos 	if (obj == NULL || !npf_connkey_import(obj, bk)) {
   1090       1.1     rmind 		goto err;
   1091       1.1     rmind 	}
   1092       1.1     rmind 
   1093       1.1     rmind 	fw->ck_backptr = bk->ck_backptr = con;
   1094       1.1     rmind 
   1095       1.1     rmind 	/* Insert the entries and the connection itself. */
   1096       1.1     rmind 	if (!npf_conndb_insert(cd, fw, con)) {
   1097       1.1     rmind 		goto err;
   1098       1.1     rmind 	}
   1099       1.1     rmind 	if (!npf_conndb_insert(cd, bk, con)) {
   1100       1.1     rmind 		npf_conndb_remove(cd, fw);
   1101       1.1     rmind 		goto err;
   1102       1.1     rmind 	}
   1103      1.12     rmind 
   1104      1.12     rmind 	NPF_PRINTF(("NPF: imported conn %p\n", con));
   1105       1.1     rmind 	npf_conndb_enqueue(cd, con);
   1106       1.1     rmind 	return 0;
   1107       1.1     rmind err:
   1108      1.22  christos 	npf_conn_destroy(npf, con);
   1109       1.1     rmind 	return EINVAL;
   1110       1.1     rmind }
   1111       1.1     rmind 
   1112      1.20  christos int
   1113      1.22  christos npf_conn_find(npf_t *npf, prop_dictionary_t idict, prop_dictionary_t *odict)
   1114      1.20  christos {
   1115      1.22  christos 	prop_dictionary_t kdict;
   1116      1.20  christos 	npf_connkey_t key;
   1117      1.20  christos 	npf_conn_t *con;
   1118      1.20  christos 	uint16_t dir;
   1119      1.20  christos 	bool forw;
   1120      1.20  christos 
   1121      1.20  christos 	if ((kdict = prop_dictionary_get(idict, "key")) == NULL)
   1122      1.20  christos 		return EINVAL;
   1123      1.20  christos 
   1124      1.20  christos 	if (!npf_connkey_import(kdict, &key))
   1125      1.20  christos 		return EINVAL;
   1126      1.20  christos 
   1127      1.20  christos 	if (!prop_dictionary_get_uint16(idict, "direction", &dir))
   1128      1.20  christos 		return EINVAL;
   1129      1.20  christos 
   1130      1.22  christos 	con = npf_conndb_lookup(npf->conn_db, &key, &forw);
   1131      1.20  christos 	if (con == NULL) {
   1132      1.20  christos 		return ESRCH;
   1133      1.20  christos 	}
   1134      1.20  christos 
   1135      1.20  christos 	if (!npf_conn_ok(con, dir, true)) {
   1136      1.20  christos 		atomic_dec_uint(&con->c_refcnt);
   1137      1.20  christos 		return ESRCH;
   1138      1.20  christos 	}
   1139      1.20  christos 
   1140      1.22  christos 	*odict = npf_conn_export(npf, con);
   1141      1.20  christos 	if (*odict == NULL) {
   1142      1.20  christos 		atomic_dec_uint(&con->c_refcnt);
   1143      1.20  christos 		return ENOSPC;
   1144      1.20  christos 	}
   1145      1.20  christos 	atomic_dec_uint(&con->c_refcnt);
   1146      1.20  christos 
   1147      1.20  christos 	return 0;
   1148      1.20  christos }
   1149      1.20  christos 
   1150       1.1     rmind #if defined(DDB) || defined(_NPF_TESTING)
   1151       1.1     rmind 
   1152       1.1     rmind void
   1153       1.1     rmind npf_conn_print(const npf_conn_t *con)
   1154       1.1     rmind {
   1155       1.1     rmind 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
   1156       1.1     rmind 	const uint32_t *fkey = con->c_forw_entry.ck_key;
   1157       1.1     rmind 	const uint32_t *bkey = con->c_back_entry.ck_key;
   1158       1.1     rmind 	const u_int proto = con->c_proto;
   1159      1.22  christos 	struct timespec tspnow;
   1160       1.1     rmind 	const void *src, *dst;
   1161       1.1     rmind 	int etime;
   1162       1.1     rmind 
   1163      1.22  christos 	getnanouptime(&tspnow);
   1164       1.1     rmind 	etime = npf_state_etime(&con->c_state, proto);
   1165       1.1     rmind 
   1166      1.22  christos 	printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
   1167      1.22  christos 	    proto, con->c_flags, (long)(tspnow.tv_sec - con->c_atime), etime);
   1168       1.1     rmind 
   1169       1.1     rmind 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
   1170       1.1     rmind 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
   1171       1.1     rmind 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
   1172       1.1     rmind 
   1173       1.1     rmind 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
   1174       1.1     rmind 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
   1175       1.1     rmind 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
   1176       1.1     rmind 
   1177       1.1     rmind 	npf_state_dump(&con->c_state);
   1178       1.1     rmind 	if (con->c_nat) {
   1179       1.1     rmind 		npf_nat_dump(con->c_nat);
   1180       1.1     rmind 	}
   1181       1.1     rmind }
   1182       1.1     rmind 
   1183       1.1     rmind #endif
   1184