npf_conn.c revision 1.25 1 1.1 rmind /*-
2 1.15 rmind * Copyright (c) 2014-2015 Mindaugas Rasiukevicius <rmind at netbsd org>
3 1.1 rmind * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
4 1.1 rmind * All rights reserved.
5 1.1 rmind *
6 1.1 rmind * This material is based upon work partially supported by The
7 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8 1.1 rmind *
9 1.1 rmind * Redistribution and use in source and binary forms, with or without
10 1.1 rmind * modification, are permitted provided that the following conditions
11 1.1 rmind * are met:
12 1.1 rmind * 1. Redistributions of source code must retain the above copyright
13 1.1 rmind * notice, this list of conditions and the following disclaimer.
14 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 rmind * notice, this list of conditions and the following disclaimer in the
16 1.1 rmind * documentation and/or other materials provided with the distribution.
17 1.1 rmind *
18 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
29 1.1 rmind */
30 1.1 rmind
31 1.1 rmind /*
32 1.1 rmind * NPF connection tracking for stateful filtering and translation.
33 1.1 rmind *
34 1.1 rmind * Overview
35 1.1 rmind *
36 1.1 rmind * Connection direction is identified by the direction of its first
37 1.1 rmind * packet. Packets can be incoming or outgoing with respect to an
38 1.1 rmind * interface. To describe the packet in the context of connection
39 1.1 rmind * direction we will use the terms "forwards stream" and "backwards
40 1.1 rmind * stream". All connections have two keys and thus two entries:
41 1.1 rmind *
42 1.1 rmind * npf_conn_t::c_forw_entry for the forwards stream and
43 1.1 rmind * npf_conn_t::c_back_entry for the backwards stream.
44 1.1 rmind *
45 1.1 rmind * The keys are formed from the 5-tuple (source/destination address,
46 1.1 rmind * source/destination port and the protocol). Additional matching
47 1.1 rmind * is performed for the interface (a common behaviour is equivalent
48 1.1 rmind * to the 6-tuple lookup including the interface ID). Note that the
49 1.1 rmind * key may be formed using translated values in a case of NAT.
50 1.1 rmind *
51 1.1 rmind * Connections can serve two purposes: for the implicit passing or
52 1.1 rmind * to accommodate the dynamic NAT. Connections for the former purpose
53 1.1 rmind * are created by the rules with "stateful" attribute and are used for
54 1.1 rmind * stateful filtering. Such connections indicate that the packet of
55 1.1 rmind * the backwards stream should be passed without inspection of the
56 1.1 rmind * ruleset. The other purpose is to associate a dynamic NAT mechanism
57 1.1 rmind * with a connection. Such connections are created by the NAT policies
58 1.1 rmind * and they have a relationship with NAT translation structure via
59 1.1 rmind * npf_conn_t::c_nat. A single connection can serve both purposes,
60 1.1 rmind * which is a common case.
61 1.1 rmind *
62 1.1 rmind * Connection life-cycle
63 1.1 rmind *
64 1.1 rmind * Connections are established when a packet matches said rule or
65 1.1 rmind * NAT policy. Both keys of the established connection are inserted
66 1.1 rmind * into the connection database. A garbage collection thread
67 1.1 rmind * periodically scans all connections and depending on connection
68 1.1 rmind * properties (e.g. last activity time, protocol) removes connection
69 1.1 rmind * entries and expires the actual connections.
70 1.1 rmind *
71 1.1 rmind * Each connection has a reference count. The reference is acquired
72 1.1 rmind * on lookup and should be released by the caller. It guarantees that
73 1.1 rmind * the connection will not be destroyed, although it may be expired.
74 1.1 rmind *
75 1.1 rmind * Synchronisation
76 1.1 rmind *
77 1.1 rmind * Connection database is accessed in a lock-less manner by the main
78 1.1 rmind * routines: npf_conn_inspect() and npf_conn_establish(). Since they
79 1.1 rmind * are always called from a software interrupt, the database is
80 1.1 rmind * protected using passive serialisation. The main place which can
81 1.1 rmind * destroy a connection is npf_conn_worker(). The database itself
82 1.1 rmind * can be replaced and destroyed in npf_conn_reload().
83 1.1 rmind *
84 1.1 rmind * ALG support
85 1.1 rmind *
86 1.1 rmind * Application-level gateways (ALGs) can override generic connection
87 1.1 rmind * inspection (npf_alg_conn() call in npf_conn_inspect() function) by
88 1.1 rmind * performing their own lookup using different key. Recursive call
89 1.1 rmind * to npf_conn_inspect() is not allowed. The ALGs ought to use the
90 1.1 rmind * npf_conn_lookup() function for this purpose.
91 1.1 rmind *
92 1.1 rmind * Lock order
93 1.1 rmind *
94 1.6 rmind * npf_config_lock ->
95 1.6 rmind * conn_lock ->
96 1.6 rmind * npf_conn_t::c_lock
97 1.1 rmind */
98 1.1 rmind
99 1.22 christos #ifdef _KERNEL
100 1.1 rmind #include <sys/cdefs.h>
101 1.25 rmind __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.25 2018/09/29 14:41:36 rmind Exp $");
102 1.1 rmind
103 1.1 rmind #include <sys/param.h>
104 1.1 rmind #include <sys/types.h>
105 1.1 rmind
106 1.1 rmind #include <netinet/in.h>
107 1.1 rmind #include <netinet/tcp.h>
108 1.1 rmind
109 1.1 rmind #include <sys/atomic.h>
110 1.1 rmind #include <sys/condvar.h>
111 1.1 rmind #include <sys/kmem.h>
112 1.1 rmind #include <sys/kthread.h>
113 1.1 rmind #include <sys/mutex.h>
114 1.1 rmind #include <net/pfil.h>
115 1.1 rmind #include <sys/pool.h>
116 1.1 rmind #include <sys/queue.h>
117 1.1 rmind #include <sys/systm.h>
118 1.22 christos #endif
119 1.1 rmind
120 1.1 rmind #define __NPF_CONN_PRIVATE
121 1.1 rmind #include "npf_conn.h"
122 1.1 rmind #include "npf_impl.h"
123 1.1 rmind
124 1.1 rmind /*
125 1.1 rmind * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
126 1.1 rmind */
127 1.1 rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
128 1.1 rmind #define CONN_ACTIVE 0x004 /* visible on inspection */
129 1.1 rmind #define CONN_PASS 0x008 /* perform implicit passing */
130 1.1 rmind #define CONN_EXPIRE 0x010 /* explicitly expire */
131 1.1 rmind #define CONN_REMOVED 0x020 /* "forw/back" entries removed */
132 1.1 rmind
133 1.6 rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
134 1.1 rmind
135 1.22 christos static void npf_conn_destroy(npf_t *, npf_conn_t *);
136 1.25 rmind static nvlist_t *npf_conn_export(npf_t *, const npf_conn_t *);
137 1.1 rmind
138 1.1 rmind /*
139 1.1 rmind * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
140 1.1 rmind */
141 1.1 rmind
142 1.1 rmind void
143 1.22 christos npf_conn_init(npf_t *npf, int flags)
144 1.1 rmind {
145 1.22 christos npf->conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
146 1.1 rmind 0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
147 1.22 christos mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
148 1.22 christos npf->conn_tracking = CONN_TRACKING_OFF;
149 1.22 christos npf->conn_db = npf_conndb_create();
150 1.1 rmind
151 1.22 christos if ((flags & NPF_NO_GC) == 0) {
152 1.22 christos npf_worker_register(npf, npf_conn_worker);
153 1.22 christos }
154 1.1 rmind }
155 1.1 rmind
156 1.1 rmind void
157 1.22 christos npf_conn_fini(npf_t *npf)
158 1.1 rmind {
159 1.6 rmind /* Note: the caller should have flushed the connections. */
160 1.22 christos KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
161 1.22 christos npf_worker_unregister(npf, npf_conn_worker);
162 1.1 rmind
163 1.22 christos npf_conndb_destroy(npf->conn_db);
164 1.22 christos pool_cache_destroy(npf->conn_cache);
165 1.22 christos mutex_destroy(&npf->conn_lock);
166 1.1 rmind }
167 1.1 rmind
168 1.1 rmind /*
169 1.6 rmind * npf_conn_load: perform the load by flushing the current connection
170 1.6 rmind * database and replacing it with the new one or just destroying.
171 1.1 rmind *
172 1.6 rmind * => The caller must disable the connection tracking and ensure that
173 1.6 rmind * there are no connection database lookups or references in-flight.
174 1.1 rmind */
175 1.6 rmind void
176 1.22 christos npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
177 1.1 rmind {
178 1.6 rmind npf_conndb_t *odb = NULL;
179 1.1 rmind
180 1.22 christos KASSERT(npf_config_locked_p(npf));
181 1.1 rmind
182 1.1 rmind /*
183 1.6 rmind * The connection database is in the quiescent state.
184 1.6 rmind * Prevent G/C thread from running and install a new database.
185 1.1 rmind */
186 1.22 christos mutex_enter(&npf->conn_lock);
187 1.6 rmind if (ndb) {
188 1.22 christos KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
189 1.22 christos odb = npf->conn_db;
190 1.22 christos npf->conn_db = ndb;
191 1.6 rmind membar_sync();
192 1.6 rmind }
193 1.6 rmind if (track) {
194 1.6 rmind /* After this point lookups start flying in. */
195 1.22 christos npf->conn_tracking = CONN_TRACKING_ON;
196 1.1 rmind }
197 1.22 christos mutex_exit(&npf->conn_lock);
198 1.1 rmind
199 1.1 rmind if (odb) {
200 1.6 rmind /*
201 1.6 rmind * Flush all, no sync since the caller did it for us.
202 1.6 rmind * Also, release the pool cache memory.
203 1.6 rmind */
204 1.22 christos npf_conn_gc(npf, odb, true, false);
205 1.1 rmind npf_conndb_destroy(odb);
206 1.22 christos pool_cache_invalidate(npf->conn_cache);
207 1.1 rmind }
208 1.1 rmind }
209 1.1 rmind
210 1.1 rmind /*
211 1.1 rmind * npf_conn_tracking: enable/disable connection tracking.
212 1.1 rmind */
213 1.1 rmind void
214 1.22 christos npf_conn_tracking(npf_t *npf, bool track)
215 1.1 rmind {
216 1.22 christos KASSERT(npf_config_locked_p(npf));
217 1.22 christos npf->conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
218 1.1 rmind }
219 1.1 rmind
220 1.6 rmind static inline bool
221 1.1 rmind npf_conn_trackable_p(const npf_cache_t *npc)
222 1.1 rmind {
223 1.22 christos const npf_t *npf = npc->npc_ctx;
224 1.22 christos
225 1.1 rmind /*
226 1.1 rmind * Check if connection tracking is on. Also, if layer 3 and 4 are
227 1.1 rmind * not cached - protocol is not supported or packet is invalid.
228 1.1 rmind */
229 1.22 christos if (npf->conn_tracking != CONN_TRACKING_ON) {
230 1.1 rmind return false;
231 1.1 rmind }
232 1.1 rmind if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
233 1.1 rmind return false;
234 1.1 rmind }
235 1.1 rmind return true;
236 1.1 rmind }
237 1.1 rmind
238 1.18 christos static uint32_t
239 1.20 christos connkey_setkey(npf_connkey_t *key, uint16_t proto, const void *ipv,
240 1.22 christos const uint16_t *id, unsigned alen, bool forw)
241 1.18 christos {
242 1.20 christos uint32_t isrc, idst, *k = key->ck_key;
243 1.18 christos const npf_addr_t * const *ips = ipv;
244 1.22 christos
245 1.18 christos if (__predict_true(forw)) {
246 1.18 christos isrc = NPF_SRC, idst = NPF_DST;
247 1.18 christos } else {
248 1.18 christos isrc = NPF_DST, idst = NPF_SRC;
249 1.18 christos }
250 1.18 christos
251 1.18 christos /*
252 1.18 christos * Construct a key formed out of 32-bit integers. The key layout:
253 1.18 christos *
254 1.18 christos * Field: | proto | alen | src-id | dst-id | src-addr | dst-addr |
255 1.18 christos * +--------+--------+--------+--------+----------+----------+
256 1.18 christos * Bits: | 16 | 16 | 16 | 16 | 32-128 | 32-128 |
257 1.18 christos *
258 1.18 christos * The source and destination are inverted if they key is for the
259 1.18 christos * backwards stream (forw == false). The address length depends
260 1.18 christos * on the 'alen' field; it is a length in bytes, either 4 or 16.
261 1.18 christos */
262 1.18 christos
263 1.20 christos k[0] = ((uint32_t)proto << 16) | (alen & 0xffff);
264 1.20 christos k[1] = ((uint32_t)id[isrc] << 16) | id[idst];
265 1.18 christos
266 1.18 christos if (__predict_true(alen == sizeof(in_addr_t))) {
267 1.22 christos k[2] = ips[isrc]->word32[0];
268 1.22 christos k[3] = ips[idst]->word32[0];
269 1.18 christos return 4 * sizeof(uint32_t);
270 1.18 christos } else {
271 1.18 christos const u_int nwords = alen >> 2;
272 1.20 christos memcpy(&k[2], ips[isrc], alen);
273 1.20 christos memcpy(&k[2 + nwords], ips[idst], alen);
274 1.18 christos return (2 + (nwords * 2)) * sizeof(uint32_t);
275 1.18 christos }
276 1.18 christos }
277 1.18 christos
278 1.20 christos static void
279 1.20 christos connkey_getkey(const npf_connkey_t *key, uint16_t *proto, npf_addr_t *ips,
280 1.20 christos uint16_t *id, uint16_t *alen)
281 1.20 christos {
282 1.20 christos const uint32_t *k = key->ck_key;
283 1.20 christos
284 1.20 christos *proto = k[0] >> 16;
285 1.20 christos *alen = k[0] & 0xffff;
286 1.20 christos id[NPF_SRC] = k[1] >> 16;
287 1.20 christos id[NPF_DST] = k[1] & 0xffff;
288 1.20 christos
289 1.20 christos switch (*alen) {
290 1.20 christos case sizeof(struct in6_addr):
291 1.20 christos case sizeof(struct in_addr):
292 1.20 christos memcpy(&ips[NPF_SRC], &k[2], *alen);
293 1.20 christos memcpy(&ips[NPF_DST], &k[2 + ((unsigned)*alen >> 2)], *alen);
294 1.20 christos return;
295 1.20 christos default:
296 1.20 christos KASSERT(0);
297 1.20 christos }
298 1.20 christos }
299 1.20 christos
300 1.1 rmind /*
301 1.1 rmind * npf_conn_conkey: construct a key for the connection lookup.
302 1.8 rmind *
303 1.8 rmind * => Returns the key length in bytes or zero on failure.
304 1.1 rmind */
305 1.8 rmind unsigned
306 1.1 rmind npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
307 1.1 rmind {
308 1.22 christos const u_int proto = npc->npc_proto;
309 1.22 christos const u_int alen = npc->npc_alen;
310 1.1 rmind const struct tcphdr *th;
311 1.1 rmind const struct udphdr *uh;
312 1.1 rmind uint16_t id[2];
313 1.1 rmind
314 1.22 christos switch (proto) {
315 1.1 rmind case IPPROTO_TCP:
316 1.1 rmind KASSERT(npf_iscached(npc, NPC_TCP));
317 1.1 rmind th = npc->npc_l4.tcp;
318 1.1 rmind id[NPF_SRC] = th->th_sport;
319 1.1 rmind id[NPF_DST] = th->th_dport;
320 1.1 rmind break;
321 1.1 rmind case IPPROTO_UDP:
322 1.1 rmind KASSERT(npf_iscached(npc, NPC_UDP));
323 1.1 rmind uh = npc->npc_l4.udp;
324 1.1 rmind id[NPF_SRC] = uh->uh_sport;
325 1.1 rmind id[NPF_DST] = uh->uh_dport;
326 1.1 rmind break;
327 1.1 rmind case IPPROTO_ICMP:
328 1.1 rmind if (npf_iscached(npc, NPC_ICMP_ID)) {
329 1.1 rmind const struct icmp *ic = npc->npc_l4.icmp;
330 1.1 rmind id[NPF_SRC] = ic->icmp_id;
331 1.1 rmind id[NPF_DST] = ic->icmp_id;
332 1.1 rmind break;
333 1.1 rmind }
334 1.8 rmind return 0;
335 1.1 rmind case IPPROTO_ICMPV6:
336 1.1 rmind if (npf_iscached(npc, NPC_ICMP_ID)) {
337 1.1 rmind const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
338 1.1 rmind id[NPF_SRC] = ic6->icmp6_id;
339 1.1 rmind id[NPF_DST] = ic6->icmp6_id;
340 1.1 rmind break;
341 1.1 rmind }
342 1.8 rmind return 0;
343 1.1 rmind default:
344 1.1 rmind /* Unsupported protocol. */
345 1.8 rmind return 0;
346 1.1 rmind }
347 1.22 christos return connkey_setkey(key, proto, npc->npc_ips, id, alen, forw);
348 1.1 rmind }
349 1.1 rmind
350 1.3 christos static __inline void
351 1.1 rmind connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
352 1.1 rmind {
353 1.1 rmind const u_int alen = key->ck_key[0] & 0xffff;
354 1.1 rmind uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
355 1.1 rmind
356 1.1 rmind KASSERT(alen > 0);
357 1.1 rmind memcpy(addr, naddr, alen);
358 1.1 rmind }
359 1.1 rmind
360 1.3 christos static __inline void
361 1.1 rmind connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
362 1.1 rmind {
363 1.1 rmind const uint32_t oid = key->ck_key[1];
364 1.1 rmind const u_int shift = 16 * !di;
365 1.1 rmind const uint32_t mask = 0xffff0000 >> shift;
366 1.1 rmind
367 1.1 rmind key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
368 1.1 rmind }
369 1.1 rmind
370 1.22 christos static inline void
371 1.22 christos conn_update_atime(npf_conn_t *con)
372 1.22 christos {
373 1.22 christos struct timespec tsnow;
374 1.22 christos
375 1.22 christos getnanouptime(&tsnow);
376 1.22 christos con->c_atime = tsnow.tv_sec;
377 1.22 christos }
378 1.22 christos
379 1.1 rmind /*
380 1.18 christos * npf_conn_ok: check if the connection is active, and has the right direction.
381 1.18 christos */
382 1.18 christos static bool
383 1.22 christos npf_conn_ok(const npf_conn_t *con, const int di, bool forw)
384 1.18 christos {
385 1.22 christos const uint32_t flags = con->c_flags;
386 1.18 christos
387 1.18 christos /* Check if connection is active and not expired. */
388 1.18 christos bool ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
389 1.18 christos if (__predict_false(!ok)) {
390 1.18 christos return false;
391 1.18 christos }
392 1.18 christos
393 1.18 christos /* Check if the direction is consistent */
394 1.22 christos bool pforw = (flags & PFIL_ALL) == (unsigned)di;
395 1.18 christos if (__predict_false(forw != pforw)) {
396 1.18 christos return false;
397 1.18 christos }
398 1.18 christos return true;
399 1.18 christos }
400 1.18 christos
401 1.18 christos /*
402 1.1 rmind * npf_conn_lookup: lookup if there is an established connection.
403 1.1 rmind *
404 1.1 rmind * => If found, we will hold a reference for the caller.
405 1.1 rmind */
406 1.1 rmind npf_conn_t *
407 1.4 rmind npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
408 1.1 rmind {
409 1.22 christos npf_t *npf = npc->npc_ctx;
410 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
411 1.1 rmind npf_conn_t *con;
412 1.1 rmind npf_connkey_t key;
413 1.18 christos u_int cifid;
414 1.1 rmind
415 1.1 rmind /* Construct a key and lookup for a connection in the store. */
416 1.1 rmind if (!npf_conn_conkey(npc, &key, true)) {
417 1.1 rmind return NULL;
418 1.1 rmind }
419 1.22 christos con = npf_conndb_lookup(npf->conn_db, &key, forw);
420 1.1 rmind if (con == NULL) {
421 1.1 rmind return NULL;
422 1.1 rmind }
423 1.1 rmind KASSERT(npc->npc_proto == con->c_proto);
424 1.1 rmind
425 1.1 rmind /* Check if connection is active and not expired. */
426 1.18 christos if (!npf_conn_ok(con, di, *forw)) {
427 1.1 rmind atomic_dec_uint(&con->c_refcnt);
428 1.1 rmind return NULL;
429 1.1 rmind }
430 1.1 rmind
431 1.1 rmind /*
432 1.1 rmind * Match the interface and the direction of the connection entry
433 1.1 rmind * and the packet.
434 1.1 rmind */
435 1.1 rmind cifid = con->c_ifid;
436 1.1 rmind if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
437 1.1 rmind atomic_dec_uint(&con->c_refcnt);
438 1.1 rmind return NULL;
439 1.1 rmind }
440 1.1 rmind
441 1.1 rmind /* Update the last activity time. */
442 1.22 christos conn_update_atime(con);
443 1.1 rmind return con;
444 1.1 rmind }
445 1.1 rmind
446 1.1 rmind /*
447 1.1 rmind * npf_conn_inspect: lookup a connection and inspecting the protocol data.
448 1.1 rmind *
449 1.1 rmind * => If found, we will hold a reference for the caller.
450 1.1 rmind */
451 1.1 rmind npf_conn_t *
452 1.4 rmind npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
453 1.1 rmind {
454 1.4 rmind nbuf_t *nbuf = npc->npc_nbuf;
455 1.1 rmind npf_conn_t *con;
456 1.1 rmind bool forw, ok;
457 1.1 rmind
458 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
459 1.1 rmind if (!npf_conn_trackable_p(npc)) {
460 1.1 rmind return NULL;
461 1.1 rmind }
462 1.1 rmind
463 1.1 rmind /* Query ALG which may lookup connection for us. */
464 1.4 rmind if ((con = npf_alg_conn(npc, di)) != NULL) {
465 1.1 rmind /* Note: reference is held. */
466 1.1 rmind return con;
467 1.1 rmind }
468 1.1 rmind if (nbuf_head_mbuf(nbuf) == NULL) {
469 1.1 rmind *error = ENOMEM;
470 1.1 rmind return NULL;
471 1.1 rmind }
472 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
473 1.1 rmind
474 1.1 rmind /* Main lookup of the connection. */
475 1.4 rmind if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
476 1.1 rmind return NULL;
477 1.1 rmind }
478 1.1 rmind
479 1.1 rmind /* Inspect the protocol data and handle state changes. */
480 1.1 rmind mutex_enter(&con->c_lock);
481 1.4 rmind ok = npf_state_inspect(npc, &con->c_state, forw);
482 1.1 rmind mutex_exit(&con->c_lock);
483 1.1 rmind
484 1.17 rmind /* If invalid state: let the rules deal with it. */
485 1.1 rmind if (__predict_false(!ok)) {
486 1.1 rmind npf_conn_release(con);
487 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
488 1.17 rmind return NULL;
489 1.17 rmind }
490 1.17 rmind
491 1.17 rmind /*
492 1.17 rmind * If this is multi-end state, then specially tag the packet
493 1.17 rmind * so it will be just passed-through on other interfaces.
494 1.17 rmind */
495 1.17 rmind if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
496 1.17 rmind npf_conn_release(con);
497 1.17 rmind *error = ENOMEM;
498 1.17 rmind return NULL;
499 1.1 rmind }
500 1.1 rmind return con;
501 1.1 rmind }
502 1.1 rmind
503 1.1 rmind /*
504 1.1 rmind * npf_conn_establish: create a new connection, insert into the global list.
505 1.1 rmind *
506 1.1 rmind * => Connection is created with the reference held for the caller.
507 1.1 rmind * => Connection will be activated on the first reference release.
508 1.1 rmind */
509 1.1 rmind npf_conn_t *
510 1.4 rmind npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
511 1.1 rmind {
512 1.22 christos npf_t *npf = npc->npc_ctx;
513 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
514 1.1 rmind npf_conn_t *con;
515 1.15 rmind int error = 0;
516 1.1 rmind
517 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
518 1.1 rmind
519 1.1 rmind if (!npf_conn_trackable_p(npc)) {
520 1.1 rmind return NULL;
521 1.1 rmind }
522 1.1 rmind
523 1.1 rmind /* Allocate and initialise the new connection. */
524 1.22 christos con = pool_cache_get(npf->conn_cache, PR_NOWAIT);
525 1.1 rmind if (__predict_false(!con)) {
526 1.22 christos npf_worker_signal(npf);
527 1.1 rmind return NULL;
528 1.1 rmind }
529 1.1 rmind NPF_PRINTF(("NPF: create conn %p\n", con));
530 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
531 1.1 rmind
532 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
533 1.1 rmind con->c_flags = (di & PFIL_ALL);
534 1.15 rmind con->c_refcnt = 0;
535 1.1 rmind con->c_rproc = NULL;
536 1.1 rmind con->c_nat = NULL;
537 1.1 rmind
538 1.15 rmind /* Initialize the protocol state. */
539 1.4 rmind if (!npf_state_init(npc, &con->c_state)) {
540 1.22 christos npf_conn_destroy(npf, con);
541 1.15 rmind return NULL;
542 1.1 rmind }
543 1.1 rmind
544 1.1 rmind KASSERT(npf_iscached(npc, NPC_IP46));
545 1.1 rmind npf_connkey_t *fw = &con->c_forw_entry;
546 1.1 rmind npf_connkey_t *bk = &con->c_back_entry;
547 1.1 rmind
548 1.1 rmind /*
549 1.1 rmind * Construct "forwards" and "backwards" keys. Also, set the
550 1.1 rmind * interface ID for this connection (unless it is global).
551 1.1 rmind */
552 1.15 rmind if (!npf_conn_conkey(npc, fw, true) ||
553 1.15 rmind !npf_conn_conkey(npc, bk, false)) {
554 1.22 christos npf_conn_destroy(npf, con);
555 1.15 rmind return NULL;
556 1.1 rmind }
557 1.1 rmind fw->ck_backptr = bk->ck_backptr = con;
558 1.1 rmind con->c_ifid = per_if ? nbuf->nb_ifid : 0;
559 1.1 rmind con->c_proto = npc->npc_proto;
560 1.1 rmind
561 1.15 rmind /*
562 1.15 rmind * Set last activity time for a new connection and acquire
563 1.15 rmind * a reference for the caller before we make it visible.
564 1.15 rmind */
565 1.22 christos conn_update_atime(con);
566 1.15 rmind con->c_refcnt = 1;
567 1.1 rmind
568 1.1 rmind /*
569 1.1 rmind * Insert both keys (entries representing directions) of the
570 1.15 rmind * connection. At this point it becomes visible, but we activate
571 1.15 rmind * the connection later.
572 1.1 rmind */
573 1.15 rmind mutex_enter(&con->c_lock);
574 1.22 christos if (!npf_conndb_insert(npf->conn_db, fw, con)) {
575 1.15 rmind error = EISCONN;
576 1.1 rmind goto err;
577 1.1 rmind }
578 1.22 christos if (!npf_conndb_insert(npf->conn_db, bk, con)) {
579 1.15 rmind npf_conn_t *ret __diagused;
580 1.22 christos ret = npf_conndb_remove(npf->conn_db, fw);
581 1.15 rmind KASSERT(ret == con);
582 1.15 rmind error = EISCONN;
583 1.15 rmind goto err;
584 1.15 rmind }
585 1.15 rmind err:
586 1.15 rmind /*
587 1.15 rmind * If we have hit the duplicate: mark the connection as expired
588 1.15 rmind * and let the G/C thread to take care of it. We cannot do it
589 1.15 rmind * here since there might be references acquired already.
590 1.15 rmind */
591 1.15 rmind if (error) {
592 1.16 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
593 1.16 rmind atomic_dec_uint(&con->c_refcnt);
594 1.22 christos npf_stats_inc(npf, NPF_STAT_RACE_CONN);
595 1.15 rmind } else {
596 1.15 rmind NPF_PRINTF(("NPF: establish conn %p\n", con));
597 1.1 rmind }
598 1.1 rmind
599 1.1 rmind /* Finally, insert into the connection list. */
600 1.22 christos npf_conndb_enqueue(npf->conn_db, con);
601 1.15 rmind mutex_exit(&con->c_lock);
602 1.15 rmind
603 1.15 rmind return error ? NULL : con;
604 1.1 rmind }
605 1.1 rmind
606 1.1 rmind static void
607 1.22 christos npf_conn_destroy(npf_t *npf, npf_conn_t *con)
608 1.1 rmind {
609 1.15 rmind KASSERT(con->c_refcnt == 0);
610 1.15 rmind
611 1.1 rmind if (con->c_nat) {
612 1.1 rmind /* Release any NAT structures. */
613 1.1 rmind npf_nat_destroy(con->c_nat);
614 1.1 rmind }
615 1.1 rmind if (con->c_rproc) {
616 1.1 rmind /* Release the rule procedure. */
617 1.1 rmind npf_rproc_release(con->c_rproc);
618 1.1 rmind }
619 1.1 rmind
620 1.1 rmind /* Destroy the state. */
621 1.1 rmind npf_state_destroy(&con->c_state);
622 1.1 rmind mutex_destroy(&con->c_lock);
623 1.1 rmind
624 1.1 rmind /* Free the structure, increase the counter. */
625 1.22 christos pool_cache_put(npf->conn_cache, con);
626 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
627 1.1 rmind NPF_PRINTF(("NPF: conn %p destroyed\n", con));
628 1.1 rmind }
629 1.1 rmind
630 1.1 rmind /*
631 1.1 rmind * npf_conn_setnat: associate NAT entry with the connection, update and
632 1.1 rmind * re-insert connection entry using the translation values.
633 1.16 rmind *
634 1.16 rmind * => The caller must be holding a reference.
635 1.1 rmind */
636 1.1 rmind int
637 1.1 rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
638 1.1 rmind npf_nat_t *nt, u_int ntype)
639 1.1 rmind {
640 1.1 rmind static const u_int nat_type_dimap[] = {
641 1.1 rmind [NPF_NATOUT] = NPF_DST,
642 1.1 rmind [NPF_NATIN] = NPF_SRC,
643 1.1 rmind };
644 1.22 christos npf_t *npf = npc->npc_ctx;
645 1.1 rmind npf_connkey_t key, *bk;
646 1.2 rmind npf_conn_t *ret __diagused;
647 1.1 rmind npf_addr_t *taddr;
648 1.1 rmind in_port_t tport;
649 1.1 rmind u_int tidx;
650 1.1 rmind
651 1.1 rmind KASSERT(con->c_refcnt > 0);
652 1.1 rmind
653 1.1 rmind npf_nat_gettrans(nt, &taddr, &tport);
654 1.1 rmind KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
655 1.1 rmind tidx = nat_type_dimap[ntype];
656 1.1 rmind
657 1.1 rmind /* Construct a "backwards" key. */
658 1.1 rmind if (!npf_conn_conkey(npc, &key, false)) {
659 1.1 rmind return EINVAL;
660 1.1 rmind }
661 1.1 rmind
662 1.1 rmind /* Acquire the lock and check for the races. */
663 1.1 rmind mutex_enter(&con->c_lock);
664 1.1 rmind if (__predict_false(con->c_flags & CONN_EXPIRE)) {
665 1.1 rmind /* The connection got expired. */
666 1.1 rmind mutex_exit(&con->c_lock);
667 1.1 rmind return EINVAL;
668 1.1 rmind }
669 1.15 rmind KASSERT((con->c_flags & CONN_REMOVED) == 0);
670 1.15 rmind
671 1.1 rmind if (__predict_false(con->c_nat != NULL)) {
672 1.1 rmind /* Race with a duplicate packet. */
673 1.1 rmind mutex_exit(&con->c_lock);
674 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
675 1.1 rmind return EISCONN;
676 1.1 rmind }
677 1.1 rmind
678 1.1 rmind /* Remove the "backwards" entry. */
679 1.22 christos ret = npf_conndb_remove(npf->conn_db, &con->c_back_entry);
680 1.1 rmind KASSERT(ret == con);
681 1.1 rmind
682 1.1 rmind /* Set the source/destination IDs to the translation values. */
683 1.1 rmind bk = &con->c_back_entry;
684 1.1 rmind connkey_set_addr(bk, taddr, tidx);
685 1.1 rmind if (tport) {
686 1.1 rmind connkey_set_id(bk, tport, tidx);
687 1.1 rmind }
688 1.1 rmind
689 1.1 rmind /* Finally, re-insert the "backwards" entry. */
690 1.22 christos if (!npf_conndb_insert(npf->conn_db, bk, con)) {
691 1.1 rmind /*
692 1.1 rmind * Race: we have hit the duplicate, remove the "forwards"
693 1.1 rmind * entry and expire our connection; it is no longer valid.
694 1.1 rmind */
695 1.22 christos ret = npf_conndb_remove(npf->conn_db, &con->c_forw_entry);
696 1.15 rmind KASSERT(ret == con);
697 1.15 rmind
698 1.1 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
699 1.1 rmind mutex_exit(&con->c_lock);
700 1.1 rmind
701 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
702 1.1 rmind return EISCONN;
703 1.1 rmind }
704 1.1 rmind
705 1.1 rmind /* Associate the NAT entry and release the lock. */
706 1.1 rmind con->c_nat = nt;
707 1.1 rmind mutex_exit(&con->c_lock);
708 1.1 rmind return 0;
709 1.1 rmind }
710 1.1 rmind
711 1.1 rmind /*
712 1.1 rmind * npf_conn_expire: explicitly mark connection as expired.
713 1.1 rmind */
714 1.1 rmind void
715 1.1 rmind npf_conn_expire(npf_conn_t *con)
716 1.1 rmind {
717 1.1 rmind /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
718 1.1 rmind atomic_or_uint(&con->c_flags, CONN_EXPIRE);
719 1.1 rmind }
720 1.1 rmind
721 1.1 rmind /*
722 1.1 rmind * npf_conn_pass: return true if connection is "pass" one, otherwise false.
723 1.1 rmind */
724 1.1 rmind bool
725 1.23 christos npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
726 1.1 rmind {
727 1.1 rmind KASSERT(con->c_refcnt > 0);
728 1.1 rmind if (__predict_true(con->c_flags & CONN_PASS)) {
729 1.24 rmind mi->mi_rid = con->c_rid;
730 1.24 rmind mi->mi_retfl = con->c_retfl;
731 1.1 rmind *rp = con->c_rproc;
732 1.1 rmind return true;
733 1.1 rmind }
734 1.1 rmind return false;
735 1.1 rmind }
736 1.1 rmind
737 1.1 rmind /*
738 1.1 rmind * npf_conn_setpass: mark connection as a "pass" one and associate the
739 1.1 rmind * rule procedure with it.
740 1.1 rmind */
741 1.1 rmind void
742 1.23 christos npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
743 1.1 rmind {
744 1.1 rmind KASSERT((con->c_flags & CONN_ACTIVE) == 0);
745 1.1 rmind KASSERT(con->c_refcnt > 0);
746 1.1 rmind KASSERT(con->c_rproc == NULL);
747 1.1 rmind
748 1.1 rmind /*
749 1.1 rmind * No need for atomic since the connection is not yet active.
750 1.1 rmind * If rproc is set, the caller transfers its reference to us,
751 1.1 rmind * which will be released on npf_conn_destroy().
752 1.1 rmind */
753 1.14 rmind atomic_or_uint(&con->c_flags, CONN_PASS);
754 1.1 rmind con->c_rproc = rp;
755 1.24 rmind if (rp) {
756 1.24 rmind con->c_rid = mi->mi_rid;
757 1.24 rmind con->c_retfl = mi->mi_retfl;
758 1.24 rmind }
759 1.1 rmind }
760 1.1 rmind
761 1.1 rmind /*
762 1.1 rmind * npf_conn_release: release a reference, which might allow G/C thread
763 1.1 rmind * to destroy this connection.
764 1.1 rmind */
765 1.1 rmind void
766 1.1 rmind npf_conn_release(npf_conn_t *con)
767 1.1 rmind {
768 1.1 rmind if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
769 1.1 rmind /* Activate: after this, connection is globally visible. */
770 1.14 rmind atomic_or_uint(&con->c_flags, CONN_ACTIVE);
771 1.1 rmind }
772 1.1 rmind KASSERT(con->c_refcnt > 0);
773 1.1 rmind atomic_dec_uint(&con->c_refcnt);
774 1.1 rmind }
775 1.1 rmind
776 1.1 rmind /*
777 1.13 rmind * npf_conn_getnat: return associated NAT data entry and indicate
778 1.1 rmind * whether it is a "forwards" or "backwards" stream.
779 1.1 rmind */
780 1.1 rmind npf_nat_t *
781 1.13 rmind npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
782 1.1 rmind {
783 1.1 rmind KASSERT(con->c_refcnt > 0);
784 1.22 christos *forw = (con->c_flags & PFIL_ALL) == (u_int)di;
785 1.1 rmind return con->c_nat;
786 1.1 rmind }
787 1.1 rmind
788 1.1 rmind /*
789 1.1 rmind * npf_conn_expired: criterion to check if connection is expired.
790 1.1 rmind */
791 1.1 rmind static inline bool
792 1.22 christos npf_conn_expired(const npf_conn_t *con, uint64_t tsnow)
793 1.1 rmind {
794 1.1 rmind const int etime = npf_state_etime(&con->c_state, con->c_proto);
795 1.22 christos int elapsed;
796 1.1 rmind
797 1.1 rmind if (__predict_false(con->c_flags & CONN_EXPIRE)) {
798 1.1 rmind /* Explicitly marked to be expired. */
799 1.1 rmind return true;
800 1.1 rmind }
801 1.22 christos
802 1.22 christos /*
803 1.22 christos * Note: another thread may update 'atime' and it might
804 1.22 christos * become greater than 'now'.
805 1.22 christos */
806 1.22 christos elapsed = (int64_t)tsnow - con->c_atime;
807 1.22 christos return elapsed > etime;
808 1.1 rmind }
809 1.1 rmind
810 1.1 rmind /*
811 1.6 rmind * npf_conn_gc: garbage collect the expired connections.
812 1.6 rmind *
813 1.6 rmind * => Must run in a single-threaded manner.
814 1.6 rmind * => If it is a flush request, then destroy all connections.
815 1.6 rmind * => If 'sync' is true, then perform passive serialisation.
816 1.1 rmind */
817 1.7 rmind void
818 1.22 christos npf_conn_gc(npf_t *npf, npf_conndb_t *cd, bool flush, bool sync)
819 1.1 rmind {
820 1.1 rmind npf_conn_t *con, *prev, *gclist = NULL;
821 1.1 rmind struct timespec tsnow;
822 1.1 rmind
823 1.1 rmind getnanouptime(&tsnow);
824 1.1 rmind
825 1.1 rmind /*
826 1.1 rmind * Scan all connections and check them for expiration.
827 1.1 rmind */
828 1.1 rmind prev = NULL;
829 1.1 rmind con = npf_conndb_getlist(cd);
830 1.1 rmind while (con) {
831 1.1 rmind npf_conn_t *next = con->c_next;
832 1.1 rmind
833 1.1 rmind /* Expired? Flushing all? */
834 1.22 christos if (!npf_conn_expired(con, tsnow.tv_sec) && !flush) {
835 1.1 rmind prev = con;
836 1.1 rmind con = next;
837 1.1 rmind continue;
838 1.1 rmind }
839 1.1 rmind
840 1.1 rmind /* Remove both entries of the connection. */
841 1.1 rmind mutex_enter(&con->c_lock);
842 1.1 rmind if ((con->c_flags & CONN_REMOVED) == 0) {
843 1.1 rmind npf_conn_t *ret __diagused;
844 1.1 rmind
845 1.1 rmind ret = npf_conndb_remove(cd, &con->c_forw_entry);
846 1.1 rmind KASSERT(ret == con);
847 1.1 rmind ret = npf_conndb_remove(cd, &con->c_back_entry);
848 1.1 rmind KASSERT(ret == con);
849 1.1 rmind }
850 1.1 rmind
851 1.1 rmind /* Flag the removal and expiration. */
852 1.1 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
853 1.1 rmind mutex_exit(&con->c_lock);
854 1.1 rmind
855 1.1 rmind /* Move to the G/C list. */
856 1.1 rmind npf_conndb_dequeue(cd, con, prev);
857 1.1 rmind con->c_next = gclist;
858 1.1 rmind gclist = con;
859 1.1 rmind
860 1.1 rmind /* Next.. */
861 1.1 rmind con = next;
862 1.1 rmind }
863 1.1 rmind npf_conndb_settail(cd, prev);
864 1.6 rmind
865 1.6 rmind /*
866 1.6 rmind * Ensure it is safe to destroy the connections.
867 1.6 rmind * Note: drop the conn_lock (see the lock order).
868 1.6 rmind */
869 1.6 rmind if (sync) {
870 1.22 christos mutex_exit(&npf->conn_lock);
871 1.6 rmind if (gclist) {
872 1.22 christos npf_config_enter(npf);
873 1.22 christos npf_config_sync(npf);
874 1.22 christos npf_config_exit(npf);
875 1.6 rmind }
876 1.1 rmind }
877 1.1 rmind
878 1.1 rmind /*
879 1.1 rmind * Garbage collect all expired connections.
880 1.1 rmind * May need to wait for the references to drain.
881 1.1 rmind */
882 1.1 rmind con = gclist;
883 1.1 rmind while (con) {
884 1.1 rmind npf_conn_t *next = con->c_next;
885 1.1 rmind
886 1.1 rmind /*
887 1.1 rmind * Destroy only if removed and no references.
888 1.1 rmind * Otherwise, wait for a tiny moment.
889 1.1 rmind */
890 1.1 rmind if (__predict_false(con->c_refcnt)) {
891 1.1 rmind kpause("npfcongc", false, 1, NULL);
892 1.1 rmind continue;
893 1.1 rmind }
894 1.22 christos npf_conn_destroy(npf, con);
895 1.1 rmind con = next;
896 1.1 rmind }
897 1.1 rmind }
898 1.1 rmind
899 1.6 rmind /*
900 1.6 rmind * npf_conn_worker: G/C to run from a worker thread.
901 1.6 rmind */
902 1.22 christos void
903 1.22 christos npf_conn_worker(npf_t *npf)
904 1.1 rmind {
905 1.22 christos mutex_enter(&npf->conn_lock);
906 1.6 rmind /* Note: the conn_lock will be released (sync == true). */
907 1.22 christos npf_conn_gc(npf, npf->conn_db, false, true);
908 1.1 rmind }
909 1.1 rmind
910 1.1 rmind /*
911 1.10 rmind * npf_conndb_export: construct a list of connections prepared for saving.
912 1.1 rmind * Note: this is expected to be an expensive operation.
913 1.1 rmind */
914 1.1 rmind int
915 1.25 rmind npf_conndb_export(npf_t *npf, nvlist_t *npf_dict)
916 1.1 rmind {
917 1.1 rmind npf_conn_t *con, *prev;
918 1.1 rmind
919 1.1 rmind /*
920 1.1 rmind * Note: acquire conn_lock to prevent from the database
921 1.1 rmind * destruction and G/C thread.
922 1.1 rmind */
923 1.22 christos mutex_enter(&npf->conn_lock);
924 1.22 christos if (npf->conn_tracking != CONN_TRACKING_ON) {
925 1.22 christos mutex_exit(&npf->conn_lock);
926 1.1 rmind return 0;
927 1.1 rmind }
928 1.1 rmind prev = NULL;
929 1.22 christos con = npf_conndb_getlist(npf->conn_db);
930 1.1 rmind while (con) {
931 1.1 rmind npf_conn_t *next = con->c_next;
932 1.25 rmind nvlist_t *cdict;
933 1.1 rmind
934 1.22 christos if ((cdict = npf_conn_export(npf, con)) != NULL) {
935 1.25 rmind nvlist_append_nvlist_array(npf_dict, "conn-list", cdict);
936 1.25 rmind nvlist_destroy(cdict);
937 1.1 rmind }
938 1.1 rmind prev = con;
939 1.1 rmind con = next;
940 1.1 rmind }
941 1.22 christos npf_conndb_settail(npf->conn_db, prev);
942 1.22 christos mutex_exit(&npf->conn_lock);
943 1.5 joerg return 0;
944 1.1 rmind }
945 1.1 rmind
946 1.25 rmind static nvlist_t *
947 1.20 christos npf_connkey_export(const npf_connkey_t *key)
948 1.20 christos {
949 1.20 christos uint16_t id[2], alen, proto;
950 1.20 christos npf_addr_t ips[2];
951 1.25 rmind nvlist_t *kdict;
952 1.20 christos
953 1.25 rmind kdict = nvlist_create(0);
954 1.20 christos connkey_getkey(key, &proto, ips, id, &alen);
955 1.25 rmind nvlist_add_number(kdict, "proto", proto);
956 1.25 rmind nvlist_add_number(kdict, "sport", id[NPF_SRC]);
957 1.25 rmind nvlist_add_number(kdict, "dport", id[NPF_DST]);
958 1.25 rmind nvlist_add_binary(kdict, "saddr", &ips[NPF_SRC], alen);
959 1.25 rmind nvlist_add_binary(kdict, "daddr", &ips[NPF_DST], alen);
960 1.20 christos return kdict;
961 1.20 christos }
962 1.20 christos
963 1.1 rmind /*
964 1.10 rmind * npf_conn_export: serialise a single connection.
965 1.10 rmind */
966 1.25 rmind static nvlist_t *
967 1.22 christos npf_conn_export(npf_t *npf, const npf_conn_t *con)
968 1.10 rmind {
969 1.25 rmind nvlist_t *cdict, *kdict;
970 1.10 rmind
971 1.10 rmind if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
972 1.10 rmind return NULL;
973 1.10 rmind }
974 1.25 rmind cdict = nvlist_create(0);
975 1.25 rmind nvlist_add_number(cdict, "flags", con->c_flags);
976 1.25 rmind nvlist_add_number(cdict, "proto", con->c_proto);
977 1.10 rmind if (con->c_ifid) {
978 1.22 christos const char *ifname = npf_ifmap_getname(npf, con->c_ifid);
979 1.25 rmind nvlist_add_string(cdict, "ifname", ifname);
980 1.10 rmind }
981 1.25 rmind nvlist_add_binary(cdict, "state", &con->c_state, sizeof(npf_state_t));
982 1.10 rmind
983 1.20 christos kdict = npf_connkey_export(&con->c_forw_entry);
984 1.25 rmind nvlist_move_nvlist(cdict, "forw-key", kdict);
985 1.10 rmind
986 1.20 christos kdict = npf_connkey_export(&con->c_back_entry);
987 1.25 rmind nvlist_move_nvlist(cdict, "back-key", kdict);
988 1.10 rmind
989 1.10 rmind if (con->c_nat) {
990 1.10 rmind npf_nat_export(cdict, con->c_nat);
991 1.10 rmind }
992 1.10 rmind return cdict;
993 1.10 rmind }
994 1.10 rmind
995 1.18 christos static uint32_t
996 1.25 rmind npf_connkey_import(const nvlist_t *kdict, npf_connkey_t *key)
997 1.18 christos {
998 1.18 christos npf_addr_t const * ips[2];
999 1.25 rmind uint16_t proto, id[2];
1000 1.25 rmind size_t alen1, alen2;
1001 1.18 christos
1002 1.25 rmind proto = dnvlist_get_number(kdict, "proto", 0);
1003 1.25 rmind id[NPF_SRC] = dnvlist_get_number(kdict, "sport", 0);
1004 1.25 rmind id[NPF_DST] = dnvlist_get_number(kdict, "dport", 0);
1005 1.25 rmind ips[NPF_SRC] = dnvlist_get_binary(kdict, "saddr", &alen1, NULL, 0);
1006 1.25 rmind ips[NPF_DST] = dnvlist_get_binary(kdict, "daddr", &alen2, NULL, 0);
1007 1.25 rmind if (__predict_false(alen1 == 0 || alen1 != alen2)) {
1008 1.20 christos return 0;
1009 1.25 rmind }
1010 1.25 rmind return connkey_setkey(key, proto, ips, id, alen1, true);
1011 1.18 christos }
1012 1.18 christos
1013 1.10 rmind /*
1014 1.6 rmind * npf_conn_import: fully reconstruct a single connection from a
1015 1.25 rmind * nvlist and insert into the given database.
1016 1.1 rmind */
1017 1.1 rmind int
1018 1.25 rmind npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
1019 1.6 rmind npf_ruleset_t *natlist)
1020 1.1 rmind {
1021 1.1 rmind npf_conn_t *con;
1022 1.1 rmind npf_connkey_t *fw, *bk;
1023 1.25 rmind const nvlist_t *nat, *conkey;
1024 1.10 rmind const char *ifname;
1025 1.25 rmind const void *state;
1026 1.25 rmind size_t len;
1027 1.1 rmind
1028 1.1 rmind /* Allocate a connection and initialise it (clear first). */
1029 1.22 christos con = pool_cache_get(npf->conn_cache, PR_WAITOK);
1030 1.1 rmind memset(con, 0, sizeof(npf_conn_t));
1031 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
1032 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
1033 1.1 rmind
1034 1.25 rmind con->c_proto = dnvlist_get_number(cdict, "proto", 0);
1035 1.25 rmind con->c_flags = dnvlist_get_number(cdict, "flags", 0);
1036 1.1 rmind con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
1037 1.22 christos conn_update_atime(con);
1038 1.1 rmind
1039 1.25 rmind ifname = dnvlist_get_string(cdict, "ifname", NULL);
1040 1.25 rmind if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
1041 1.10 rmind goto err;
1042 1.10 rmind }
1043 1.10 rmind
1044 1.25 rmind state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
1045 1.25 rmind if (!state || len != sizeof(npf_state_t)) {
1046 1.1 rmind goto err;
1047 1.1 rmind }
1048 1.25 rmind memcpy(&con->c_state, state, sizeof(npf_state_t));
1049 1.1 rmind
1050 1.11 rmind /* Reconstruct NAT association, if any. */
1051 1.25 rmind if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
1052 1.25 rmind (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
1053 1.11 rmind goto err;
1054 1.11 rmind }
1055 1.1 rmind
1056 1.1 rmind /*
1057 1.1 rmind * Fetch and copy the keys for each direction.
1058 1.1 rmind */
1059 1.25 rmind conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
1060 1.20 christos fw = &con->c_forw_entry;
1061 1.25 rmind if (conkey == NULL || !npf_connkey_import(conkey, fw)) {
1062 1.1 rmind goto err;
1063 1.1 rmind }
1064 1.25 rmind conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
1065 1.20 christos bk = &con->c_back_entry;
1066 1.25 rmind if (conkey == NULL || !npf_connkey_import(conkey, bk)) {
1067 1.1 rmind goto err;
1068 1.1 rmind }
1069 1.1 rmind fw->ck_backptr = bk->ck_backptr = con;
1070 1.1 rmind
1071 1.1 rmind /* Insert the entries and the connection itself. */
1072 1.1 rmind if (!npf_conndb_insert(cd, fw, con)) {
1073 1.1 rmind goto err;
1074 1.1 rmind }
1075 1.1 rmind if (!npf_conndb_insert(cd, bk, con)) {
1076 1.1 rmind npf_conndb_remove(cd, fw);
1077 1.1 rmind goto err;
1078 1.1 rmind }
1079 1.12 rmind
1080 1.12 rmind NPF_PRINTF(("NPF: imported conn %p\n", con));
1081 1.1 rmind npf_conndb_enqueue(cd, con);
1082 1.1 rmind return 0;
1083 1.1 rmind err:
1084 1.22 christos npf_conn_destroy(npf, con);
1085 1.1 rmind return EINVAL;
1086 1.1 rmind }
1087 1.1 rmind
1088 1.20 christos int
1089 1.25 rmind npf_conn_find(npf_t *npf, const nvlist_t *idict, nvlist_t **odict)
1090 1.20 christos {
1091 1.25 rmind const nvlist_t *kdict;
1092 1.20 christos npf_connkey_t key;
1093 1.20 christos npf_conn_t *con;
1094 1.20 christos uint16_t dir;
1095 1.20 christos bool forw;
1096 1.20 christos
1097 1.25 rmind kdict = dnvlist_get_nvlist(idict, "key", NULL);
1098 1.25 rmind if (!kdict || !npf_connkey_import(kdict, &key)) {
1099 1.20 christos return EINVAL;
1100 1.25 rmind }
1101 1.25 rmind dir = dnvlist_get_number(idict, "direction", 0);
1102 1.22 christos con = npf_conndb_lookup(npf->conn_db, &key, &forw);
1103 1.20 christos if (con == NULL) {
1104 1.20 christos return ESRCH;
1105 1.20 christos }
1106 1.20 christos if (!npf_conn_ok(con, dir, true)) {
1107 1.20 christos atomic_dec_uint(&con->c_refcnt);
1108 1.20 christos return ESRCH;
1109 1.20 christos }
1110 1.22 christos *odict = npf_conn_export(npf, con);
1111 1.20 christos atomic_dec_uint(&con->c_refcnt);
1112 1.25 rmind return *odict ? 0 : ENOSPC;
1113 1.20 christos }
1114 1.20 christos
1115 1.1 rmind #if defined(DDB) || defined(_NPF_TESTING)
1116 1.1 rmind
1117 1.1 rmind void
1118 1.1 rmind npf_conn_print(const npf_conn_t *con)
1119 1.1 rmind {
1120 1.1 rmind const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
1121 1.1 rmind const uint32_t *fkey = con->c_forw_entry.ck_key;
1122 1.1 rmind const uint32_t *bkey = con->c_back_entry.ck_key;
1123 1.1 rmind const u_int proto = con->c_proto;
1124 1.22 christos struct timespec tspnow;
1125 1.1 rmind const void *src, *dst;
1126 1.1 rmind int etime;
1127 1.1 rmind
1128 1.22 christos getnanouptime(&tspnow);
1129 1.1 rmind etime = npf_state_etime(&con->c_state, proto);
1130 1.1 rmind
1131 1.22 christos printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
1132 1.22 christos proto, con->c_flags, (long)(tspnow.tv_sec - con->c_atime), etime);
1133 1.1 rmind
1134 1.1 rmind src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
1135 1.1 rmind printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
1136 1.1 rmind printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
1137 1.1 rmind
1138 1.1 rmind src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
1139 1.1 rmind printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
1140 1.1 rmind printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
1141 1.1 rmind
1142 1.1 rmind npf_state_dump(&con->c_state);
1143 1.1 rmind if (con->c_nat) {
1144 1.1 rmind npf_nat_dump(con->c_nat);
1145 1.1 rmind }
1146 1.1 rmind }
1147 1.1 rmind
1148 1.1 rmind #endif
1149