npf_conn.c revision 1.26 1 1.1 rmind /*-
2 1.26 rmind * Copyright (c) 2014-2018 Mindaugas Rasiukevicius <rmind at netbsd org>
3 1.1 rmind * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
4 1.1 rmind * All rights reserved.
5 1.1 rmind *
6 1.1 rmind * This material is based upon work partially supported by The
7 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8 1.1 rmind *
9 1.1 rmind * Redistribution and use in source and binary forms, with or without
10 1.1 rmind * modification, are permitted provided that the following conditions
11 1.1 rmind * are met:
12 1.1 rmind * 1. Redistributions of source code must retain the above copyright
13 1.1 rmind * notice, this list of conditions and the following disclaimer.
14 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 rmind * notice, this list of conditions and the following disclaimer in the
16 1.1 rmind * documentation and/or other materials provided with the distribution.
17 1.1 rmind *
18 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
29 1.1 rmind */
30 1.1 rmind
31 1.1 rmind /*
32 1.1 rmind * NPF connection tracking for stateful filtering and translation.
33 1.1 rmind *
34 1.1 rmind * Overview
35 1.1 rmind *
36 1.26 rmind * Packets can be incoming or outgoing with respect to an interface.
37 1.1 rmind * Connection direction is identified by the direction of its first
38 1.26 rmind * packet. The meaning of incoming/outgoing packet in the context of
39 1.26 rmind * connection direction can be confusing. Therefore, we will use the
40 1.26 rmind * terms "forwards stream" and "backwards stream", where packets in
41 1.26 rmind * the forwards stream mean the packets travelling in the direction
42 1.26 rmind * as the connection direction.
43 1.26 rmind *
44 1.26 rmind * All connections have two keys and thus two entries:
45 1.1 rmind *
46 1.1 rmind * npf_conn_t::c_forw_entry for the forwards stream and
47 1.1 rmind * npf_conn_t::c_back_entry for the backwards stream.
48 1.1 rmind *
49 1.1 rmind * The keys are formed from the 5-tuple (source/destination address,
50 1.1 rmind * source/destination port and the protocol). Additional matching
51 1.1 rmind * is performed for the interface (a common behaviour is equivalent
52 1.1 rmind * to the 6-tuple lookup including the interface ID). Note that the
53 1.1 rmind * key may be formed using translated values in a case of NAT.
54 1.1 rmind *
55 1.1 rmind * Connections can serve two purposes: for the implicit passing or
56 1.1 rmind * to accommodate the dynamic NAT. Connections for the former purpose
57 1.1 rmind * are created by the rules with "stateful" attribute and are used for
58 1.1 rmind * stateful filtering. Such connections indicate that the packet of
59 1.1 rmind * the backwards stream should be passed without inspection of the
60 1.1 rmind * ruleset. The other purpose is to associate a dynamic NAT mechanism
61 1.1 rmind * with a connection. Such connections are created by the NAT policies
62 1.1 rmind * and they have a relationship with NAT translation structure via
63 1.1 rmind * npf_conn_t::c_nat. A single connection can serve both purposes,
64 1.1 rmind * which is a common case.
65 1.1 rmind *
66 1.1 rmind * Connection life-cycle
67 1.1 rmind *
68 1.1 rmind * Connections are established when a packet matches said rule or
69 1.1 rmind * NAT policy. Both keys of the established connection are inserted
70 1.1 rmind * into the connection database. A garbage collection thread
71 1.1 rmind * periodically scans all connections and depending on connection
72 1.1 rmind * properties (e.g. last activity time, protocol) removes connection
73 1.1 rmind * entries and expires the actual connections.
74 1.1 rmind *
75 1.1 rmind * Each connection has a reference count. The reference is acquired
76 1.1 rmind * on lookup and should be released by the caller. It guarantees that
77 1.1 rmind * the connection will not be destroyed, although it may be expired.
78 1.1 rmind *
79 1.1 rmind * Synchronisation
80 1.1 rmind *
81 1.1 rmind * Connection database is accessed in a lock-less manner by the main
82 1.1 rmind * routines: npf_conn_inspect() and npf_conn_establish(). Since they
83 1.1 rmind * are always called from a software interrupt, the database is
84 1.1 rmind * protected using passive serialisation. The main place which can
85 1.1 rmind * destroy a connection is npf_conn_worker(). The database itself
86 1.1 rmind * can be replaced and destroyed in npf_conn_reload().
87 1.1 rmind *
88 1.1 rmind * ALG support
89 1.1 rmind *
90 1.1 rmind * Application-level gateways (ALGs) can override generic connection
91 1.1 rmind * inspection (npf_alg_conn() call in npf_conn_inspect() function) by
92 1.1 rmind * performing their own lookup using different key. Recursive call
93 1.1 rmind * to npf_conn_inspect() is not allowed. The ALGs ought to use the
94 1.1 rmind * npf_conn_lookup() function for this purpose.
95 1.1 rmind *
96 1.1 rmind * Lock order
97 1.1 rmind *
98 1.6 rmind * npf_config_lock ->
99 1.6 rmind * conn_lock ->
100 1.6 rmind * npf_conn_t::c_lock
101 1.1 rmind */
102 1.1 rmind
103 1.22 christos #ifdef _KERNEL
104 1.1 rmind #include <sys/cdefs.h>
105 1.26 rmind __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.26 2019/01/19 21:19:31 rmind Exp $");
106 1.1 rmind
107 1.1 rmind #include <sys/param.h>
108 1.1 rmind #include <sys/types.h>
109 1.1 rmind
110 1.1 rmind #include <netinet/in.h>
111 1.1 rmind #include <netinet/tcp.h>
112 1.1 rmind
113 1.1 rmind #include <sys/atomic.h>
114 1.1 rmind #include <sys/condvar.h>
115 1.1 rmind #include <sys/kmem.h>
116 1.1 rmind #include <sys/kthread.h>
117 1.1 rmind #include <sys/mutex.h>
118 1.1 rmind #include <net/pfil.h>
119 1.1 rmind #include <sys/pool.h>
120 1.1 rmind #include <sys/queue.h>
121 1.1 rmind #include <sys/systm.h>
122 1.22 christos #endif
123 1.1 rmind
124 1.1 rmind #define __NPF_CONN_PRIVATE
125 1.1 rmind #include "npf_conn.h"
126 1.1 rmind #include "npf_impl.h"
127 1.1 rmind
128 1.1 rmind /*
129 1.1 rmind * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
130 1.1 rmind */
131 1.1 rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
132 1.1 rmind #define CONN_ACTIVE 0x004 /* visible on inspection */
133 1.1 rmind #define CONN_PASS 0x008 /* perform implicit passing */
134 1.1 rmind #define CONN_EXPIRE 0x010 /* explicitly expire */
135 1.1 rmind #define CONN_REMOVED 0x020 /* "forw/back" entries removed */
136 1.1 rmind
137 1.6 rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
138 1.1 rmind
139 1.25 rmind static nvlist_t *npf_conn_export(npf_t *, const npf_conn_t *);
140 1.1 rmind
141 1.1 rmind /*
142 1.1 rmind * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
143 1.1 rmind */
144 1.1 rmind
145 1.1 rmind void
146 1.22 christos npf_conn_init(npf_t *npf, int flags)
147 1.1 rmind {
148 1.22 christos npf->conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
149 1.1 rmind 0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
150 1.22 christos mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
151 1.22 christos npf->conn_tracking = CONN_TRACKING_OFF;
152 1.22 christos npf->conn_db = npf_conndb_create();
153 1.1 rmind
154 1.22 christos if ((flags & NPF_NO_GC) == 0) {
155 1.22 christos npf_worker_register(npf, npf_conn_worker);
156 1.22 christos }
157 1.1 rmind }
158 1.1 rmind
159 1.1 rmind void
160 1.22 christos npf_conn_fini(npf_t *npf)
161 1.1 rmind {
162 1.6 rmind /* Note: the caller should have flushed the connections. */
163 1.22 christos KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
164 1.22 christos npf_worker_unregister(npf, npf_conn_worker);
165 1.1 rmind
166 1.22 christos npf_conndb_destroy(npf->conn_db);
167 1.22 christos pool_cache_destroy(npf->conn_cache);
168 1.22 christos mutex_destroy(&npf->conn_lock);
169 1.1 rmind }
170 1.1 rmind
171 1.1 rmind /*
172 1.6 rmind * npf_conn_load: perform the load by flushing the current connection
173 1.6 rmind * database and replacing it with the new one or just destroying.
174 1.1 rmind *
175 1.6 rmind * => The caller must disable the connection tracking and ensure that
176 1.6 rmind * there are no connection database lookups or references in-flight.
177 1.1 rmind */
178 1.6 rmind void
179 1.22 christos npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
180 1.1 rmind {
181 1.6 rmind npf_conndb_t *odb = NULL;
182 1.1 rmind
183 1.22 christos KASSERT(npf_config_locked_p(npf));
184 1.1 rmind
185 1.1 rmind /*
186 1.6 rmind * The connection database is in the quiescent state.
187 1.6 rmind * Prevent G/C thread from running and install a new database.
188 1.1 rmind */
189 1.22 christos mutex_enter(&npf->conn_lock);
190 1.6 rmind if (ndb) {
191 1.22 christos KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
192 1.22 christos odb = npf->conn_db;
193 1.22 christos npf->conn_db = ndb;
194 1.6 rmind membar_sync();
195 1.6 rmind }
196 1.6 rmind if (track) {
197 1.6 rmind /* After this point lookups start flying in. */
198 1.22 christos npf->conn_tracking = CONN_TRACKING_ON;
199 1.1 rmind }
200 1.22 christos mutex_exit(&npf->conn_lock);
201 1.1 rmind
202 1.1 rmind if (odb) {
203 1.6 rmind /*
204 1.6 rmind * Flush all, no sync since the caller did it for us.
205 1.6 rmind * Also, release the pool cache memory.
206 1.6 rmind */
207 1.26 rmind npf_conndb_gc(npf, odb, true, false);
208 1.1 rmind npf_conndb_destroy(odb);
209 1.22 christos pool_cache_invalidate(npf->conn_cache);
210 1.1 rmind }
211 1.1 rmind }
212 1.1 rmind
213 1.1 rmind /*
214 1.1 rmind * npf_conn_tracking: enable/disable connection tracking.
215 1.1 rmind */
216 1.1 rmind void
217 1.22 christos npf_conn_tracking(npf_t *npf, bool track)
218 1.1 rmind {
219 1.22 christos KASSERT(npf_config_locked_p(npf));
220 1.22 christos npf->conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
221 1.1 rmind }
222 1.1 rmind
223 1.6 rmind static inline bool
224 1.1 rmind npf_conn_trackable_p(const npf_cache_t *npc)
225 1.1 rmind {
226 1.22 christos const npf_t *npf = npc->npc_ctx;
227 1.22 christos
228 1.1 rmind /*
229 1.1 rmind * Check if connection tracking is on. Also, if layer 3 and 4 are
230 1.1 rmind * not cached - protocol is not supported or packet is invalid.
231 1.1 rmind */
232 1.22 christos if (npf->conn_tracking != CONN_TRACKING_ON) {
233 1.1 rmind return false;
234 1.1 rmind }
235 1.1 rmind if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
236 1.1 rmind return false;
237 1.1 rmind }
238 1.1 rmind return true;
239 1.1 rmind }
240 1.1 rmind
241 1.18 christos static uint32_t
242 1.20 christos connkey_setkey(npf_connkey_t *key, uint16_t proto, const void *ipv,
243 1.22 christos const uint16_t *id, unsigned alen, bool forw)
244 1.18 christos {
245 1.20 christos uint32_t isrc, idst, *k = key->ck_key;
246 1.18 christos const npf_addr_t * const *ips = ipv;
247 1.22 christos
248 1.18 christos if (__predict_true(forw)) {
249 1.18 christos isrc = NPF_SRC, idst = NPF_DST;
250 1.18 christos } else {
251 1.18 christos isrc = NPF_DST, idst = NPF_SRC;
252 1.18 christos }
253 1.18 christos
254 1.18 christos /*
255 1.18 christos * Construct a key formed out of 32-bit integers. The key layout:
256 1.18 christos *
257 1.18 christos * Field: | proto | alen | src-id | dst-id | src-addr | dst-addr |
258 1.18 christos * +--------+--------+--------+--------+----------+----------+
259 1.18 christos * Bits: | 16 | 16 | 16 | 16 | 32-128 | 32-128 |
260 1.18 christos *
261 1.18 christos * The source and destination are inverted if they key is for the
262 1.18 christos * backwards stream (forw == false). The address length depends
263 1.18 christos * on the 'alen' field; it is a length in bytes, either 4 or 16.
264 1.18 christos */
265 1.18 christos
266 1.20 christos k[0] = ((uint32_t)proto << 16) | (alen & 0xffff);
267 1.20 christos k[1] = ((uint32_t)id[isrc] << 16) | id[idst];
268 1.18 christos
269 1.18 christos if (__predict_true(alen == sizeof(in_addr_t))) {
270 1.22 christos k[2] = ips[isrc]->word32[0];
271 1.22 christos k[3] = ips[idst]->word32[0];
272 1.18 christos return 4 * sizeof(uint32_t);
273 1.18 christos } else {
274 1.18 christos const u_int nwords = alen >> 2;
275 1.20 christos memcpy(&k[2], ips[isrc], alen);
276 1.20 christos memcpy(&k[2 + nwords], ips[idst], alen);
277 1.18 christos return (2 + (nwords * 2)) * sizeof(uint32_t);
278 1.18 christos }
279 1.18 christos }
280 1.18 christos
281 1.20 christos static void
282 1.20 christos connkey_getkey(const npf_connkey_t *key, uint16_t *proto, npf_addr_t *ips,
283 1.20 christos uint16_t *id, uint16_t *alen)
284 1.20 christos {
285 1.20 christos const uint32_t *k = key->ck_key;
286 1.20 christos
287 1.20 christos *proto = k[0] >> 16;
288 1.20 christos *alen = k[0] & 0xffff;
289 1.20 christos id[NPF_SRC] = k[1] >> 16;
290 1.20 christos id[NPF_DST] = k[1] & 0xffff;
291 1.20 christos
292 1.20 christos switch (*alen) {
293 1.20 christos case sizeof(struct in6_addr):
294 1.20 christos case sizeof(struct in_addr):
295 1.20 christos memcpy(&ips[NPF_SRC], &k[2], *alen);
296 1.20 christos memcpy(&ips[NPF_DST], &k[2 + ((unsigned)*alen >> 2)], *alen);
297 1.20 christos return;
298 1.20 christos default:
299 1.20 christos KASSERT(0);
300 1.20 christos }
301 1.20 christos }
302 1.20 christos
303 1.1 rmind /*
304 1.1 rmind * npf_conn_conkey: construct a key for the connection lookup.
305 1.8 rmind *
306 1.8 rmind * => Returns the key length in bytes or zero on failure.
307 1.1 rmind */
308 1.8 rmind unsigned
309 1.1 rmind npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
310 1.1 rmind {
311 1.22 christos const u_int proto = npc->npc_proto;
312 1.22 christos const u_int alen = npc->npc_alen;
313 1.1 rmind const struct tcphdr *th;
314 1.1 rmind const struct udphdr *uh;
315 1.1 rmind uint16_t id[2];
316 1.1 rmind
317 1.22 christos switch (proto) {
318 1.1 rmind case IPPROTO_TCP:
319 1.1 rmind KASSERT(npf_iscached(npc, NPC_TCP));
320 1.1 rmind th = npc->npc_l4.tcp;
321 1.1 rmind id[NPF_SRC] = th->th_sport;
322 1.1 rmind id[NPF_DST] = th->th_dport;
323 1.1 rmind break;
324 1.1 rmind case IPPROTO_UDP:
325 1.1 rmind KASSERT(npf_iscached(npc, NPC_UDP));
326 1.1 rmind uh = npc->npc_l4.udp;
327 1.1 rmind id[NPF_SRC] = uh->uh_sport;
328 1.1 rmind id[NPF_DST] = uh->uh_dport;
329 1.1 rmind break;
330 1.1 rmind case IPPROTO_ICMP:
331 1.1 rmind if (npf_iscached(npc, NPC_ICMP_ID)) {
332 1.1 rmind const struct icmp *ic = npc->npc_l4.icmp;
333 1.1 rmind id[NPF_SRC] = ic->icmp_id;
334 1.1 rmind id[NPF_DST] = ic->icmp_id;
335 1.1 rmind break;
336 1.1 rmind }
337 1.8 rmind return 0;
338 1.1 rmind case IPPROTO_ICMPV6:
339 1.1 rmind if (npf_iscached(npc, NPC_ICMP_ID)) {
340 1.1 rmind const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
341 1.1 rmind id[NPF_SRC] = ic6->icmp6_id;
342 1.1 rmind id[NPF_DST] = ic6->icmp6_id;
343 1.1 rmind break;
344 1.1 rmind }
345 1.8 rmind return 0;
346 1.1 rmind default:
347 1.1 rmind /* Unsupported protocol. */
348 1.8 rmind return 0;
349 1.1 rmind }
350 1.22 christos return connkey_setkey(key, proto, npc->npc_ips, id, alen, forw);
351 1.1 rmind }
352 1.1 rmind
353 1.3 christos static __inline void
354 1.1 rmind connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
355 1.1 rmind {
356 1.1 rmind const u_int alen = key->ck_key[0] & 0xffff;
357 1.1 rmind uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
358 1.1 rmind
359 1.1 rmind KASSERT(alen > 0);
360 1.1 rmind memcpy(addr, naddr, alen);
361 1.1 rmind }
362 1.1 rmind
363 1.3 christos static __inline void
364 1.1 rmind connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
365 1.1 rmind {
366 1.1 rmind const uint32_t oid = key->ck_key[1];
367 1.1 rmind const u_int shift = 16 * !di;
368 1.1 rmind const uint32_t mask = 0xffff0000 >> shift;
369 1.1 rmind
370 1.1 rmind key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
371 1.1 rmind }
372 1.1 rmind
373 1.22 christos static inline void
374 1.22 christos conn_update_atime(npf_conn_t *con)
375 1.22 christos {
376 1.22 christos struct timespec tsnow;
377 1.22 christos
378 1.22 christos getnanouptime(&tsnow);
379 1.22 christos con->c_atime = tsnow.tv_sec;
380 1.22 christos }
381 1.22 christos
382 1.1 rmind /*
383 1.26 rmind * npf_conn_ok: check if the connection is active and has the right direction.
384 1.18 christos */
385 1.18 christos static bool
386 1.22 christos npf_conn_ok(const npf_conn_t *con, const int di, bool forw)
387 1.18 christos {
388 1.22 christos const uint32_t flags = con->c_flags;
389 1.18 christos
390 1.18 christos /* Check if connection is active and not expired. */
391 1.18 christos bool ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
392 1.18 christos if (__predict_false(!ok)) {
393 1.18 christos return false;
394 1.18 christos }
395 1.18 christos
396 1.18 christos /* Check if the direction is consistent */
397 1.22 christos bool pforw = (flags & PFIL_ALL) == (unsigned)di;
398 1.18 christos if (__predict_false(forw != pforw)) {
399 1.18 christos return false;
400 1.18 christos }
401 1.18 christos return true;
402 1.18 christos }
403 1.18 christos
404 1.18 christos /*
405 1.1 rmind * npf_conn_lookup: lookup if there is an established connection.
406 1.1 rmind *
407 1.1 rmind * => If found, we will hold a reference for the caller.
408 1.1 rmind */
409 1.1 rmind npf_conn_t *
410 1.4 rmind npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
411 1.1 rmind {
412 1.22 christos npf_t *npf = npc->npc_ctx;
413 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
414 1.1 rmind npf_conn_t *con;
415 1.1 rmind npf_connkey_t key;
416 1.18 christos u_int cifid;
417 1.1 rmind
418 1.1 rmind /* Construct a key and lookup for a connection in the store. */
419 1.1 rmind if (!npf_conn_conkey(npc, &key, true)) {
420 1.1 rmind return NULL;
421 1.1 rmind }
422 1.22 christos con = npf_conndb_lookup(npf->conn_db, &key, forw);
423 1.1 rmind if (con == NULL) {
424 1.1 rmind return NULL;
425 1.1 rmind }
426 1.1 rmind KASSERT(npc->npc_proto == con->c_proto);
427 1.1 rmind
428 1.1 rmind /* Check if connection is active and not expired. */
429 1.18 christos if (!npf_conn_ok(con, di, *forw)) {
430 1.1 rmind atomic_dec_uint(&con->c_refcnt);
431 1.1 rmind return NULL;
432 1.1 rmind }
433 1.1 rmind
434 1.1 rmind /*
435 1.1 rmind * Match the interface and the direction of the connection entry
436 1.1 rmind * and the packet.
437 1.1 rmind */
438 1.1 rmind cifid = con->c_ifid;
439 1.1 rmind if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
440 1.1 rmind atomic_dec_uint(&con->c_refcnt);
441 1.1 rmind return NULL;
442 1.1 rmind }
443 1.1 rmind
444 1.1 rmind /* Update the last activity time. */
445 1.22 christos conn_update_atime(con);
446 1.1 rmind return con;
447 1.1 rmind }
448 1.1 rmind
449 1.1 rmind /*
450 1.1 rmind * npf_conn_inspect: lookup a connection and inspecting the protocol data.
451 1.1 rmind *
452 1.1 rmind * => If found, we will hold a reference for the caller.
453 1.1 rmind */
454 1.1 rmind npf_conn_t *
455 1.4 rmind npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
456 1.1 rmind {
457 1.4 rmind nbuf_t *nbuf = npc->npc_nbuf;
458 1.1 rmind npf_conn_t *con;
459 1.1 rmind bool forw, ok;
460 1.1 rmind
461 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
462 1.1 rmind if (!npf_conn_trackable_p(npc)) {
463 1.1 rmind return NULL;
464 1.1 rmind }
465 1.1 rmind
466 1.1 rmind /* Query ALG which may lookup connection for us. */
467 1.4 rmind if ((con = npf_alg_conn(npc, di)) != NULL) {
468 1.1 rmind /* Note: reference is held. */
469 1.1 rmind return con;
470 1.1 rmind }
471 1.1 rmind if (nbuf_head_mbuf(nbuf) == NULL) {
472 1.1 rmind *error = ENOMEM;
473 1.1 rmind return NULL;
474 1.1 rmind }
475 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
476 1.1 rmind
477 1.1 rmind /* Main lookup of the connection. */
478 1.4 rmind if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
479 1.1 rmind return NULL;
480 1.1 rmind }
481 1.1 rmind
482 1.1 rmind /* Inspect the protocol data and handle state changes. */
483 1.1 rmind mutex_enter(&con->c_lock);
484 1.4 rmind ok = npf_state_inspect(npc, &con->c_state, forw);
485 1.1 rmind mutex_exit(&con->c_lock);
486 1.1 rmind
487 1.17 rmind /* If invalid state: let the rules deal with it. */
488 1.1 rmind if (__predict_false(!ok)) {
489 1.1 rmind npf_conn_release(con);
490 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
491 1.17 rmind return NULL;
492 1.17 rmind }
493 1.17 rmind
494 1.17 rmind /*
495 1.17 rmind * If this is multi-end state, then specially tag the packet
496 1.17 rmind * so it will be just passed-through on other interfaces.
497 1.17 rmind */
498 1.17 rmind if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
499 1.17 rmind npf_conn_release(con);
500 1.17 rmind *error = ENOMEM;
501 1.17 rmind return NULL;
502 1.1 rmind }
503 1.1 rmind return con;
504 1.1 rmind }
505 1.1 rmind
506 1.1 rmind /*
507 1.1 rmind * npf_conn_establish: create a new connection, insert into the global list.
508 1.1 rmind *
509 1.1 rmind * => Connection is created with the reference held for the caller.
510 1.1 rmind * => Connection will be activated on the first reference release.
511 1.1 rmind */
512 1.1 rmind npf_conn_t *
513 1.4 rmind npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
514 1.1 rmind {
515 1.22 christos npf_t *npf = npc->npc_ctx;
516 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
517 1.1 rmind npf_conn_t *con;
518 1.15 rmind int error = 0;
519 1.1 rmind
520 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
521 1.1 rmind
522 1.1 rmind if (!npf_conn_trackable_p(npc)) {
523 1.1 rmind return NULL;
524 1.1 rmind }
525 1.1 rmind
526 1.1 rmind /* Allocate and initialise the new connection. */
527 1.22 christos con = pool_cache_get(npf->conn_cache, PR_NOWAIT);
528 1.1 rmind if (__predict_false(!con)) {
529 1.22 christos npf_worker_signal(npf);
530 1.1 rmind return NULL;
531 1.1 rmind }
532 1.1 rmind NPF_PRINTF(("NPF: create conn %p\n", con));
533 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
534 1.1 rmind
535 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
536 1.1 rmind con->c_flags = (di & PFIL_ALL);
537 1.15 rmind con->c_refcnt = 0;
538 1.1 rmind con->c_rproc = NULL;
539 1.1 rmind con->c_nat = NULL;
540 1.1 rmind
541 1.15 rmind /* Initialize the protocol state. */
542 1.4 rmind if (!npf_state_init(npc, &con->c_state)) {
543 1.22 christos npf_conn_destroy(npf, con);
544 1.15 rmind return NULL;
545 1.1 rmind }
546 1.1 rmind
547 1.1 rmind KASSERT(npf_iscached(npc, NPC_IP46));
548 1.1 rmind npf_connkey_t *fw = &con->c_forw_entry;
549 1.1 rmind npf_connkey_t *bk = &con->c_back_entry;
550 1.1 rmind
551 1.1 rmind /*
552 1.1 rmind * Construct "forwards" and "backwards" keys. Also, set the
553 1.1 rmind * interface ID for this connection (unless it is global).
554 1.1 rmind */
555 1.15 rmind if (!npf_conn_conkey(npc, fw, true) ||
556 1.15 rmind !npf_conn_conkey(npc, bk, false)) {
557 1.22 christos npf_conn_destroy(npf, con);
558 1.15 rmind return NULL;
559 1.1 rmind }
560 1.1 rmind fw->ck_backptr = bk->ck_backptr = con;
561 1.1 rmind con->c_ifid = per_if ? nbuf->nb_ifid : 0;
562 1.1 rmind con->c_proto = npc->npc_proto;
563 1.1 rmind
564 1.15 rmind /*
565 1.15 rmind * Set last activity time for a new connection and acquire
566 1.15 rmind * a reference for the caller before we make it visible.
567 1.15 rmind */
568 1.22 christos conn_update_atime(con);
569 1.15 rmind con->c_refcnt = 1;
570 1.1 rmind
571 1.1 rmind /*
572 1.1 rmind * Insert both keys (entries representing directions) of the
573 1.15 rmind * connection. At this point it becomes visible, but we activate
574 1.15 rmind * the connection later.
575 1.1 rmind */
576 1.15 rmind mutex_enter(&con->c_lock);
577 1.26 rmind if (!npf_conndb_insert(npf->conn_db, fw)) {
578 1.15 rmind error = EISCONN;
579 1.1 rmind goto err;
580 1.1 rmind }
581 1.26 rmind if (!npf_conndb_insert(npf->conn_db, bk)) {
582 1.15 rmind npf_conn_t *ret __diagused;
583 1.22 christos ret = npf_conndb_remove(npf->conn_db, fw);
584 1.15 rmind KASSERT(ret == con);
585 1.15 rmind error = EISCONN;
586 1.15 rmind goto err;
587 1.15 rmind }
588 1.15 rmind err:
589 1.15 rmind /*
590 1.15 rmind * If we have hit the duplicate: mark the connection as expired
591 1.15 rmind * and let the G/C thread to take care of it. We cannot do it
592 1.15 rmind * here since there might be references acquired already.
593 1.15 rmind */
594 1.15 rmind if (error) {
595 1.16 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
596 1.16 rmind atomic_dec_uint(&con->c_refcnt);
597 1.22 christos npf_stats_inc(npf, NPF_STAT_RACE_CONN);
598 1.15 rmind } else {
599 1.15 rmind NPF_PRINTF(("NPF: establish conn %p\n", con));
600 1.1 rmind }
601 1.1 rmind
602 1.1 rmind /* Finally, insert into the connection list. */
603 1.22 christos npf_conndb_enqueue(npf->conn_db, con);
604 1.15 rmind mutex_exit(&con->c_lock);
605 1.15 rmind
606 1.15 rmind return error ? NULL : con;
607 1.1 rmind }
608 1.1 rmind
609 1.26 rmind void
610 1.22 christos npf_conn_destroy(npf_t *npf, npf_conn_t *con)
611 1.1 rmind {
612 1.15 rmind KASSERT(con->c_refcnt == 0);
613 1.15 rmind
614 1.1 rmind if (con->c_nat) {
615 1.1 rmind /* Release any NAT structures. */
616 1.1 rmind npf_nat_destroy(con->c_nat);
617 1.1 rmind }
618 1.1 rmind if (con->c_rproc) {
619 1.1 rmind /* Release the rule procedure. */
620 1.1 rmind npf_rproc_release(con->c_rproc);
621 1.1 rmind }
622 1.1 rmind
623 1.1 rmind /* Destroy the state. */
624 1.1 rmind npf_state_destroy(&con->c_state);
625 1.1 rmind mutex_destroy(&con->c_lock);
626 1.1 rmind
627 1.1 rmind /* Free the structure, increase the counter. */
628 1.22 christos pool_cache_put(npf->conn_cache, con);
629 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
630 1.1 rmind NPF_PRINTF(("NPF: conn %p destroyed\n", con));
631 1.1 rmind }
632 1.1 rmind
633 1.1 rmind /*
634 1.1 rmind * npf_conn_setnat: associate NAT entry with the connection, update and
635 1.1 rmind * re-insert connection entry using the translation values.
636 1.16 rmind *
637 1.16 rmind * => The caller must be holding a reference.
638 1.1 rmind */
639 1.1 rmind int
640 1.1 rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
641 1.1 rmind npf_nat_t *nt, u_int ntype)
642 1.1 rmind {
643 1.1 rmind static const u_int nat_type_dimap[] = {
644 1.1 rmind [NPF_NATOUT] = NPF_DST,
645 1.1 rmind [NPF_NATIN] = NPF_SRC,
646 1.1 rmind };
647 1.22 christos npf_t *npf = npc->npc_ctx;
648 1.1 rmind npf_connkey_t key, *bk;
649 1.2 rmind npf_conn_t *ret __diagused;
650 1.1 rmind npf_addr_t *taddr;
651 1.1 rmind in_port_t tport;
652 1.1 rmind u_int tidx;
653 1.1 rmind
654 1.1 rmind KASSERT(con->c_refcnt > 0);
655 1.1 rmind
656 1.1 rmind npf_nat_gettrans(nt, &taddr, &tport);
657 1.1 rmind KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
658 1.1 rmind tidx = nat_type_dimap[ntype];
659 1.1 rmind
660 1.1 rmind /* Construct a "backwards" key. */
661 1.1 rmind if (!npf_conn_conkey(npc, &key, false)) {
662 1.1 rmind return EINVAL;
663 1.1 rmind }
664 1.1 rmind
665 1.1 rmind /* Acquire the lock and check for the races. */
666 1.1 rmind mutex_enter(&con->c_lock);
667 1.1 rmind if (__predict_false(con->c_flags & CONN_EXPIRE)) {
668 1.1 rmind /* The connection got expired. */
669 1.1 rmind mutex_exit(&con->c_lock);
670 1.1 rmind return EINVAL;
671 1.1 rmind }
672 1.15 rmind KASSERT((con->c_flags & CONN_REMOVED) == 0);
673 1.15 rmind
674 1.1 rmind if (__predict_false(con->c_nat != NULL)) {
675 1.1 rmind /* Race with a duplicate packet. */
676 1.1 rmind mutex_exit(&con->c_lock);
677 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
678 1.1 rmind return EISCONN;
679 1.1 rmind }
680 1.1 rmind
681 1.1 rmind /* Remove the "backwards" entry. */
682 1.22 christos ret = npf_conndb_remove(npf->conn_db, &con->c_back_entry);
683 1.1 rmind KASSERT(ret == con);
684 1.1 rmind
685 1.1 rmind /* Set the source/destination IDs to the translation values. */
686 1.1 rmind bk = &con->c_back_entry;
687 1.1 rmind connkey_set_addr(bk, taddr, tidx);
688 1.1 rmind if (tport) {
689 1.1 rmind connkey_set_id(bk, tport, tidx);
690 1.1 rmind }
691 1.1 rmind
692 1.1 rmind /* Finally, re-insert the "backwards" entry. */
693 1.26 rmind if (!npf_conndb_insert(npf->conn_db, bk)) {
694 1.1 rmind /*
695 1.1 rmind * Race: we have hit the duplicate, remove the "forwards"
696 1.1 rmind * entry and expire our connection; it is no longer valid.
697 1.1 rmind */
698 1.22 christos ret = npf_conndb_remove(npf->conn_db, &con->c_forw_entry);
699 1.15 rmind KASSERT(ret == con);
700 1.15 rmind
701 1.1 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
702 1.1 rmind mutex_exit(&con->c_lock);
703 1.1 rmind
704 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
705 1.1 rmind return EISCONN;
706 1.1 rmind }
707 1.1 rmind
708 1.1 rmind /* Associate the NAT entry and release the lock. */
709 1.1 rmind con->c_nat = nt;
710 1.1 rmind mutex_exit(&con->c_lock);
711 1.1 rmind return 0;
712 1.1 rmind }
713 1.1 rmind
714 1.1 rmind /*
715 1.1 rmind * npf_conn_expire: explicitly mark connection as expired.
716 1.1 rmind */
717 1.1 rmind void
718 1.1 rmind npf_conn_expire(npf_conn_t *con)
719 1.1 rmind {
720 1.1 rmind /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
721 1.1 rmind atomic_or_uint(&con->c_flags, CONN_EXPIRE);
722 1.1 rmind }
723 1.1 rmind
724 1.1 rmind /*
725 1.1 rmind * npf_conn_pass: return true if connection is "pass" one, otherwise false.
726 1.1 rmind */
727 1.1 rmind bool
728 1.23 christos npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
729 1.1 rmind {
730 1.1 rmind KASSERT(con->c_refcnt > 0);
731 1.1 rmind if (__predict_true(con->c_flags & CONN_PASS)) {
732 1.24 rmind mi->mi_rid = con->c_rid;
733 1.24 rmind mi->mi_retfl = con->c_retfl;
734 1.1 rmind *rp = con->c_rproc;
735 1.1 rmind return true;
736 1.1 rmind }
737 1.1 rmind return false;
738 1.1 rmind }
739 1.1 rmind
740 1.1 rmind /*
741 1.1 rmind * npf_conn_setpass: mark connection as a "pass" one and associate the
742 1.1 rmind * rule procedure with it.
743 1.1 rmind */
744 1.1 rmind void
745 1.23 christos npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
746 1.1 rmind {
747 1.1 rmind KASSERT((con->c_flags & CONN_ACTIVE) == 0);
748 1.1 rmind KASSERT(con->c_refcnt > 0);
749 1.1 rmind KASSERT(con->c_rproc == NULL);
750 1.1 rmind
751 1.1 rmind /*
752 1.1 rmind * No need for atomic since the connection is not yet active.
753 1.1 rmind * If rproc is set, the caller transfers its reference to us,
754 1.1 rmind * which will be released on npf_conn_destroy().
755 1.1 rmind */
756 1.14 rmind atomic_or_uint(&con->c_flags, CONN_PASS);
757 1.1 rmind con->c_rproc = rp;
758 1.24 rmind if (rp) {
759 1.24 rmind con->c_rid = mi->mi_rid;
760 1.24 rmind con->c_retfl = mi->mi_retfl;
761 1.24 rmind }
762 1.1 rmind }
763 1.1 rmind
764 1.1 rmind /*
765 1.1 rmind * npf_conn_release: release a reference, which might allow G/C thread
766 1.1 rmind * to destroy this connection.
767 1.1 rmind */
768 1.1 rmind void
769 1.1 rmind npf_conn_release(npf_conn_t *con)
770 1.1 rmind {
771 1.1 rmind if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
772 1.1 rmind /* Activate: after this, connection is globally visible. */
773 1.14 rmind atomic_or_uint(&con->c_flags, CONN_ACTIVE);
774 1.1 rmind }
775 1.1 rmind KASSERT(con->c_refcnt > 0);
776 1.1 rmind atomic_dec_uint(&con->c_refcnt);
777 1.1 rmind }
778 1.1 rmind
779 1.1 rmind /*
780 1.13 rmind * npf_conn_getnat: return associated NAT data entry and indicate
781 1.1 rmind * whether it is a "forwards" or "backwards" stream.
782 1.1 rmind */
783 1.1 rmind npf_nat_t *
784 1.13 rmind npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
785 1.1 rmind {
786 1.1 rmind KASSERT(con->c_refcnt > 0);
787 1.22 christos *forw = (con->c_flags & PFIL_ALL) == (u_int)di;
788 1.1 rmind return con->c_nat;
789 1.1 rmind }
790 1.1 rmind
791 1.1 rmind /*
792 1.1 rmind * npf_conn_expired: criterion to check if connection is expired.
793 1.1 rmind */
794 1.26 rmind bool
795 1.22 christos npf_conn_expired(const npf_conn_t *con, uint64_t tsnow)
796 1.1 rmind {
797 1.1 rmind const int etime = npf_state_etime(&con->c_state, con->c_proto);
798 1.22 christos int elapsed;
799 1.1 rmind
800 1.1 rmind if (__predict_false(con->c_flags & CONN_EXPIRE)) {
801 1.1 rmind /* Explicitly marked to be expired. */
802 1.1 rmind return true;
803 1.1 rmind }
804 1.22 christos
805 1.22 christos /*
806 1.22 christos * Note: another thread may update 'atime' and it might
807 1.22 christos * become greater than 'now'.
808 1.22 christos */
809 1.22 christos elapsed = (int64_t)tsnow - con->c_atime;
810 1.22 christos return elapsed > etime;
811 1.1 rmind }
812 1.1 rmind
813 1.1 rmind /*
814 1.26 rmind * npf_conn_remove: unlink the connection and mark as expired.
815 1.1 rmind */
816 1.7 rmind void
817 1.26 rmind npf_conn_remove(npf_conndb_t *cd, npf_conn_t *con)
818 1.1 rmind {
819 1.26 rmind /* Remove both entries of the connection. */
820 1.26 rmind mutex_enter(&con->c_lock);
821 1.26 rmind if ((con->c_flags & CONN_REMOVED) == 0) {
822 1.26 rmind npf_conn_t *ret __diagused;
823 1.1 rmind
824 1.26 rmind ret = npf_conndb_remove(cd, &con->c_forw_entry);
825 1.26 rmind KASSERT(ret == con);
826 1.26 rmind ret = npf_conndb_remove(cd, &con->c_back_entry);
827 1.26 rmind KASSERT(ret == con);
828 1.1 rmind }
829 1.6 rmind
830 1.26 rmind /* Flag the removal and expiration. */
831 1.26 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
832 1.26 rmind mutex_exit(&con->c_lock);
833 1.1 rmind }
834 1.1 rmind
835 1.6 rmind /*
836 1.6 rmind * npf_conn_worker: G/C to run from a worker thread.
837 1.6 rmind */
838 1.22 christos void
839 1.22 christos npf_conn_worker(npf_t *npf)
840 1.1 rmind {
841 1.26 rmind npf_conndb_gc(npf, npf->conn_db, false, true);
842 1.1 rmind }
843 1.1 rmind
844 1.1 rmind /*
845 1.10 rmind * npf_conndb_export: construct a list of connections prepared for saving.
846 1.1 rmind * Note: this is expected to be an expensive operation.
847 1.1 rmind */
848 1.1 rmind int
849 1.25 rmind npf_conndb_export(npf_t *npf, nvlist_t *npf_dict)
850 1.1 rmind {
851 1.26 rmind npf_conn_t *head, *con;
852 1.1 rmind
853 1.1 rmind /*
854 1.1 rmind * Note: acquire conn_lock to prevent from the database
855 1.1 rmind * destruction and G/C thread.
856 1.1 rmind */
857 1.22 christos mutex_enter(&npf->conn_lock);
858 1.22 christos if (npf->conn_tracking != CONN_TRACKING_ON) {
859 1.22 christos mutex_exit(&npf->conn_lock);
860 1.1 rmind return 0;
861 1.1 rmind }
862 1.26 rmind head = npf_conndb_getlist(npf->conn_db);
863 1.26 rmind con = head;
864 1.1 rmind while (con) {
865 1.25 rmind nvlist_t *cdict;
866 1.1 rmind
867 1.22 christos if ((cdict = npf_conn_export(npf, con)) != NULL) {
868 1.25 rmind nvlist_append_nvlist_array(npf_dict, "conn-list", cdict);
869 1.25 rmind nvlist_destroy(cdict);
870 1.1 rmind }
871 1.26 rmind if ((con = npf_conndb_getnext(npf->conn_db, con)) == head) {
872 1.26 rmind break;
873 1.26 rmind }
874 1.1 rmind }
875 1.22 christos mutex_exit(&npf->conn_lock);
876 1.5 joerg return 0;
877 1.1 rmind }
878 1.1 rmind
879 1.25 rmind static nvlist_t *
880 1.20 christos npf_connkey_export(const npf_connkey_t *key)
881 1.20 christos {
882 1.20 christos uint16_t id[2], alen, proto;
883 1.20 christos npf_addr_t ips[2];
884 1.25 rmind nvlist_t *kdict;
885 1.20 christos
886 1.25 rmind kdict = nvlist_create(0);
887 1.20 christos connkey_getkey(key, &proto, ips, id, &alen);
888 1.25 rmind nvlist_add_number(kdict, "proto", proto);
889 1.25 rmind nvlist_add_number(kdict, "sport", id[NPF_SRC]);
890 1.25 rmind nvlist_add_number(kdict, "dport", id[NPF_DST]);
891 1.25 rmind nvlist_add_binary(kdict, "saddr", &ips[NPF_SRC], alen);
892 1.25 rmind nvlist_add_binary(kdict, "daddr", &ips[NPF_DST], alen);
893 1.20 christos return kdict;
894 1.20 christos }
895 1.20 christos
896 1.1 rmind /*
897 1.10 rmind * npf_conn_export: serialise a single connection.
898 1.10 rmind */
899 1.25 rmind static nvlist_t *
900 1.22 christos npf_conn_export(npf_t *npf, const npf_conn_t *con)
901 1.10 rmind {
902 1.25 rmind nvlist_t *cdict, *kdict;
903 1.10 rmind
904 1.10 rmind if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
905 1.10 rmind return NULL;
906 1.10 rmind }
907 1.25 rmind cdict = nvlist_create(0);
908 1.25 rmind nvlist_add_number(cdict, "flags", con->c_flags);
909 1.25 rmind nvlist_add_number(cdict, "proto", con->c_proto);
910 1.10 rmind if (con->c_ifid) {
911 1.22 christos const char *ifname = npf_ifmap_getname(npf, con->c_ifid);
912 1.25 rmind nvlist_add_string(cdict, "ifname", ifname);
913 1.10 rmind }
914 1.25 rmind nvlist_add_binary(cdict, "state", &con->c_state, sizeof(npf_state_t));
915 1.10 rmind
916 1.20 christos kdict = npf_connkey_export(&con->c_forw_entry);
917 1.25 rmind nvlist_move_nvlist(cdict, "forw-key", kdict);
918 1.10 rmind
919 1.20 christos kdict = npf_connkey_export(&con->c_back_entry);
920 1.25 rmind nvlist_move_nvlist(cdict, "back-key", kdict);
921 1.10 rmind
922 1.10 rmind if (con->c_nat) {
923 1.10 rmind npf_nat_export(cdict, con->c_nat);
924 1.10 rmind }
925 1.10 rmind return cdict;
926 1.10 rmind }
927 1.10 rmind
928 1.18 christos static uint32_t
929 1.25 rmind npf_connkey_import(const nvlist_t *kdict, npf_connkey_t *key)
930 1.18 christos {
931 1.18 christos npf_addr_t const * ips[2];
932 1.25 rmind uint16_t proto, id[2];
933 1.25 rmind size_t alen1, alen2;
934 1.18 christos
935 1.25 rmind proto = dnvlist_get_number(kdict, "proto", 0);
936 1.25 rmind id[NPF_SRC] = dnvlist_get_number(kdict, "sport", 0);
937 1.25 rmind id[NPF_DST] = dnvlist_get_number(kdict, "dport", 0);
938 1.25 rmind ips[NPF_SRC] = dnvlist_get_binary(kdict, "saddr", &alen1, NULL, 0);
939 1.25 rmind ips[NPF_DST] = dnvlist_get_binary(kdict, "daddr", &alen2, NULL, 0);
940 1.25 rmind if (__predict_false(alen1 == 0 || alen1 != alen2)) {
941 1.20 christos return 0;
942 1.25 rmind }
943 1.25 rmind return connkey_setkey(key, proto, ips, id, alen1, true);
944 1.18 christos }
945 1.18 christos
946 1.10 rmind /*
947 1.6 rmind * npf_conn_import: fully reconstruct a single connection from a
948 1.25 rmind * nvlist and insert into the given database.
949 1.1 rmind */
950 1.1 rmind int
951 1.25 rmind npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
952 1.6 rmind npf_ruleset_t *natlist)
953 1.1 rmind {
954 1.1 rmind npf_conn_t *con;
955 1.1 rmind npf_connkey_t *fw, *bk;
956 1.25 rmind const nvlist_t *nat, *conkey;
957 1.10 rmind const char *ifname;
958 1.25 rmind const void *state;
959 1.25 rmind size_t len;
960 1.1 rmind
961 1.1 rmind /* Allocate a connection and initialise it (clear first). */
962 1.22 christos con = pool_cache_get(npf->conn_cache, PR_WAITOK);
963 1.1 rmind memset(con, 0, sizeof(npf_conn_t));
964 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
965 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
966 1.1 rmind
967 1.25 rmind con->c_proto = dnvlist_get_number(cdict, "proto", 0);
968 1.25 rmind con->c_flags = dnvlist_get_number(cdict, "flags", 0);
969 1.1 rmind con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
970 1.22 christos conn_update_atime(con);
971 1.1 rmind
972 1.25 rmind ifname = dnvlist_get_string(cdict, "ifname", NULL);
973 1.25 rmind if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
974 1.10 rmind goto err;
975 1.10 rmind }
976 1.10 rmind
977 1.25 rmind state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
978 1.25 rmind if (!state || len != sizeof(npf_state_t)) {
979 1.1 rmind goto err;
980 1.1 rmind }
981 1.25 rmind memcpy(&con->c_state, state, sizeof(npf_state_t));
982 1.1 rmind
983 1.11 rmind /* Reconstruct NAT association, if any. */
984 1.25 rmind if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
985 1.25 rmind (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
986 1.11 rmind goto err;
987 1.11 rmind }
988 1.1 rmind
989 1.1 rmind /*
990 1.1 rmind * Fetch and copy the keys for each direction.
991 1.1 rmind */
992 1.25 rmind conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
993 1.20 christos fw = &con->c_forw_entry;
994 1.25 rmind if (conkey == NULL || !npf_connkey_import(conkey, fw)) {
995 1.1 rmind goto err;
996 1.1 rmind }
997 1.25 rmind conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
998 1.20 christos bk = &con->c_back_entry;
999 1.25 rmind if (conkey == NULL || !npf_connkey_import(conkey, bk)) {
1000 1.1 rmind goto err;
1001 1.1 rmind }
1002 1.1 rmind fw->ck_backptr = bk->ck_backptr = con;
1003 1.1 rmind
1004 1.1 rmind /* Insert the entries and the connection itself. */
1005 1.26 rmind if (!npf_conndb_insert(cd, fw)) {
1006 1.1 rmind goto err;
1007 1.1 rmind }
1008 1.26 rmind if (!npf_conndb_insert(cd, bk)) {
1009 1.1 rmind npf_conndb_remove(cd, fw);
1010 1.1 rmind goto err;
1011 1.1 rmind }
1012 1.12 rmind
1013 1.12 rmind NPF_PRINTF(("NPF: imported conn %p\n", con));
1014 1.1 rmind npf_conndb_enqueue(cd, con);
1015 1.1 rmind return 0;
1016 1.1 rmind err:
1017 1.22 christos npf_conn_destroy(npf, con);
1018 1.1 rmind return EINVAL;
1019 1.1 rmind }
1020 1.1 rmind
1021 1.20 christos int
1022 1.25 rmind npf_conn_find(npf_t *npf, const nvlist_t *idict, nvlist_t **odict)
1023 1.20 christos {
1024 1.25 rmind const nvlist_t *kdict;
1025 1.20 christos npf_connkey_t key;
1026 1.20 christos npf_conn_t *con;
1027 1.20 christos uint16_t dir;
1028 1.20 christos bool forw;
1029 1.20 christos
1030 1.25 rmind kdict = dnvlist_get_nvlist(idict, "key", NULL);
1031 1.25 rmind if (!kdict || !npf_connkey_import(kdict, &key)) {
1032 1.20 christos return EINVAL;
1033 1.25 rmind }
1034 1.25 rmind dir = dnvlist_get_number(idict, "direction", 0);
1035 1.22 christos con = npf_conndb_lookup(npf->conn_db, &key, &forw);
1036 1.20 christos if (con == NULL) {
1037 1.20 christos return ESRCH;
1038 1.20 christos }
1039 1.20 christos if (!npf_conn_ok(con, dir, true)) {
1040 1.20 christos atomic_dec_uint(&con->c_refcnt);
1041 1.20 christos return ESRCH;
1042 1.20 christos }
1043 1.22 christos *odict = npf_conn_export(npf, con);
1044 1.20 christos atomic_dec_uint(&con->c_refcnt);
1045 1.25 rmind return *odict ? 0 : ENOSPC;
1046 1.20 christos }
1047 1.20 christos
1048 1.1 rmind #if defined(DDB) || defined(_NPF_TESTING)
1049 1.1 rmind
1050 1.1 rmind void
1051 1.1 rmind npf_conn_print(const npf_conn_t *con)
1052 1.1 rmind {
1053 1.1 rmind const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
1054 1.1 rmind const uint32_t *fkey = con->c_forw_entry.ck_key;
1055 1.1 rmind const uint32_t *bkey = con->c_back_entry.ck_key;
1056 1.1 rmind const u_int proto = con->c_proto;
1057 1.22 christos struct timespec tspnow;
1058 1.1 rmind const void *src, *dst;
1059 1.1 rmind int etime;
1060 1.1 rmind
1061 1.22 christos getnanouptime(&tspnow);
1062 1.1 rmind etime = npf_state_etime(&con->c_state, proto);
1063 1.1 rmind
1064 1.22 christos printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
1065 1.22 christos proto, con->c_flags, (long)(tspnow.tv_sec - con->c_atime), etime);
1066 1.1 rmind
1067 1.1 rmind src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
1068 1.1 rmind printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
1069 1.1 rmind printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
1070 1.1 rmind
1071 1.1 rmind src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
1072 1.1 rmind printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
1073 1.1 rmind printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
1074 1.1 rmind
1075 1.1 rmind npf_state_dump(&con->c_state);
1076 1.1 rmind if (con->c_nat) {
1077 1.1 rmind npf_nat_dump(con->c_nat);
1078 1.1 rmind }
1079 1.1 rmind }
1080 1.1 rmind
1081 1.1 rmind #endif
1082