Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.24.2.2
      1       1.1     rmind /*-
      2  1.24.2.2  pgoyette  * Copyright (c) 2014-2018 Mindaugas Rasiukevicius <rmind at netbsd org>
      3       1.1     rmind  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      4       1.1     rmind  * All rights reserved.
      5       1.1     rmind  *
      6       1.1     rmind  * This material is based upon work partially supported by The
      7       1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      8       1.1     rmind  *
      9       1.1     rmind  * Redistribution and use in source and binary forms, with or without
     10       1.1     rmind  * modification, are permitted provided that the following conditions
     11       1.1     rmind  * are met:
     12       1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     13       1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     14       1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     15       1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     16       1.1     rmind  *    documentation and/or other materials provided with the distribution.
     17       1.1     rmind  *
     18       1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19       1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20       1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21       1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22       1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23       1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24       1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25       1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26       1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27       1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28       1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     29       1.1     rmind  */
     30       1.1     rmind 
     31       1.1     rmind /*
     32       1.1     rmind  * NPF connection tracking for stateful filtering and translation.
     33       1.1     rmind  *
     34       1.1     rmind  * Overview
     35       1.1     rmind  *
     36  1.24.2.2  pgoyette  *	Packets can be incoming or outgoing with respect to an interface.
     37       1.1     rmind  *	Connection direction is identified by the direction of its first
     38  1.24.2.2  pgoyette  *	packet.  The meaning of incoming/outgoing packet in the context of
     39  1.24.2.2  pgoyette  *	connection direction can be confusing.  Therefore, we will use the
     40  1.24.2.2  pgoyette  *	terms "forwards stream" and "backwards stream", where packets in
     41  1.24.2.2  pgoyette  *	the forwards stream mean the packets travelling in the direction
     42  1.24.2.2  pgoyette  *	as the connection direction.
     43  1.24.2.2  pgoyette  *
     44  1.24.2.2  pgoyette  *	All connections have two keys and thus two entries:
     45       1.1     rmind  *
     46       1.1     rmind  *		npf_conn_t::c_forw_entry for the forwards stream and
     47       1.1     rmind  *		npf_conn_t::c_back_entry for the backwards stream.
     48       1.1     rmind  *
     49       1.1     rmind  *	The keys are formed from the 5-tuple (source/destination address,
     50       1.1     rmind  *	source/destination port and the protocol).  Additional matching
     51       1.1     rmind  *	is performed for the interface (a common behaviour is equivalent
     52       1.1     rmind  *	to the 6-tuple lookup including the interface ID).  Note that the
     53       1.1     rmind  *	key may be formed using translated values in a case of NAT.
     54       1.1     rmind  *
     55       1.1     rmind  *	Connections can serve two purposes: for the implicit passing or
     56       1.1     rmind  *	to accommodate the dynamic NAT.  Connections for the former purpose
     57       1.1     rmind  *	are created by the rules with "stateful" attribute and are used for
     58       1.1     rmind  *	stateful filtering.  Such connections indicate that the packet of
     59       1.1     rmind  *	the backwards stream should be passed without inspection of the
     60       1.1     rmind  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     61       1.1     rmind  *	with a connection.  Such connections are created by the NAT policies
     62       1.1     rmind  *	and they have a relationship with NAT translation structure via
     63       1.1     rmind  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     64       1.1     rmind  *	which is a common case.
     65       1.1     rmind  *
     66       1.1     rmind  * Connection life-cycle
     67       1.1     rmind  *
     68       1.1     rmind  *	Connections are established when a packet matches said rule or
     69       1.1     rmind  *	NAT policy.  Both keys of the established connection are inserted
     70       1.1     rmind  *	into the connection database.  A garbage collection thread
     71       1.1     rmind  *	periodically scans all connections and depending on connection
     72       1.1     rmind  *	properties (e.g. last activity time, protocol) removes connection
     73       1.1     rmind  *	entries and expires the actual connections.
     74       1.1     rmind  *
     75       1.1     rmind  *	Each connection has a reference count.  The reference is acquired
     76       1.1     rmind  *	on lookup and should be released by the caller.  It guarantees that
     77       1.1     rmind  *	the connection will not be destroyed, although it may be expired.
     78       1.1     rmind  *
     79       1.1     rmind  * Synchronisation
     80       1.1     rmind  *
     81       1.1     rmind  *	Connection database is accessed in a lock-less manner by the main
     82       1.1     rmind  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     83       1.1     rmind  *	are always called from a software interrupt, the database is
     84       1.1     rmind  *	protected using passive serialisation.  The main place which can
     85       1.1     rmind  *	destroy a connection is npf_conn_worker().  The database itself
     86       1.1     rmind  *	can be replaced and destroyed in npf_conn_reload().
     87       1.1     rmind  *
     88       1.1     rmind  * ALG support
     89       1.1     rmind  *
     90       1.1     rmind  *	Application-level gateways (ALGs) can override generic connection
     91       1.1     rmind  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     92       1.1     rmind  *	performing their own lookup using different key.  Recursive call
     93       1.1     rmind  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     94       1.1     rmind  *	npf_conn_lookup() function for this purpose.
     95       1.1     rmind  *
     96       1.1     rmind  * Lock order
     97       1.1     rmind  *
     98       1.6     rmind  *	npf_config_lock ->
     99       1.6     rmind  *		conn_lock ->
    100       1.6     rmind  *			npf_conn_t::c_lock
    101       1.1     rmind  */
    102       1.1     rmind 
    103      1.22  christos #ifdef _KERNEL
    104       1.1     rmind #include <sys/cdefs.h>
    105  1.24.2.2  pgoyette __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.24.2.2 2019/01/26 22:00:37 pgoyette Exp $");
    106       1.1     rmind 
    107       1.1     rmind #include <sys/param.h>
    108       1.1     rmind #include <sys/types.h>
    109       1.1     rmind 
    110       1.1     rmind #include <netinet/in.h>
    111       1.1     rmind #include <netinet/tcp.h>
    112       1.1     rmind 
    113       1.1     rmind #include <sys/atomic.h>
    114       1.1     rmind #include <sys/condvar.h>
    115       1.1     rmind #include <sys/kmem.h>
    116       1.1     rmind #include <sys/kthread.h>
    117       1.1     rmind #include <sys/mutex.h>
    118       1.1     rmind #include <net/pfil.h>
    119       1.1     rmind #include <sys/pool.h>
    120       1.1     rmind #include <sys/queue.h>
    121       1.1     rmind #include <sys/systm.h>
    122      1.22  christos #endif
    123       1.1     rmind 
    124       1.1     rmind #define __NPF_CONN_PRIVATE
    125       1.1     rmind #include "npf_conn.h"
    126       1.1     rmind #include "npf_impl.h"
    127       1.1     rmind 
    128       1.1     rmind /*
    129       1.1     rmind  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    130       1.1     rmind  */
    131       1.1     rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
    132       1.1     rmind #define	CONN_ACTIVE	0x004	/* visible on inspection */
    133       1.1     rmind #define	CONN_PASS	0x008	/* perform implicit passing */
    134       1.1     rmind #define	CONN_EXPIRE	0x010	/* explicitly expire */
    135       1.1     rmind #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    136       1.1     rmind 
    137       1.6     rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    138       1.1     rmind 
    139  1.24.2.1  pgoyette static nvlist_t *npf_conn_export(npf_t *, const npf_conn_t *);
    140       1.1     rmind 
    141       1.1     rmind /*
    142       1.1     rmind  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    143       1.1     rmind  */
    144       1.1     rmind 
    145       1.1     rmind void
    146      1.22  christos npf_conn_init(npf_t *npf, int flags)
    147       1.1     rmind {
    148      1.22  christos 	npf->conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
    149       1.1     rmind 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
    150      1.22  christos 	mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
    151      1.22  christos 	npf->conn_tracking = CONN_TRACKING_OFF;
    152      1.22  christos 	npf->conn_db = npf_conndb_create();
    153       1.1     rmind 
    154      1.22  christos 	if ((flags & NPF_NO_GC) == 0) {
    155      1.22  christos 		npf_worker_register(npf, npf_conn_worker);
    156      1.22  christos 	}
    157       1.1     rmind }
    158       1.1     rmind 
    159       1.1     rmind void
    160      1.22  christos npf_conn_fini(npf_t *npf)
    161       1.1     rmind {
    162       1.6     rmind 	/* Note: the caller should have flushed the connections. */
    163      1.22  christos 	KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
    164      1.22  christos 	npf_worker_unregister(npf, npf_conn_worker);
    165       1.1     rmind 
    166      1.22  christos 	npf_conndb_destroy(npf->conn_db);
    167      1.22  christos 	pool_cache_destroy(npf->conn_cache);
    168      1.22  christos 	mutex_destroy(&npf->conn_lock);
    169       1.1     rmind }
    170       1.1     rmind 
    171       1.1     rmind /*
    172       1.6     rmind  * npf_conn_load: perform the load by flushing the current connection
    173       1.6     rmind  * database and replacing it with the new one or just destroying.
    174       1.1     rmind  *
    175       1.6     rmind  * => The caller must disable the connection tracking and ensure that
    176       1.6     rmind  *    there are no connection database lookups or references in-flight.
    177       1.1     rmind  */
    178       1.6     rmind void
    179      1.22  christos npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
    180       1.1     rmind {
    181       1.6     rmind 	npf_conndb_t *odb = NULL;
    182       1.1     rmind 
    183      1.22  christos 	KASSERT(npf_config_locked_p(npf));
    184       1.1     rmind 
    185       1.1     rmind 	/*
    186       1.6     rmind 	 * The connection database is in the quiescent state.
    187       1.6     rmind 	 * Prevent G/C thread from running and install a new database.
    188       1.1     rmind 	 */
    189      1.22  christos 	mutex_enter(&npf->conn_lock);
    190       1.6     rmind 	if (ndb) {
    191      1.22  christos 		KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
    192      1.22  christos 		odb = npf->conn_db;
    193      1.22  christos 		npf->conn_db = ndb;
    194       1.6     rmind 		membar_sync();
    195       1.6     rmind 	}
    196       1.6     rmind 	if (track) {
    197       1.6     rmind 		/* After this point lookups start flying in. */
    198      1.22  christos 		npf->conn_tracking = CONN_TRACKING_ON;
    199       1.1     rmind 	}
    200      1.22  christos 	mutex_exit(&npf->conn_lock);
    201       1.1     rmind 
    202       1.1     rmind 	if (odb) {
    203       1.6     rmind 		/*
    204       1.6     rmind 		 * Flush all, no sync since the caller did it for us.
    205       1.6     rmind 		 * Also, release the pool cache memory.
    206       1.6     rmind 		 */
    207  1.24.2.2  pgoyette 		npf_conndb_gc(npf, odb, true, false);
    208       1.1     rmind 		npf_conndb_destroy(odb);
    209      1.22  christos 		pool_cache_invalidate(npf->conn_cache);
    210       1.1     rmind 	}
    211       1.1     rmind }
    212       1.1     rmind 
    213       1.1     rmind /*
    214       1.1     rmind  * npf_conn_tracking: enable/disable connection tracking.
    215       1.1     rmind  */
    216       1.1     rmind void
    217      1.22  christos npf_conn_tracking(npf_t *npf, bool track)
    218       1.1     rmind {
    219      1.22  christos 	KASSERT(npf_config_locked_p(npf));
    220      1.22  christos 	npf->conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
    221       1.1     rmind }
    222       1.1     rmind 
    223       1.6     rmind static inline bool
    224       1.1     rmind npf_conn_trackable_p(const npf_cache_t *npc)
    225       1.1     rmind {
    226      1.22  christos 	const npf_t *npf = npc->npc_ctx;
    227      1.22  christos 
    228       1.1     rmind 	/*
    229       1.1     rmind 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    230       1.1     rmind 	 * not cached - protocol is not supported or packet is invalid.
    231       1.1     rmind 	 */
    232      1.22  christos 	if (npf->conn_tracking != CONN_TRACKING_ON) {
    233       1.1     rmind 		return false;
    234       1.1     rmind 	}
    235       1.1     rmind 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    236       1.1     rmind 		return false;
    237       1.1     rmind 	}
    238       1.1     rmind 	return true;
    239       1.1     rmind }
    240       1.1     rmind 
    241      1.18  christos static uint32_t
    242      1.20  christos connkey_setkey(npf_connkey_t *key, uint16_t proto, const void *ipv,
    243      1.22  christos     const uint16_t *id, unsigned alen, bool forw)
    244      1.18  christos {
    245      1.20  christos 	uint32_t isrc, idst, *k = key->ck_key;
    246      1.18  christos 	const npf_addr_t * const *ips = ipv;
    247      1.22  christos 
    248      1.18  christos 	if (__predict_true(forw)) {
    249      1.18  christos 		isrc = NPF_SRC, idst = NPF_DST;
    250      1.18  christos 	} else {
    251      1.18  christos 		isrc = NPF_DST, idst = NPF_SRC;
    252      1.18  christos 	}
    253      1.18  christos 
    254      1.18  christos 	/*
    255      1.18  christos 	 * Construct a key formed out of 32-bit integers.  The key layout:
    256      1.18  christos 	 *
    257      1.18  christos 	 * Field: | proto  |  alen  | src-id | dst-id | src-addr | dst-addr |
    258      1.18  christos 	 *        +--------+--------+--------+--------+----------+----------+
    259      1.18  christos 	 * Bits:  |   16   |   16   |   16   |   16   |  32-128  |  32-128  |
    260      1.18  christos 	 *
    261      1.18  christos 	 * The source and destination are inverted if they key is for the
    262      1.18  christos 	 * backwards stream (forw == false).  The address length depends
    263      1.18  christos 	 * on the 'alen' field; it is a length in bytes, either 4 or 16.
    264      1.18  christos 	 */
    265      1.18  christos 
    266      1.20  christos 	k[0] = ((uint32_t)proto << 16) | (alen & 0xffff);
    267      1.20  christos 	k[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    268      1.18  christos 
    269      1.18  christos 	if (__predict_true(alen == sizeof(in_addr_t))) {
    270      1.22  christos 		k[2] = ips[isrc]->word32[0];
    271      1.22  christos 		k[3] = ips[idst]->word32[0];
    272      1.18  christos 		return 4 * sizeof(uint32_t);
    273      1.18  christos 	} else {
    274      1.18  christos 		const u_int nwords = alen >> 2;
    275      1.20  christos 		memcpy(&k[2], ips[isrc], alen);
    276      1.20  christos 		memcpy(&k[2 + nwords], ips[idst], alen);
    277      1.18  christos 		return (2 + (nwords * 2)) * sizeof(uint32_t);
    278      1.18  christos 	}
    279      1.18  christos }
    280      1.18  christos 
    281      1.20  christos static void
    282      1.20  christos connkey_getkey(const npf_connkey_t *key, uint16_t *proto, npf_addr_t *ips,
    283      1.20  christos     uint16_t *id, uint16_t *alen)
    284      1.20  christos {
    285      1.20  christos 	const uint32_t *k = key->ck_key;
    286      1.20  christos 
    287      1.20  christos 	*proto = k[0] >> 16;
    288      1.20  christos 	*alen = k[0] & 0xffff;
    289      1.20  christos 	id[NPF_SRC] = k[1] >> 16;
    290      1.20  christos 	id[NPF_DST] = k[1] & 0xffff;
    291      1.20  christos 
    292      1.20  christos 	switch (*alen) {
    293      1.20  christos 	case sizeof(struct in6_addr):
    294      1.20  christos 	case sizeof(struct in_addr):
    295      1.20  christos 		memcpy(&ips[NPF_SRC], &k[2], *alen);
    296      1.20  christos 		memcpy(&ips[NPF_DST], &k[2 + ((unsigned)*alen >> 2)], *alen);
    297      1.20  christos 		return;
    298      1.20  christos 	default:
    299      1.20  christos 		KASSERT(0);
    300      1.20  christos 	}
    301      1.20  christos }
    302      1.20  christos 
    303       1.1     rmind /*
    304       1.1     rmind  * npf_conn_conkey: construct a key for the connection lookup.
    305       1.8     rmind  *
    306       1.8     rmind  * => Returns the key length in bytes or zero on failure.
    307       1.1     rmind  */
    308       1.8     rmind unsigned
    309       1.1     rmind npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
    310       1.1     rmind {
    311      1.22  christos 	const u_int proto = npc->npc_proto;
    312      1.22  christos 	const u_int alen = npc->npc_alen;
    313       1.1     rmind 	const struct tcphdr *th;
    314       1.1     rmind 	const struct udphdr *uh;
    315       1.1     rmind 	uint16_t id[2];
    316       1.1     rmind 
    317      1.22  christos 	switch (proto) {
    318       1.1     rmind 	case IPPROTO_TCP:
    319       1.1     rmind 		KASSERT(npf_iscached(npc, NPC_TCP));
    320       1.1     rmind 		th = npc->npc_l4.tcp;
    321       1.1     rmind 		id[NPF_SRC] = th->th_sport;
    322       1.1     rmind 		id[NPF_DST] = th->th_dport;
    323       1.1     rmind 		break;
    324       1.1     rmind 	case IPPROTO_UDP:
    325       1.1     rmind 		KASSERT(npf_iscached(npc, NPC_UDP));
    326       1.1     rmind 		uh = npc->npc_l4.udp;
    327       1.1     rmind 		id[NPF_SRC] = uh->uh_sport;
    328       1.1     rmind 		id[NPF_DST] = uh->uh_dport;
    329       1.1     rmind 		break;
    330       1.1     rmind 	case IPPROTO_ICMP:
    331       1.1     rmind 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    332       1.1     rmind 			const struct icmp *ic = npc->npc_l4.icmp;
    333       1.1     rmind 			id[NPF_SRC] = ic->icmp_id;
    334       1.1     rmind 			id[NPF_DST] = ic->icmp_id;
    335       1.1     rmind 			break;
    336       1.1     rmind 		}
    337       1.8     rmind 		return 0;
    338       1.1     rmind 	case IPPROTO_ICMPV6:
    339       1.1     rmind 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    340       1.1     rmind 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    341       1.1     rmind 			id[NPF_SRC] = ic6->icmp6_id;
    342       1.1     rmind 			id[NPF_DST] = ic6->icmp6_id;
    343       1.1     rmind 			break;
    344       1.1     rmind 		}
    345       1.8     rmind 		return 0;
    346       1.1     rmind 	default:
    347       1.1     rmind 		/* Unsupported protocol. */
    348       1.8     rmind 		return 0;
    349       1.1     rmind 	}
    350      1.22  christos 	return connkey_setkey(key, proto, npc->npc_ips, id, alen, forw);
    351       1.1     rmind }
    352       1.1     rmind 
    353       1.3  christos static __inline void
    354       1.1     rmind connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
    355       1.1     rmind {
    356       1.1     rmind 	const u_int alen = key->ck_key[0] & 0xffff;
    357       1.1     rmind 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
    358       1.1     rmind 
    359       1.1     rmind 	KASSERT(alen > 0);
    360       1.1     rmind 	memcpy(addr, naddr, alen);
    361       1.1     rmind }
    362       1.1     rmind 
    363       1.3  christos static __inline void
    364       1.1     rmind connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
    365       1.1     rmind {
    366       1.1     rmind 	const uint32_t oid = key->ck_key[1];
    367       1.1     rmind 	const u_int shift = 16 * !di;
    368       1.1     rmind 	const uint32_t mask = 0xffff0000 >> shift;
    369       1.1     rmind 
    370       1.1     rmind 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
    371       1.1     rmind }
    372       1.1     rmind 
    373      1.22  christos static inline void
    374      1.22  christos conn_update_atime(npf_conn_t *con)
    375      1.22  christos {
    376      1.22  christos 	struct timespec tsnow;
    377      1.22  christos 
    378      1.22  christos 	getnanouptime(&tsnow);
    379      1.22  christos 	con->c_atime = tsnow.tv_sec;
    380      1.22  christos }
    381      1.22  christos 
    382       1.1     rmind /*
    383  1.24.2.2  pgoyette  * npf_conn_ok: check if the connection is active and has the right direction.
    384      1.18  christos  */
    385      1.18  christos static bool
    386      1.22  christos npf_conn_ok(const npf_conn_t *con, const int di, bool forw)
    387      1.18  christos {
    388      1.22  christos 	const uint32_t flags = con->c_flags;
    389      1.18  christos 
    390      1.18  christos 	/* Check if connection is active and not expired. */
    391      1.18  christos 	bool ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    392      1.18  christos 	if (__predict_false(!ok)) {
    393      1.18  christos 		return false;
    394      1.18  christos 	}
    395      1.18  christos 
    396      1.18  christos 	/* Check if the direction is consistent */
    397      1.22  christos 	bool pforw = (flags & PFIL_ALL) == (unsigned)di;
    398      1.18  christos 	if (__predict_false(forw != pforw)) {
    399      1.18  christos 		return false;
    400      1.18  christos 	}
    401      1.18  christos 	return true;
    402      1.18  christos }
    403      1.18  christos 
    404      1.18  christos /*
    405       1.1     rmind  * npf_conn_lookup: lookup if there is an established connection.
    406       1.1     rmind  *
    407       1.1     rmind  * => If found, we will hold a reference for the caller.
    408       1.1     rmind  */
    409       1.1     rmind npf_conn_t *
    410       1.4     rmind npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
    411       1.1     rmind {
    412      1.22  christos 	npf_t *npf = npc->npc_ctx;
    413       1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    414       1.1     rmind 	npf_conn_t *con;
    415       1.1     rmind 	npf_connkey_t key;
    416      1.18  christos 	u_int cifid;
    417       1.1     rmind 
    418       1.1     rmind 	/* Construct a key and lookup for a connection in the store. */
    419       1.1     rmind 	if (!npf_conn_conkey(npc, &key, true)) {
    420       1.1     rmind 		return NULL;
    421       1.1     rmind 	}
    422      1.22  christos 	con = npf_conndb_lookup(npf->conn_db, &key, forw);
    423       1.1     rmind 	if (con == NULL) {
    424       1.1     rmind 		return NULL;
    425       1.1     rmind 	}
    426       1.1     rmind 	KASSERT(npc->npc_proto == con->c_proto);
    427       1.1     rmind 
    428       1.1     rmind 	/* Check if connection is active and not expired. */
    429      1.18  christos 	if (!npf_conn_ok(con, di, *forw)) {
    430       1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    431       1.1     rmind 		return NULL;
    432       1.1     rmind 	}
    433       1.1     rmind 
    434       1.1     rmind 	/*
    435       1.1     rmind 	 * Match the interface and the direction of the connection entry
    436       1.1     rmind 	 * and the packet.
    437       1.1     rmind 	 */
    438       1.1     rmind 	cifid = con->c_ifid;
    439       1.1     rmind 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
    440       1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    441       1.1     rmind 		return NULL;
    442       1.1     rmind 	}
    443       1.1     rmind 
    444       1.1     rmind 	/* Update the last activity time. */
    445      1.22  christos 	conn_update_atime(con);
    446       1.1     rmind 	return con;
    447       1.1     rmind }
    448       1.1     rmind 
    449       1.1     rmind /*
    450       1.1     rmind  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    451       1.1     rmind  *
    452       1.1     rmind  * => If found, we will hold a reference for the caller.
    453       1.1     rmind  */
    454       1.1     rmind npf_conn_t *
    455       1.4     rmind npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
    456       1.1     rmind {
    457       1.4     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    458       1.1     rmind 	npf_conn_t *con;
    459       1.1     rmind 	bool forw, ok;
    460       1.1     rmind 
    461       1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    462       1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    463       1.1     rmind 		return NULL;
    464       1.1     rmind 	}
    465       1.1     rmind 
    466       1.1     rmind 	/* Query ALG which may lookup connection for us. */
    467       1.4     rmind 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    468       1.1     rmind 		/* Note: reference is held. */
    469       1.1     rmind 		return con;
    470       1.1     rmind 	}
    471       1.1     rmind 	if (nbuf_head_mbuf(nbuf) == NULL) {
    472       1.1     rmind 		*error = ENOMEM;
    473       1.1     rmind 		return NULL;
    474       1.1     rmind 	}
    475       1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    476       1.1     rmind 
    477       1.1     rmind 	/* Main lookup of the connection. */
    478       1.4     rmind 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
    479       1.1     rmind 		return NULL;
    480       1.1     rmind 	}
    481       1.1     rmind 
    482       1.1     rmind 	/* Inspect the protocol data and handle state changes. */
    483       1.1     rmind 	mutex_enter(&con->c_lock);
    484       1.4     rmind 	ok = npf_state_inspect(npc, &con->c_state, forw);
    485       1.1     rmind 	mutex_exit(&con->c_lock);
    486       1.1     rmind 
    487      1.17     rmind 	/* If invalid state: let the rules deal with it. */
    488       1.1     rmind 	if (__predict_false(!ok)) {
    489       1.1     rmind 		npf_conn_release(con);
    490      1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
    491      1.17     rmind 		return NULL;
    492      1.17     rmind 	}
    493      1.17     rmind 
    494      1.17     rmind 	/*
    495      1.17     rmind 	 * If this is multi-end state, then specially tag the packet
    496      1.17     rmind 	 * so it will be just passed-through on other interfaces.
    497      1.17     rmind 	 */
    498      1.17     rmind 	if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
    499      1.17     rmind 		npf_conn_release(con);
    500      1.17     rmind 		*error = ENOMEM;
    501      1.17     rmind 		return NULL;
    502       1.1     rmind 	}
    503       1.1     rmind 	return con;
    504       1.1     rmind }
    505       1.1     rmind 
    506       1.1     rmind /*
    507       1.1     rmind  * npf_conn_establish: create a new connection, insert into the global list.
    508       1.1     rmind  *
    509       1.1     rmind  * => Connection is created with the reference held for the caller.
    510       1.1     rmind  * => Connection will be activated on the first reference release.
    511       1.1     rmind  */
    512       1.1     rmind npf_conn_t *
    513       1.4     rmind npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
    514       1.1     rmind {
    515      1.22  christos 	npf_t *npf = npc->npc_ctx;
    516       1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    517       1.1     rmind 	npf_conn_t *con;
    518      1.15     rmind 	int error = 0;
    519       1.1     rmind 
    520       1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    521       1.1     rmind 
    522       1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    523       1.1     rmind 		return NULL;
    524       1.1     rmind 	}
    525       1.1     rmind 
    526       1.1     rmind 	/* Allocate and initialise the new connection. */
    527      1.22  christos 	con = pool_cache_get(npf->conn_cache, PR_NOWAIT);
    528       1.1     rmind 	if (__predict_false(!con)) {
    529      1.22  christos 		npf_worker_signal(npf);
    530       1.1     rmind 		return NULL;
    531       1.1     rmind 	}
    532       1.1     rmind 	NPF_PRINTF(("NPF: create conn %p\n", con));
    533      1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    534       1.1     rmind 
    535       1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    536       1.1     rmind 	con->c_flags = (di & PFIL_ALL);
    537      1.15     rmind 	con->c_refcnt = 0;
    538       1.1     rmind 	con->c_rproc = NULL;
    539       1.1     rmind 	con->c_nat = NULL;
    540       1.1     rmind 
    541      1.15     rmind 	/* Initialize the protocol state. */
    542       1.4     rmind 	if (!npf_state_init(npc, &con->c_state)) {
    543      1.22  christos 		npf_conn_destroy(npf, con);
    544      1.15     rmind 		return NULL;
    545       1.1     rmind 	}
    546       1.1     rmind 
    547       1.1     rmind 	KASSERT(npf_iscached(npc, NPC_IP46));
    548       1.1     rmind 	npf_connkey_t *fw = &con->c_forw_entry;
    549       1.1     rmind 	npf_connkey_t *bk = &con->c_back_entry;
    550       1.1     rmind 
    551       1.1     rmind 	/*
    552       1.1     rmind 	 * Construct "forwards" and "backwards" keys.  Also, set the
    553       1.1     rmind 	 * interface ID for this connection (unless it is global).
    554       1.1     rmind 	 */
    555      1.15     rmind 	if (!npf_conn_conkey(npc, fw, true) ||
    556      1.15     rmind 	    !npf_conn_conkey(npc, bk, false)) {
    557      1.22  christos 		npf_conn_destroy(npf, con);
    558      1.15     rmind 		return NULL;
    559       1.1     rmind 	}
    560       1.1     rmind 	fw->ck_backptr = bk->ck_backptr = con;
    561       1.1     rmind 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
    562       1.1     rmind 	con->c_proto = npc->npc_proto;
    563       1.1     rmind 
    564      1.15     rmind 	/*
    565      1.15     rmind 	 * Set last activity time for a new connection and acquire
    566      1.15     rmind 	 * a reference for the caller before we make it visible.
    567      1.15     rmind 	 */
    568      1.22  christos 	conn_update_atime(con);
    569      1.15     rmind 	con->c_refcnt = 1;
    570       1.1     rmind 
    571       1.1     rmind 	/*
    572       1.1     rmind 	 * Insert both keys (entries representing directions) of the
    573      1.15     rmind 	 * connection.  At this point it becomes visible, but we activate
    574      1.15     rmind 	 * the connection later.
    575       1.1     rmind 	 */
    576      1.15     rmind 	mutex_enter(&con->c_lock);
    577  1.24.2.2  pgoyette 	if (!npf_conndb_insert(npf->conn_db, fw)) {
    578      1.15     rmind 		error = EISCONN;
    579       1.1     rmind 		goto err;
    580       1.1     rmind 	}
    581  1.24.2.2  pgoyette 	if (!npf_conndb_insert(npf->conn_db, bk)) {
    582      1.15     rmind 		npf_conn_t *ret __diagused;
    583      1.22  christos 		ret = npf_conndb_remove(npf->conn_db, fw);
    584      1.15     rmind 		KASSERT(ret == con);
    585      1.15     rmind 		error = EISCONN;
    586      1.15     rmind 		goto err;
    587      1.15     rmind 	}
    588      1.15     rmind err:
    589      1.15     rmind 	/*
    590      1.15     rmind 	 * If we have hit the duplicate: mark the connection as expired
    591      1.15     rmind 	 * and let the G/C thread to take care of it.  We cannot do it
    592      1.15     rmind 	 * here since there might be references acquired already.
    593      1.15     rmind 	 */
    594      1.15     rmind 	if (error) {
    595      1.16     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    596      1.16     rmind 		atomic_dec_uint(&con->c_refcnt);
    597      1.22  christos 		npf_stats_inc(npf, NPF_STAT_RACE_CONN);
    598      1.15     rmind 	} else {
    599      1.15     rmind 		NPF_PRINTF(("NPF: establish conn %p\n", con));
    600       1.1     rmind 	}
    601       1.1     rmind 
    602       1.1     rmind 	/* Finally, insert into the connection list. */
    603      1.22  christos 	npf_conndb_enqueue(npf->conn_db, con);
    604      1.15     rmind 	mutex_exit(&con->c_lock);
    605      1.15     rmind 
    606      1.15     rmind 	return error ? NULL : con;
    607       1.1     rmind }
    608       1.1     rmind 
    609  1.24.2.2  pgoyette void
    610      1.22  christos npf_conn_destroy(npf_t *npf, npf_conn_t *con)
    611       1.1     rmind {
    612      1.15     rmind 	KASSERT(con->c_refcnt == 0);
    613      1.15     rmind 
    614       1.1     rmind 	if (con->c_nat) {
    615       1.1     rmind 		/* Release any NAT structures. */
    616       1.1     rmind 		npf_nat_destroy(con->c_nat);
    617       1.1     rmind 	}
    618       1.1     rmind 	if (con->c_rproc) {
    619       1.1     rmind 		/* Release the rule procedure. */
    620       1.1     rmind 		npf_rproc_release(con->c_rproc);
    621       1.1     rmind 	}
    622       1.1     rmind 
    623       1.1     rmind 	/* Destroy the state. */
    624       1.1     rmind 	npf_state_destroy(&con->c_state);
    625       1.1     rmind 	mutex_destroy(&con->c_lock);
    626       1.1     rmind 
    627       1.1     rmind 	/* Free the structure, increase the counter. */
    628      1.22  christos 	pool_cache_put(npf->conn_cache, con);
    629      1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
    630       1.1     rmind 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    631       1.1     rmind }
    632       1.1     rmind 
    633       1.1     rmind /*
    634       1.1     rmind  * npf_conn_setnat: associate NAT entry with the connection, update and
    635       1.1     rmind  * re-insert connection entry using the translation values.
    636      1.16     rmind  *
    637      1.16     rmind  * => The caller must be holding a reference.
    638       1.1     rmind  */
    639       1.1     rmind int
    640       1.1     rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    641       1.1     rmind     npf_nat_t *nt, u_int ntype)
    642       1.1     rmind {
    643       1.1     rmind 	static const u_int nat_type_dimap[] = {
    644       1.1     rmind 		[NPF_NATOUT] = NPF_DST,
    645       1.1     rmind 		[NPF_NATIN] = NPF_SRC,
    646       1.1     rmind 	};
    647      1.22  christos 	npf_t *npf = npc->npc_ctx;
    648       1.1     rmind 	npf_connkey_t key, *bk;
    649       1.2     rmind 	npf_conn_t *ret __diagused;
    650       1.1     rmind 	npf_addr_t *taddr;
    651       1.1     rmind 	in_port_t tport;
    652       1.1     rmind 	u_int tidx;
    653       1.1     rmind 
    654       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    655       1.1     rmind 
    656       1.1     rmind 	npf_nat_gettrans(nt, &taddr, &tport);
    657       1.1     rmind 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    658       1.1     rmind 	tidx = nat_type_dimap[ntype];
    659       1.1     rmind 
    660       1.1     rmind 	/* Construct a "backwards" key. */
    661       1.1     rmind 	if (!npf_conn_conkey(npc, &key, false)) {
    662       1.1     rmind 		return EINVAL;
    663       1.1     rmind 	}
    664       1.1     rmind 
    665       1.1     rmind 	/* Acquire the lock and check for the races. */
    666       1.1     rmind 	mutex_enter(&con->c_lock);
    667       1.1     rmind 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    668       1.1     rmind 		/* The connection got expired. */
    669       1.1     rmind 		mutex_exit(&con->c_lock);
    670       1.1     rmind 		return EINVAL;
    671       1.1     rmind 	}
    672      1.15     rmind 	KASSERT((con->c_flags & CONN_REMOVED) == 0);
    673      1.15     rmind 
    674       1.1     rmind 	if (__predict_false(con->c_nat != NULL)) {
    675       1.1     rmind 		/* Race with a duplicate packet. */
    676       1.1     rmind 		mutex_exit(&con->c_lock);
    677      1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    678       1.1     rmind 		return EISCONN;
    679       1.1     rmind 	}
    680       1.1     rmind 
    681       1.1     rmind 	/* Remove the "backwards" entry. */
    682      1.22  christos 	ret = npf_conndb_remove(npf->conn_db, &con->c_back_entry);
    683       1.1     rmind 	KASSERT(ret == con);
    684       1.1     rmind 
    685       1.1     rmind 	/* Set the source/destination IDs to the translation values. */
    686       1.1     rmind 	bk = &con->c_back_entry;
    687       1.1     rmind 	connkey_set_addr(bk, taddr, tidx);
    688       1.1     rmind 	if (tport) {
    689       1.1     rmind 		connkey_set_id(bk, tport, tidx);
    690       1.1     rmind 	}
    691       1.1     rmind 
    692       1.1     rmind 	/* Finally, re-insert the "backwards" entry. */
    693  1.24.2.2  pgoyette 	if (!npf_conndb_insert(npf->conn_db, bk)) {
    694       1.1     rmind 		/*
    695       1.1     rmind 		 * Race: we have hit the duplicate, remove the "forwards"
    696       1.1     rmind 		 * entry and expire our connection; it is no longer valid.
    697       1.1     rmind 		 */
    698      1.22  christos 		ret = npf_conndb_remove(npf->conn_db, &con->c_forw_entry);
    699      1.15     rmind 		KASSERT(ret == con);
    700      1.15     rmind 
    701       1.1     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    702       1.1     rmind 		mutex_exit(&con->c_lock);
    703       1.1     rmind 
    704      1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    705       1.1     rmind 		return EISCONN;
    706       1.1     rmind 	}
    707       1.1     rmind 
    708       1.1     rmind 	/* Associate the NAT entry and release the lock. */
    709       1.1     rmind 	con->c_nat = nt;
    710       1.1     rmind 	mutex_exit(&con->c_lock);
    711       1.1     rmind 	return 0;
    712       1.1     rmind }
    713       1.1     rmind 
    714       1.1     rmind /*
    715       1.1     rmind  * npf_conn_expire: explicitly mark connection as expired.
    716       1.1     rmind  */
    717       1.1     rmind void
    718       1.1     rmind npf_conn_expire(npf_conn_t *con)
    719       1.1     rmind {
    720       1.1     rmind 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    721       1.1     rmind 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    722       1.1     rmind }
    723       1.1     rmind 
    724       1.1     rmind /*
    725       1.1     rmind  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    726       1.1     rmind  */
    727       1.1     rmind bool
    728      1.23  christos npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
    729       1.1     rmind {
    730       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    731       1.1     rmind 	if (__predict_true(con->c_flags & CONN_PASS)) {
    732      1.24     rmind 		mi->mi_rid = con->c_rid;
    733      1.24     rmind 		mi->mi_retfl = con->c_retfl;
    734       1.1     rmind 		*rp = con->c_rproc;
    735       1.1     rmind 		return true;
    736       1.1     rmind 	}
    737       1.1     rmind 	return false;
    738       1.1     rmind }
    739       1.1     rmind 
    740       1.1     rmind /*
    741       1.1     rmind  * npf_conn_setpass: mark connection as a "pass" one and associate the
    742       1.1     rmind  * rule procedure with it.
    743       1.1     rmind  */
    744       1.1     rmind void
    745      1.23  christos npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
    746       1.1     rmind {
    747       1.1     rmind 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    748       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    749       1.1     rmind 	KASSERT(con->c_rproc == NULL);
    750       1.1     rmind 
    751       1.1     rmind 	/*
    752       1.1     rmind 	 * No need for atomic since the connection is not yet active.
    753       1.1     rmind 	 * If rproc is set, the caller transfers its reference to us,
    754       1.1     rmind 	 * which will be released on npf_conn_destroy().
    755       1.1     rmind 	 */
    756      1.14     rmind 	atomic_or_uint(&con->c_flags, CONN_PASS);
    757       1.1     rmind 	con->c_rproc = rp;
    758      1.24     rmind 	if (rp) {
    759      1.24     rmind 		con->c_rid = mi->mi_rid;
    760      1.24     rmind 		con->c_retfl = mi->mi_retfl;
    761      1.24     rmind 	}
    762       1.1     rmind }
    763       1.1     rmind 
    764       1.1     rmind /*
    765       1.1     rmind  * npf_conn_release: release a reference, which might allow G/C thread
    766       1.1     rmind  * to destroy this connection.
    767       1.1     rmind  */
    768       1.1     rmind void
    769       1.1     rmind npf_conn_release(npf_conn_t *con)
    770       1.1     rmind {
    771       1.1     rmind 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    772       1.1     rmind 		/* Activate: after this, connection is globally visible. */
    773      1.14     rmind 		atomic_or_uint(&con->c_flags, CONN_ACTIVE);
    774       1.1     rmind 	}
    775       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    776       1.1     rmind 	atomic_dec_uint(&con->c_refcnt);
    777       1.1     rmind }
    778       1.1     rmind 
    779       1.1     rmind /*
    780      1.13     rmind  * npf_conn_getnat: return associated NAT data entry and indicate
    781       1.1     rmind  * whether it is a "forwards" or "backwards" stream.
    782       1.1     rmind  */
    783       1.1     rmind npf_nat_t *
    784      1.13     rmind npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
    785       1.1     rmind {
    786       1.1     rmind 	KASSERT(con->c_refcnt > 0);
    787      1.22  christos 	*forw = (con->c_flags & PFIL_ALL) == (u_int)di;
    788       1.1     rmind 	return con->c_nat;
    789       1.1     rmind }
    790       1.1     rmind 
    791       1.1     rmind /*
    792       1.1     rmind  * npf_conn_expired: criterion to check if connection is expired.
    793       1.1     rmind  */
    794  1.24.2.2  pgoyette bool
    795      1.22  christos npf_conn_expired(const npf_conn_t *con, uint64_t tsnow)
    796       1.1     rmind {
    797       1.1     rmind 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
    798      1.22  christos 	int elapsed;
    799       1.1     rmind 
    800       1.1     rmind 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    801       1.1     rmind 		/* Explicitly marked to be expired. */
    802       1.1     rmind 		return true;
    803       1.1     rmind 	}
    804      1.22  christos 
    805      1.22  christos 	/*
    806      1.22  christos 	 * Note: another thread may update 'atime' and it might
    807      1.22  christos 	 * become greater than 'now'.
    808      1.22  christos 	 */
    809      1.22  christos 	elapsed = (int64_t)tsnow - con->c_atime;
    810      1.22  christos 	return elapsed > etime;
    811       1.1     rmind }
    812       1.1     rmind 
    813       1.1     rmind /*
    814  1.24.2.2  pgoyette  * npf_conn_remove: unlink the connection and mark as expired.
    815       1.1     rmind  */
    816       1.7     rmind void
    817  1.24.2.2  pgoyette npf_conn_remove(npf_conndb_t *cd, npf_conn_t *con)
    818       1.1     rmind {
    819  1.24.2.2  pgoyette 	/* Remove both entries of the connection. */
    820  1.24.2.2  pgoyette 	mutex_enter(&con->c_lock);
    821  1.24.2.2  pgoyette 	if ((con->c_flags & CONN_REMOVED) == 0) {
    822  1.24.2.2  pgoyette 		npf_conn_t *ret __diagused;
    823       1.6     rmind 
    824  1.24.2.2  pgoyette 		ret = npf_conndb_remove(cd, &con->c_forw_entry);
    825  1.24.2.2  pgoyette 		KASSERT(ret == con);
    826  1.24.2.2  pgoyette 		ret = npf_conndb_remove(cd, &con->c_back_entry);
    827  1.24.2.2  pgoyette 		KASSERT(ret == con);
    828       1.1     rmind 	}
    829       1.1     rmind 
    830  1.24.2.2  pgoyette 	/* Flag the removal and expiration. */
    831  1.24.2.2  pgoyette 	atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    832  1.24.2.2  pgoyette 	mutex_exit(&con->c_lock);
    833       1.1     rmind }
    834       1.1     rmind 
    835       1.6     rmind /*
    836       1.6     rmind  * npf_conn_worker: G/C to run from a worker thread.
    837       1.6     rmind  */
    838      1.22  christos void
    839      1.22  christos npf_conn_worker(npf_t *npf)
    840       1.1     rmind {
    841  1.24.2.2  pgoyette 	npf_conndb_gc(npf, npf->conn_db, false, true);
    842       1.1     rmind }
    843       1.1     rmind 
    844       1.1     rmind /*
    845      1.10     rmind  * npf_conndb_export: construct a list of connections prepared for saving.
    846       1.1     rmind  * Note: this is expected to be an expensive operation.
    847       1.1     rmind  */
    848       1.1     rmind int
    849  1.24.2.1  pgoyette npf_conndb_export(npf_t *npf, nvlist_t *npf_dict)
    850       1.1     rmind {
    851  1.24.2.2  pgoyette 	npf_conn_t *head, *con;
    852       1.1     rmind 
    853       1.1     rmind 	/*
    854       1.1     rmind 	 * Note: acquire conn_lock to prevent from the database
    855       1.1     rmind 	 * destruction and G/C thread.
    856       1.1     rmind 	 */
    857      1.22  christos 	mutex_enter(&npf->conn_lock);
    858      1.22  christos 	if (npf->conn_tracking != CONN_TRACKING_ON) {
    859      1.22  christos 		mutex_exit(&npf->conn_lock);
    860       1.1     rmind 		return 0;
    861       1.1     rmind 	}
    862  1.24.2.2  pgoyette 	head = npf_conndb_getlist(npf->conn_db);
    863  1.24.2.2  pgoyette 	con = head;
    864       1.1     rmind 	while (con) {
    865  1.24.2.1  pgoyette 		nvlist_t *cdict;
    866       1.1     rmind 
    867      1.22  christos 		if ((cdict = npf_conn_export(npf, con)) != NULL) {
    868  1.24.2.1  pgoyette 			nvlist_append_nvlist_array(npf_dict, "conn-list", cdict);
    869  1.24.2.1  pgoyette 			nvlist_destroy(cdict);
    870       1.1     rmind 		}
    871  1.24.2.2  pgoyette 		if ((con = npf_conndb_getnext(npf->conn_db, con)) == head) {
    872  1.24.2.2  pgoyette 			break;
    873  1.24.2.2  pgoyette 		}
    874       1.1     rmind 	}
    875      1.22  christos 	mutex_exit(&npf->conn_lock);
    876       1.5     joerg 	return 0;
    877       1.1     rmind }
    878       1.1     rmind 
    879  1.24.2.1  pgoyette static nvlist_t *
    880      1.20  christos npf_connkey_export(const npf_connkey_t *key)
    881      1.20  christos {
    882      1.20  christos 	uint16_t id[2], alen, proto;
    883      1.20  christos 	npf_addr_t ips[2];
    884  1.24.2.1  pgoyette 	nvlist_t *kdict;
    885      1.20  christos 
    886  1.24.2.1  pgoyette 	kdict = nvlist_create(0);
    887      1.20  christos 	connkey_getkey(key, &proto, ips, id, &alen);
    888  1.24.2.1  pgoyette 	nvlist_add_number(kdict, "proto", proto);
    889  1.24.2.1  pgoyette 	nvlist_add_number(kdict, "sport", id[NPF_SRC]);
    890  1.24.2.1  pgoyette 	nvlist_add_number(kdict, "dport", id[NPF_DST]);
    891  1.24.2.1  pgoyette 	nvlist_add_binary(kdict, "saddr", &ips[NPF_SRC], alen);
    892  1.24.2.1  pgoyette 	nvlist_add_binary(kdict, "daddr", &ips[NPF_DST], alen);
    893      1.20  christos 	return kdict;
    894      1.20  christos }
    895      1.20  christos 
    896       1.1     rmind /*
    897      1.10     rmind  * npf_conn_export: serialise a single connection.
    898      1.10     rmind  */
    899  1.24.2.1  pgoyette static nvlist_t *
    900      1.22  christos npf_conn_export(npf_t *npf, const npf_conn_t *con)
    901      1.10     rmind {
    902  1.24.2.1  pgoyette 	nvlist_t *cdict, *kdict;
    903      1.10     rmind 
    904      1.10     rmind 	if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
    905      1.10     rmind 		return NULL;
    906      1.10     rmind 	}
    907  1.24.2.1  pgoyette 	cdict = nvlist_create(0);
    908  1.24.2.1  pgoyette 	nvlist_add_number(cdict, "flags", con->c_flags);
    909  1.24.2.1  pgoyette 	nvlist_add_number(cdict, "proto", con->c_proto);
    910      1.10     rmind 	if (con->c_ifid) {
    911      1.22  christos 		const char *ifname = npf_ifmap_getname(npf, con->c_ifid);
    912  1.24.2.1  pgoyette 		nvlist_add_string(cdict, "ifname", ifname);
    913      1.10     rmind 	}
    914  1.24.2.1  pgoyette 	nvlist_add_binary(cdict, "state", &con->c_state, sizeof(npf_state_t));
    915      1.10     rmind 
    916      1.20  christos 	kdict = npf_connkey_export(&con->c_forw_entry);
    917  1.24.2.1  pgoyette 	nvlist_move_nvlist(cdict, "forw-key", kdict);
    918      1.10     rmind 
    919      1.20  christos 	kdict = npf_connkey_export(&con->c_back_entry);
    920  1.24.2.1  pgoyette 	nvlist_move_nvlist(cdict, "back-key", kdict);
    921      1.10     rmind 
    922      1.10     rmind 	if (con->c_nat) {
    923      1.10     rmind 		npf_nat_export(cdict, con->c_nat);
    924      1.10     rmind 	}
    925      1.10     rmind 	return cdict;
    926      1.10     rmind }
    927      1.10     rmind 
    928      1.18  christos static uint32_t
    929  1.24.2.1  pgoyette npf_connkey_import(const nvlist_t *kdict, npf_connkey_t *key)
    930      1.18  christos {
    931      1.18  christos 	npf_addr_t const * ips[2];
    932  1.24.2.1  pgoyette 	uint16_t proto, id[2];
    933  1.24.2.1  pgoyette 	size_t alen1, alen2;
    934      1.18  christos 
    935  1.24.2.1  pgoyette 	proto = dnvlist_get_number(kdict, "proto", 0);
    936  1.24.2.1  pgoyette 	id[NPF_SRC] = dnvlist_get_number(kdict, "sport", 0);
    937  1.24.2.1  pgoyette 	id[NPF_DST] = dnvlist_get_number(kdict, "dport", 0);
    938  1.24.2.1  pgoyette 	ips[NPF_SRC] = dnvlist_get_binary(kdict, "saddr", &alen1, NULL, 0);
    939  1.24.2.1  pgoyette 	ips[NPF_DST] = dnvlist_get_binary(kdict, "daddr", &alen2, NULL, 0);
    940  1.24.2.1  pgoyette 	if (__predict_false(alen1 == 0 || alen1 != alen2)) {
    941      1.18  christos 		return 0;
    942  1.24.2.1  pgoyette 	}
    943  1.24.2.1  pgoyette 	return connkey_setkey(key, proto, ips, id, alen1, true);
    944      1.18  christos }
    945      1.18  christos 
    946      1.10     rmind /*
    947       1.6     rmind  * npf_conn_import: fully reconstruct a single connection from a
    948  1.24.2.1  pgoyette  * nvlist and insert into the given database.
    949       1.1     rmind  */
    950       1.1     rmind int
    951  1.24.2.1  pgoyette npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
    952       1.6     rmind     npf_ruleset_t *natlist)
    953       1.1     rmind {
    954       1.1     rmind 	npf_conn_t *con;
    955       1.1     rmind 	npf_connkey_t *fw, *bk;
    956  1.24.2.1  pgoyette 	const nvlist_t *nat, *conkey;
    957      1.10     rmind 	const char *ifname;
    958  1.24.2.1  pgoyette 	const void *state;
    959  1.24.2.1  pgoyette 	size_t len;
    960       1.1     rmind 
    961       1.1     rmind 	/* Allocate a connection and initialise it (clear first). */
    962      1.22  christos 	con = pool_cache_get(npf->conn_cache, PR_WAITOK);
    963       1.1     rmind 	memset(con, 0, sizeof(npf_conn_t));
    964       1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    965      1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    966       1.1     rmind 
    967  1.24.2.1  pgoyette 	con->c_proto = dnvlist_get_number(cdict, "proto", 0);
    968  1.24.2.1  pgoyette 	con->c_flags = dnvlist_get_number(cdict, "flags", 0);
    969       1.1     rmind 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
    970      1.22  christos 	conn_update_atime(con);
    971       1.1     rmind 
    972  1.24.2.1  pgoyette 	ifname = dnvlist_get_string(cdict, "ifname", NULL);
    973  1.24.2.1  pgoyette 	if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
    974      1.10     rmind 		goto err;
    975      1.10     rmind 	}
    976      1.10     rmind 
    977  1.24.2.1  pgoyette 	state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
    978  1.24.2.1  pgoyette 	if (!state || len != sizeof(npf_state_t)) {
    979       1.1     rmind 		goto err;
    980       1.1     rmind 	}
    981  1.24.2.1  pgoyette 	memcpy(&con->c_state, state, sizeof(npf_state_t));
    982       1.1     rmind 
    983      1.11     rmind 	/* Reconstruct NAT association, if any. */
    984  1.24.2.1  pgoyette 	if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
    985  1.24.2.1  pgoyette 	    (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
    986      1.11     rmind 		goto err;
    987      1.11     rmind 	}
    988       1.1     rmind 
    989       1.1     rmind 	/*
    990       1.1     rmind 	 * Fetch and copy the keys for each direction.
    991       1.1     rmind 	 */
    992  1.24.2.1  pgoyette 	conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
    993      1.20  christos 	fw = &con->c_forw_entry;
    994  1.24.2.1  pgoyette 	if (conkey == NULL || !npf_connkey_import(conkey, fw)) {
    995       1.1     rmind 		goto err;
    996       1.1     rmind 	}
    997  1.24.2.1  pgoyette 	conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
    998      1.20  christos 	bk = &con->c_back_entry;
    999  1.24.2.1  pgoyette 	if (conkey == NULL || !npf_connkey_import(conkey, bk)) {
   1000       1.1     rmind 		goto err;
   1001       1.1     rmind 	}
   1002       1.1     rmind 	fw->ck_backptr = bk->ck_backptr = con;
   1003       1.1     rmind 
   1004       1.1     rmind 	/* Insert the entries and the connection itself. */
   1005  1.24.2.2  pgoyette 	if (!npf_conndb_insert(cd, fw)) {
   1006       1.1     rmind 		goto err;
   1007       1.1     rmind 	}
   1008  1.24.2.2  pgoyette 	if (!npf_conndb_insert(cd, bk)) {
   1009       1.1     rmind 		npf_conndb_remove(cd, fw);
   1010       1.1     rmind 		goto err;
   1011       1.1     rmind 	}
   1012      1.12     rmind 
   1013      1.12     rmind 	NPF_PRINTF(("NPF: imported conn %p\n", con));
   1014       1.1     rmind 	npf_conndb_enqueue(cd, con);
   1015       1.1     rmind 	return 0;
   1016       1.1     rmind err:
   1017      1.22  christos 	npf_conn_destroy(npf, con);
   1018       1.1     rmind 	return EINVAL;
   1019       1.1     rmind }
   1020       1.1     rmind 
   1021      1.20  christos int
   1022  1.24.2.1  pgoyette npf_conn_find(npf_t *npf, const nvlist_t *idict, nvlist_t **odict)
   1023      1.20  christos {
   1024  1.24.2.1  pgoyette 	const nvlist_t *kdict;
   1025      1.20  christos 	npf_connkey_t key;
   1026      1.20  christos 	npf_conn_t *con;
   1027      1.20  christos 	uint16_t dir;
   1028      1.20  christos 	bool forw;
   1029      1.20  christos 
   1030  1.24.2.1  pgoyette 	kdict = dnvlist_get_nvlist(idict, "key", NULL);
   1031  1.24.2.1  pgoyette 	if (!kdict || !npf_connkey_import(kdict, &key)) {
   1032      1.20  christos 		return EINVAL;
   1033  1.24.2.1  pgoyette 	}
   1034  1.24.2.1  pgoyette 	dir = dnvlist_get_number(idict, "direction", 0);
   1035      1.22  christos 	con = npf_conndb_lookup(npf->conn_db, &key, &forw);
   1036      1.20  christos 	if (con == NULL) {
   1037      1.20  christos 		return ESRCH;
   1038      1.20  christos 	}
   1039      1.20  christos 	if (!npf_conn_ok(con, dir, true)) {
   1040      1.20  christos 		atomic_dec_uint(&con->c_refcnt);
   1041      1.20  christos 		return ESRCH;
   1042      1.20  christos 	}
   1043      1.22  christos 	*odict = npf_conn_export(npf, con);
   1044      1.20  christos 	atomic_dec_uint(&con->c_refcnt);
   1045  1.24.2.1  pgoyette 	return *odict ? 0 : ENOSPC;
   1046      1.20  christos }
   1047      1.20  christos 
   1048       1.1     rmind #if defined(DDB) || defined(_NPF_TESTING)
   1049       1.1     rmind 
   1050       1.1     rmind void
   1051       1.1     rmind npf_conn_print(const npf_conn_t *con)
   1052       1.1     rmind {
   1053       1.1     rmind 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
   1054       1.1     rmind 	const uint32_t *fkey = con->c_forw_entry.ck_key;
   1055       1.1     rmind 	const uint32_t *bkey = con->c_back_entry.ck_key;
   1056       1.1     rmind 	const u_int proto = con->c_proto;
   1057      1.22  christos 	struct timespec tspnow;
   1058       1.1     rmind 	const void *src, *dst;
   1059       1.1     rmind 	int etime;
   1060       1.1     rmind 
   1061      1.22  christos 	getnanouptime(&tspnow);
   1062       1.1     rmind 	etime = npf_state_etime(&con->c_state, proto);
   1063       1.1     rmind 
   1064      1.22  christos 	printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
   1065      1.22  christos 	    proto, con->c_flags, (long)(tspnow.tv_sec - con->c_atime), etime);
   1066       1.1     rmind 
   1067       1.1     rmind 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
   1068       1.1     rmind 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
   1069       1.1     rmind 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
   1070       1.1     rmind 
   1071       1.1     rmind 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
   1072       1.1     rmind 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
   1073       1.1     rmind 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
   1074       1.1     rmind 
   1075       1.1     rmind 	npf_state_dump(&con->c_state);
   1076       1.1     rmind 	if (con->c_nat) {
   1077       1.1     rmind 		npf_nat_dump(con->c_nat);
   1078       1.1     rmind 	}
   1079       1.1     rmind }
   1080       1.1     rmind 
   1081       1.1     rmind #endif
   1082