npf_conn.c revision 1.27 1 1.1 rmind /*-
2 1.26 rmind * Copyright (c) 2014-2018 Mindaugas Rasiukevicius <rmind at netbsd org>
3 1.1 rmind * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
4 1.1 rmind * All rights reserved.
5 1.1 rmind *
6 1.1 rmind * This material is based upon work partially supported by The
7 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8 1.1 rmind *
9 1.1 rmind * Redistribution and use in source and binary forms, with or without
10 1.1 rmind * modification, are permitted provided that the following conditions
11 1.1 rmind * are met:
12 1.1 rmind * 1. Redistributions of source code must retain the above copyright
13 1.1 rmind * notice, this list of conditions and the following disclaimer.
14 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 rmind * notice, this list of conditions and the following disclaimer in the
16 1.1 rmind * documentation and/or other materials provided with the distribution.
17 1.1 rmind *
18 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
29 1.1 rmind */
30 1.1 rmind
31 1.1 rmind /*
32 1.1 rmind * NPF connection tracking for stateful filtering and translation.
33 1.1 rmind *
34 1.1 rmind * Overview
35 1.1 rmind *
36 1.26 rmind * Packets can be incoming or outgoing with respect to an interface.
37 1.1 rmind * Connection direction is identified by the direction of its first
38 1.26 rmind * packet. The meaning of incoming/outgoing packet in the context of
39 1.26 rmind * connection direction can be confusing. Therefore, we will use the
40 1.26 rmind * terms "forwards stream" and "backwards stream", where packets in
41 1.26 rmind * the forwards stream mean the packets travelling in the direction
42 1.26 rmind * as the connection direction.
43 1.26 rmind *
44 1.26 rmind * All connections have two keys and thus two entries:
45 1.1 rmind *
46 1.27 rmind * - npf_conn_getforwkey(con) -- for the forwards stream;
47 1.27 rmind * - npf_conn_getbackkey(con, alen) -- for the backwards stream.
48 1.27 rmind *
49 1.27 rmind * Note: the keys are stored in npf_conn_t::c_keys[], which is used
50 1.27 rmind * to allocate variable-length npf_conn_t structures based on whether
51 1.27 rmind * the IPv4 or IPv6 addresses are used. See the npf_connkey.c source
52 1.27 rmind * file for the description of the key layouts.
53 1.1 rmind *
54 1.1 rmind * The keys are formed from the 5-tuple (source/destination address,
55 1.1 rmind * source/destination port and the protocol). Additional matching
56 1.1 rmind * is performed for the interface (a common behaviour is equivalent
57 1.1 rmind * to the 6-tuple lookup including the interface ID). Note that the
58 1.1 rmind * key may be formed using translated values in a case of NAT.
59 1.1 rmind *
60 1.1 rmind * Connections can serve two purposes: for the implicit passing or
61 1.1 rmind * to accommodate the dynamic NAT. Connections for the former purpose
62 1.1 rmind * are created by the rules with "stateful" attribute and are used for
63 1.1 rmind * stateful filtering. Such connections indicate that the packet of
64 1.1 rmind * the backwards stream should be passed without inspection of the
65 1.1 rmind * ruleset. The other purpose is to associate a dynamic NAT mechanism
66 1.1 rmind * with a connection. Such connections are created by the NAT policies
67 1.1 rmind * and they have a relationship with NAT translation structure via
68 1.1 rmind * npf_conn_t::c_nat. A single connection can serve both purposes,
69 1.1 rmind * which is a common case.
70 1.1 rmind *
71 1.1 rmind * Connection life-cycle
72 1.1 rmind *
73 1.1 rmind * Connections are established when a packet matches said rule or
74 1.1 rmind * NAT policy. Both keys of the established connection are inserted
75 1.1 rmind * into the connection database. A garbage collection thread
76 1.1 rmind * periodically scans all connections and depending on connection
77 1.1 rmind * properties (e.g. last activity time, protocol) removes connection
78 1.1 rmind * entries and expires the actual connections.
79 1.1 rmind *
80 1.1 rmind * Each connection has a reference count. The reference is acquired
81 1.1 rmind * on lookup and should be released by the caller. It guarantees that
82 1.1 rmind * the connection will not be destroyed, although it may be expired.
83 1.1 rmind *
84 1.1 rmind * Synchronisation
85 1.1 rmind *
86 1.1 rmind * Connection database is accessed in a lock-less manner by the main
87 1.1 rmind * routines: npf_conn_inspect() and npf_conn_establish(). Since they
88 1.1 rmind * are always called from a software interrupt, the database is
89 1.1 rmind * protected using passive serialisation. The main place which can
90 1.1 rmind * destroy a connection is npf_conn_worker(). The database itself
91 1.1 rmind * can be replaced and destroyed in npf_conn_reload().
92 1.1 rmind *
93 1.1 rmind * ALG support
94 1.1 rmind *
95 1.1 rmind * Application-level gateways (ALGs) can override generic connection
96 1.1 rmind * inspection (npf_alg_conn() call in npf_conn_inspect() function) by
97 1.1 rmind * performing their own lookup using different key. Recursive call
98 1.1 rmind * to npf_conn_inspect() is not allowed. The ALGs ought to use the
99 1.1 rmind * npf_conn_lookup() function for this purpose.
100 1.1 rmind *
101 1.1 rmind * Lock order
102 1.1 rmind *
103 1.6 rmind * npf_config_lock ->
104 1.6 rmind * conn_lock ->
105 1.6 rmind * npf_conn_t::c_lock
106 1.1 rmind */
107 1.1 rmind
108 1.22 christos #ifdef _KERNEL
109 1.1 rmind #include <sys/cdefs.h>
110 1.27 rmind __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.27 2019/07/23 00:52:01 rmind Exp $");
111 1.1 rmind
112 1.1 rmind #include <sys/param.h>
113 1.1 rmind #include <sys/types.h>
114 1.1 rmind
115 1.1 rmind #include <netinet/in.h>
116 1.1 rmind #include <netinet/tcp.h>
117 1.1 rmind
118 1.1 rmind #include <sys/atomic.h>
119 1.1 rmind #include <sys/kmem.h>
120 1.1 rmind #include <sys/mutex.h>
121 1.1 rmind #include <net/pfil.h>
122 1.1 rmind #include <sys/pool.h>
123 1.1 rmind #include <sys/queue.h>
124 1.1 rmind #include <sys/systm.h>
125 1.22 christos #endif
126 1.1 rmind
127 1.1 rmind #define __NPF_CONN_PRIVATE
128 1.1 rmind #include "npf_conn.h"
129 1.1 rmind #include "npf_impl.h"
130 1.1 rmind
131 1.27 rmind /* A helper to select the IPv4 or IPv6 connection cache. */
132 1.27 rmind #define NPF_CONNCACHE(alen) (((alen) >> 4) & 0x1)
133 1.27 rmind
134 1.1 rmind /*
135 1.1 rmind * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
136 1.1 rmind */
137 1.1 rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
138 1.1 rmind #define CONN_ACTIVE 0x004 /* visible on inspection */
139 1.1 rmind #define CONN_PASS 0x008 /* perform implicit passing */
140 1.1 rmind #define CONN_EXPIRE 0x010 /* explicitly expire */
141 1.1 rmind #define CONN_REMOVED 0x020 /* "forw/back" entries removed */
142 1.1 rmind
143 1.6 rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
144 1.1 rmind
145 1.27 rmind static nvlist_t *npf_conn_export(npf_t *, npf_conn_t *);
146 1.1 rmind
147 1.1 rmind /*
148 1.1 rmind * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
149 1.1 rmind */
150 1.1 rmind
151 1.1 rmind void
152 1.22 christos npf_conn_init(npf_t *npf, int flags)
153 1.1 rmind {
154 1.27 rmind npf->conn_cache[0] = pool_cache_init(
155 1.27 rmind offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V4WORDS * 2]),
156 1.27 rmind 0, 0, 0, "npfcn4pl", NULL, IPL_NET, NULL, NULL, NULL);
157 1.27 rmind npf->conn_cache[1] = pool_cache_init(
158 1.27 rmind offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V6WORDS * 2]),
159 1.27 rmind 0, 0, 0, "npfcn6pl", NULL, IPL_NET, NULL, NULL, NULL);
160 1.27 rmind
161 1.22 christos mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
162 1.22 christos npf->conn_tracking = CONN_TRACKING_OFF;
163 1.22 christos npf->conn_db = npf_conndb_create();
164 1.1 rmind
165 1.22 christos if ((flags & NPF_NO_GC) == 0) {
166 1.22 christos npf_worker_register(npf, npf_conn_worker);
167 1.22 christos }
168 1.27 rmind npf_conndb_sysinit(npf);
169 1.1 rmind }
170 1.1 rmind
171 1.1 rmind void
172 1.22 christos npf_conn_fini(npf_t *npf)
173 1.1 rmind {
174 1.27 rmind npf_conndb_sysfini(npf);
175 1.27 rmind
176 1.6 rmind /* Note: the caller should have flushed the connections. */
177 1.22 christos KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
178 1.22 christos npf_worker_unregister(npf, npf_conn_worker);
179 1.1 rmind
180 1.22 christos npf_conndb_destroy(npf->conn_db);
181 1.27 rmind pool_cache_destroy(npf->conn_cache[0]);
182 1.27 rmind pool_cache_destroy(npf->conn_cache[1]);
183 1.22 christos mutex_destroy(&npf->conn_lock);
184 1.1 rmind }
185 1.1 rmind
186 1.1 rmind /*
187 1.6 rmind * npf_conn_load: perform the load by flushing the current connection
188 1.6 rmind * database and replacing it with the new one or just destroying.
189 1.1 rmind *
190 1.6 rmind * => The caller must disable the connection tracking and ensure that
191 1.6 rmind * there are no connection database lookups or references in-flight.
192 1.1 rmind */
193 1.6 rmind void
194 1.22 christos npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
195 1.1 rmind {
196 1.6 rmind npf_conndb_t *odb = NULL;
197 1.1 rmind
198 1.22 christos KASSERT(npf_config_locked_p(npf));
199 1.1 rmind
200 1.1 rmind /*
201 1.6 rmind * The connection database is in the quiescent state.
202 1.6 rmind * Prevent G/C thread from running and install a new database.
203 1.1 rmind */
204 1.22 christos mutex_enter(&npf->conn_lock);
205 1.6 rmind if (ndb) {
206 1.22 christos KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
207 1.22 christos odb = npf->conn_db;
208 1.22 christos npf->conn_db = ndb;
209 1.6 rmind membar_sync();
210 1.6 rmind }
211 1.6 rmind if (track) {
212 1.6 rmind /* After this point lookups start flying in. */
213 1.22 christos npf->conn_tracking = CONN_TRACKING_ON;
214 1.1 rmind }
215 1.22 christos mutex_exit(&npf->conn_lock);
216 1.1 rmind
217 1.1 rmind if (odb) {
218 1.6 rmind /*
219 1.6 rmind * Flush all, no sync since the caller did it for us.
220 1.6 rmind * Also, release the pool cache memory.
221 1.6 rmind */
222 1.26 rmind npf_conndb_gc(npf, odb, true, false);
223 1.1 rmind npf_conndb_destroy(odb);
224 1.27 rmind pool_cache_invalidate(npf->conn_cache[0]);
225 1.27 rmind pool_cache_invalidate(npf->conn_cache[1]);
226 1.1 rmind }
227 1.1 rmind }
228 1.1 rmind
229 1.1 rmind /*
230 1.1 rmind * npf_conn_tracking: enable/disable connection tracking.
231 1.1 rmind */
232 1.1 rmind void
233 1.22 christos npf_conn_tracking(npf_t *npf, bool track)
234 1.1 rmind {
235 1.22 christos KASSERT(npf_config_locked_p(npf));
236 1.22 christos npf->conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
237 1.1 rmind }
238 1.1 rmind
239 1.6 rmind static inline bool
240 1.1 rmind npf_conn_trackable_p(const npf_cache_t *npc)
241 1.1 rmind {
242 1.22 christos const npf_t *npf = npc->npc_ctx;
243 1.22 christos
244 1.1 rmind /*
245 1.1 rmind * Check if connection tracking is on. Also, if layer 3 and 4 are
246 1.1 rmind * not cached - protocol is not supported or packet is invalid.
247 1.1 rmind */
248 1.22 christos if (npf->conn_tracking != CONN_TRACKING_ON) {
249 1.1 rmind return false;
250 1.1 rmind }
251 1.1 rmind if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
252 1.1 rmind return false;
253 1.1 rmind }
254 1.1 rmind return true;
255 1.1 rmind }
256 1.1 rmind
257 1.22 christos static inline void
258 1.22 christos conn_update_atime(npf_conn_t *con)
259 1.22 christos {
260 1.22 christos struct timespec tsnow;
261 1.22 christos
262 1.22 christos getnanouptime(&tsnow);
263 1.22 christos con->c_atime = tsnow.tv_sec;
264 1.22 christos }
265 1.22 christos
266 1.1 rmind /*
267 1.27 rmind * npf_conn_check: check that:
268 1.27 rmind *
269 1.27 rmind * - the connection is active;
270 1.27 rmind *
271 1.27 rmind * - the packet is travelling in the right direction with the respect
272 1.27 rmind * to the connection direction (if interface-id is not zero);
273 1.27 rmind *
274 1.27 rmind * - the packet is travelling on the same interface as the
275 1.27 rmind * connection interface (if interface-id is not zero).
276 1.18 christos */
277 1.18 christos static bool
278 1.27 rmind npf_conn_check(const npf_conn_t *con, const nbuf_t *nbuf,
279 1.27 rmind const unsigned di, const bool forw)
280 1.18 christos {
281 1.22 christos const uint32_t flags = con->c_flags;
282 1.27 rmind const unsigned ifid = con->c_ifid;
283 1.27 rmind bool active, pforw;
284 1.18 christos
285 1.27 rmind active = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
286 1.27 rmind if (__predict_false(!active)) {
287 1.18 christos return false;
288 1.18 christos }
289 1.27 rmind if (ifid && nbuf) {
290 1.27 rmind pforw = (flags & PFIL_ALL) == (unsigned)di;
291 1.27 rmind if (__predict_false(forw != pforw)) {
292 1.27 rmind return false;
293 1.27 rmind }
294 1.27 rmind if (__predict_false(ifid != nbuf->nb_ifid)) {
295 1.27 rmind return false;
296 1.27 rmind }
297 1.18 christos }
298 1.18 christos return true;
299 1.18 christos }
300 1.18 christos
301 1.18 christos /*
302 1.1 rmind * npf_conn_lookup: lookup if there is an established connection.
303 1.1 rmind *
304 1.1 rmind * => If found, we will hold a reference for the caller.
305 1.1 rmind */
306 1.1 rmind npf_conn_t *
307 1.4 rmind npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
308 1.1 rmind {
309 1.22 christos npf_t *npf = npc->npc_ctx;
310 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
311 1.1 rmind npf_conn_t *con;
312 1.1 rmind npf_connkey_t key;
313 1.1 rmind
314 1.1 rmind /* Construct a key and lookup for a connection in the store. */
315 1.1 rmind if (!npf_conn_conkey(npc, &key, true)) {
316 1.1 rmind return NULL;
317 1.1 rmind }
318 1.22 christos con = npf_conndb_lookup(npf->conn_db, &key, forw);
319 1.1 rmind if (con == NULL) {
320 1.1 rmind return NULL;
321 1.1 rmind }
322 1.1 rmind KASSERT(npc->npc_proto == con->c_proto);
323 1.1 rmind
324 1.27 rmind /* Extra checks for the connection and packet. */
325 1.27 rmind if (!npf_conn_check(con, nbuf, di, *forw)) {
326 1.1 rmind atomic_dec_uint(&con->c_refcnt);
327 1.1 rmind return NULL;
328 1.1 rmind }
329 1.1 rmind
330 1.1 rmind /* Update the last activity time. */
331 1.22 christos conn_update_atime(con);
332 1.1 rmind return con;
333 1.1 rmind }
334 1.1 rmind
335 1.1 rmind /*
336 1.1 rmind * npf_conn_inspect: lookup a connection and inspecting the protocol data.
337 1.1 rmind *
338 1.1 rmind * => If found, we will hold a reference for the caller.
339 1.1 rmind */
340 1.1 rmind npf_conn_t *
341 1.4 rmind npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
342 1.1 rmind {
343 1.4 rmind nbuf_t *nbuf = npc->npc_nbuf;
344 1.1 rmind npf_conn_t *con;
345 1.1 rmind bool forw, ok;
346 1.1 rmind
347 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
348 1.1 rmind if (!npf_conn_trackable_p(npc)) {
349 1.1 rmind return NULL;
350 1.1 rmind }
351 1.1 rmind
352 1.1 rmind /* Query ALG which may lookup connection for us. */
353 1.4 rmind if ((con = npf_alg_conn(npc, di)) != NULL) {
354 1.1 rmind /* Note: reference is held. */
355 1.1 rmind return con;
356 1.1 rmind }
357 1.1 rmind if (nbuf_head_mbuf(nbuf) == NULL) {
358 1.1 rmind *error = ENOMEM;
359 1.1 rmind return NULL;
360 1.1 rmind }
361 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
362 1.1 rmind
363 1.1 rmind /* Main lookup of the connection. */
364 1.4 rmind if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
365 1.1 rmind return NULL;
366 1.1 rmind }
367 1.1 rmind
368 1.1 rmind /* Inspect the protocol data and handle state changes. */
369 1.1 rmind mutex_enter(&con->c_lock);
370 1.4 rmind ok = npf_state_inspect(npc, &con->c_state, forw);
371 1.1 rmind mutex_exit(&con->c_lock);
372 1.1 rmind
373 1.17 rmind /* If invalid state: let the rules deal with it. */
374 1.1 rmind if (__predict_false(!ok)) {
375 1.1 rmind npf_conn_release(con);
376 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
377 1.17 rmind return NULL;
378 1.17 rmind }
379 1.17 rmind
380 1.17 rmind /*
381 1.17 rmind * If this is multi-end state, then specially tag the packet
382 1.17 rmind * so it will be just passed-through on other interfaces.
383 1.17 rmind */
384 1.17 rmind if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
385 1.17 rmind npf_conn_release(con);
386 1.17 rmind *error = ENOMEM;
387 1.17 rmind return NULL;
388 1.1 rmind }
389 1.1 rmind return con;
390 1.1 rmind }
391 1.1 rmind
392 1.1 rmind /*
393 1.1 rmind * npf_conn_establish: create a new connection, insert into the global list.
394 1.1 rmind *
395 1.1 rmind * => Connection is created with the reference held for the caller.
396 1.1 rmind * => Connection will be activated on the first reference release.
397 1.1 rmind */
398 1.1 rmind npf_conn_t *
399 1.27 rmind npf_conn_establish(npf_cache_t *npc, int di, bool global)
400 1.1 rmind {
401 1.22 christos npf_t *npf = npc->npc_ctx;
402 1.27 rmind const unsigned alen = npc->npc_alen;
403 1.27 rmind const unsigned idx = NPF_CONNCACHE(alen);
404 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
405 1.27 rmind npf_connkey_t *fw, *bk;
406 1.1 rmind npf_conn_t *con;
407 1.15 rmind int error = 0;
408 1.1 rmind
409 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
410 1.1 rmind
411 1.1 rmind if (!npf_conn_trackable_p(npc)) {
412 1.1 rmind return NULL;
413 1.1 rmind }
414 1.1 rmind
415 1.1 rmind /* Allocate and initialise the new connection. */
416 1.27 rmind con = pool_cache_get(npf->conn_cache[idx], PR_NOWAIT);
417 1.1 rmind if (__predict_false(!con)) {
418 1.22 christos npf_worker_signal(npf);
419 1.1 rmind return NULL;
420 1.1 rmind }
421 1.1 rmind NPF_PRINTF(("NPF: create conn %p\n", con));
422 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
423 1.1 rmind
424 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
425 1.1 rmind con->c_flags = (di & PFIL_ALL);
426 1.15 rmind con->c_refcnt = 0;
427 1.1 rmind con->c_rproc = NULL;
428 1.1 rmind con->c_nat = NULL;
429 1.1 rmind
430 1.27 rmind con->c_proto = npc->npc_proto;
431 1.27 rmind CTASSERT(sizeof(con->c_proto) >= sizeof(npc->npc_proto));
432 1.27 rmind
433 1.15 rmind /* Initialize the protocol state. */
434 1.4 rmind if (!npf_state_init(npc, &con->c_state)) {
435 1.22 christos npf_conn_destroy(npf, con);
436 1.15 rmind return NULL;
437 1.1 rmind }
438 1.27 rmind KASSERT(npf_iscached(npc, NPC_IP46));
439 1.1 rmind
440 1.27 rmind fw = npf_conn_getforwkey(con);
441 1.27 rmind bk = npf_conn_getbackkey(con, alen);
442 1.1 rmind
443 1.1 rmind /*
444 1.1 rmind * Construct "forwards" and "backwards" keys. Also, set the
445 1.1 rmind * interface ID for this connection (unless it is global).
446 1.1 rmind */
447 1.15 rmind if (!npf_conn_conkey(npc, fw, true) ||
448 1.15 rmind !npf_conn_conkey(npc, bk, false)) {
449 1.22 christos npf_conn_destroy(npf, con);
450 1.15 rmind return NULL;
451 1.1 rmind }
452 1.27 rmind con->c_ifid = global ? nbuf->nb_ifid : 0;
453 1.1 rmind
454 1.15 rmind /*
455 1.15 rmind * Set last activity time for a new connection and acquire
456 1.15 rmind * a reference for the caller before we make it visible.
457 1.15 rmind */
458 1.22 christos conn_update_atime(con);
459 1.15 rmind con->c_refcnt = 1;
460 1.1 rmind
461 1.1 rmind /*
462 1.1 rmind * Insert both keys (entries representing directions) of the
463 1.15 rmind * connection. At this point it becomes visible, but we activate
464 1.15 rmind * the connection later.
465 1.1 rmind */
466 1.15 rmind mutex_enter(&con->c_lock);
467 1.27 rmind if (!npf_conndb_insert(npf->conn_db, fw, con, true)) {
468 1.15 rmind error = EISCONN;
469 1.1 rmind goto err;
470 1.1 rmind }
471 1.27 rmind if (!npf_conndb_insert(npf->conn_db, bk, con, false)) {
472 1.15 rmind npf_conn_t *ret __diagused;
473 1.22 christos ret = npf_conndb_remove(npf->conn_db, fw);
474 1.15 rmind KASSERT(ret == con);
475 1.15 rmind error = EISCONN;
476 1.15 rmind goto err;
477 1.15 rmind }
478 1.15 rmind err:
479 1.15 rmind /*
480 1.15 rmind * If we have hit the duplicate: mark the connection as expired
481 1.15 rmind * and let the G/C thread to take care of it. We cannot do it
482 1.15 rmind * here since there might be references acquired already.
483 1.15 rmind */
484 1.15 rmind if (error) {
485 1.16 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
486 1.16 rmind atomic_dec_uint(&con->c_refcnt);
487 1.22 christos npf_stats_inc(npf, NPF_STAT_RACE_CONN);
488 1.15 rmind } else {
489 1.15 rmind NPF_PRINTF(("NPF: establish conn %p\n", con));
490 1.1 rmind }
491 1.1 rmind
492 1.1 rmind /* Finally, insert into the connection list. */
493 1.22 christos npf_conndb_enqueue(npf->conn_db, con);
494 1.15 rmind mutex_exit(&con->c_lock);
495 1.15 rmind
496 1.15 rmind return error ? NULL : con;
497 1.1 rmind }
498 1.1 rmind
499 1.26 rmind void
500 1.22 christos npf_conn_destroy(npf_t *npf, npf_conn_t *con)
501 1.1 rmind {
502 1.27 rmind const npf_connkey_t *key = npf_conn_getforwkey(con);
503 1.27 rmind const unsigned alen = NPF_CONNKEY_ALEN(key);
504 1.27 rmind const unsigned idx __unused = NPF_CONNCACHE(alen);
505 1.27 rmind
506 1.15 rmind KASSERT(con->c_refcnt == 0);
507 1.15 rmind
508 1.1 rmind if (con->c_nat) {
509 1.1 rmind /* Release any NAT structures. */
510 1.1 rmind npf_nat_destroy(con->c_nat);
511 1.1 rmind }
512 1.1 rmind if (con->c_rproc) {
513 1.1 rmind /* Release the rule procedure. */
514 1.1 rmind npf_rproc_release(con->c_rproc);
515 1.1 rmind }
516 1.1 rmind
517 1.1 rmind /* Destroy the state. */
518 1.1 rmind npf_state_destroy(&con->c_state);
519 1.1 rmind mutex_destroy(&con->c_lock);
520 1.1 rmind
521 1.1 rmind /* Free the structure, increase the counter. */
522 1.27 rmind pool_cache_put(npf->conn_cache[idx], con);
523 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
524 1.1 rmind NPF_PRINTF(("NPF: conn %p destroyed\n", con));
525 1.1 rmind }
526 1.1 rmind
527 1.1 rmind /*
528 1.1 rmind * npf_conn_setnat: associate NAT entry with the connection, update and
529 1.1 rmind * re-insert connection entry using the translation values.
530 1.16 rmind *
531 1.16 rmind * => The caller must be holding a reference.
532 1.1 rmind */
533 1.1 rmind int
534 1.1 rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
535 1.27 rmind npf_nat_t *nt, unsigned ntype)
536 1.1 rmind {
537 1.1 rmind static const u_int nat_type_dimap[] = {
538 1.1 rmind [NPF_NATOUT] = NPF_DST,
539 1.1 rmind [NPF_NATIN] = NPF_SRC,
540 1.1 rmind };
541 1.22 christos npf_t *npf = npc->npc_ctx;
542 1.27 rmind npf_connkey_t key, *fw, *bk;
543 1.2 rmind npf_conn_t *ret __diagused;
544 1.1 rmind npf_addr_t *taddr;
545 1.1 rmind in_port_t tport;
546 1.1 rmind
547 1.1 rmind KASSERT(con->c_refcnt > 0);
548 1.1 rmind
549 1.1 rmind npf_nat_gettrans(nt, &taddr, &tport);
550 1.1 rmind KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
551 1.1 rmind
552 1.1 rmind /* Construct a "backwards" key. */
553 1.1 rmind if (!npf_conn_conkey(npc, &key, false)) {
554 1.1 rmind return EINVAL;
555 1.1 rmind }
556 1.1 rmind
557 1.1 rmind /* Acquire the lock and check for the races. */
558 1.1 rmind mutex_enter(&con->c_lock);
559 1.1 rmind if (__predict_false(con->c_flags & CONN_EXPIRE)) {
560 1.1 rmind /* The connection got expired. */
561 1.1 rmind mutex_exit(&con->c_lock);
562 1.1 rmind return EINVAL;
563 1.1 rmind }
564 1.15 rmind KASSERT((con->c_flags & CONN_REMOVED) == 0);
565 1.15 rmind
566 1.1 rmind if (__predict_false(con->c_nat != NULL)) {
567 1.1 rmind /* Race with a duplicate packet. */
568 1.1 rmind mutex_exit(&con->c_lock);
569 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
570 1.1 rmind return EISCONN;
571 1.1 rmind }
572 1.1 rmind
573 1.27 rmind /* Remove the "backwards" key. */
574 1.27 rmind fw = npf_conn_getforwkey(con);
575 1.27 rmind bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
576 1.27 rmind ret = npf_conndb_remove(npf->conn_db, bk);
577 1.1 rmind KASSERT(ret == con);
578 1.1 rmind
579 1.1 rmind /* Set the source/destination IDs to the translation values. */
580 1.27 rmind npf_conn_adjkey(bk, taddr, tport, nat_type_dimap[ntype]);
581 1.1 rmind
582 1.27 rmind /* Finally, re-insert the "backwards" key. */
583 1.27 rmind if (!npf_conndb_insert(npf->conn_db, bk, con, false)) {
584 1.1 rmind /*
585 1.1 rmind * Race: we have hit the duplicate, remove the "forwards"
586 1.27 rmind * key and expire our connection; it is no longer valid.
587 1.1 rmind */
588 1.27 rmind ret = npf_conndb_remove(npf->conn_db, fw);
589 1.15 rmind KASSERT(ret == con);
590 1.15 rmind
591 1.1 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
592 1.1 rmind mutex_exit(&con->c_lock);
593 1.1 rmind
594 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
595 1.1 rmind return EISCONN;
596 1.1 rmind }
597 1.1 rmind
598 1.1 rmind /* Associate the NAT entry and release the lock. */
599 1.1 rmind con->c_nat = nt;
600 1.1 rmind mutex_exit(&con->c_lock);
601 1.1 rmind return 0;
602 1.1 rmind }
603 1.1 rmind
604 1.1 rmind /*
605 1.1 rmind * npf_conn_expire: explicitly mark connection as expired.
606 1.1 rmind */
607 1.1 rmind void
608 1.1 rmind npf_conn_expire(npf_conn_t *con)
609 1.1 rmind {
610 1.1 rmind /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
611 1.1 rmind atomic_or_uint(&con->c_flags, CONN_EXPIRE);
612 1.1 rmind }
613 1.1 rmind
614 1.1 rmind /*
615 1.1 rmind * npf_conn_pass: return true if connection is "pass" one, otherwise false.
616 1.1 rmind */
617 1.1 rmind bool
618 1.23 christos npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
619 1.1 rmind {
620 1.1 rmind KASSERT(con->c_refcnt > 0);
621 1.1 rmind if (__predict_true(con->c_flags & CONN_PASS)) {
622 1.24 rmind mi->mi_rid = con->c_rid;
623 1.24 rmind mi->mi_retfl = con->c_retfl;
624 1.1 rmind *rp = con->c_rproc;
625 1.1 rmind return true;
626 1.1 rmind }
627 1.1 rmind return false;
628 1.1 rmind }
629 1.1 rmind
630 1.1 rmind /*
631 1.1 rmind * npf_conn_setpass: mark connection as a "pass" one and associate the
632 1.1 rmind * rule procedure with it.
633 1.1 rmind */
634 1.1 rmind void
635 1.23 christos npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
636 1.1 rmind {
637 1.1 rmind KASSERT((con->c_flags & CONN_ACTIVE) == 0);
638 1.1 rmind KASSERT(con->c_refcnt > 0);
639 1.1 rmind KASSERT(con->c_rproc == NULL);
640 1.1 rmind
641 1.1 rmind /*
642 1.1 rmind * No need for atomic since the connection is not yet active.
643 1.1 rmind * If rproc is set, the caller transfers its reference to us,
644 1.1 rmind * which will be released on npf_conn_destroy().
645 1.1 rmind */
646 1.14 rmind atomic_or_uint(&con->c_flags, CONN_PASS);
647 1.1 rmind con->c_rproc = rp;
648 1.24 rmind if (rp) {
649 1.24 rmind con->c_rid = mi->mi_rid;
650 1.24 rmind con->c_retfl = mi->mi_retfl;
651 1.24 rmind }
652 1.1 rmind }
653 1.1 rmind
654 1.1 rmind /*
655 1.1 rmind * npf_conn_release: release a reference, which might allow G/C thread
656 1.1 rmind * to destroy this connection.
657 1.1 rmind */
658 1.1 rmind void
659 1.1 rmind npf_conn_release(npf_conn_t *con)
660 1.1 rmind {
661 1.1 rmind if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
662 1.1 rmind /* Activate: after this, connection is globally visible. */
663 1.14 rmind atomic_or_uint(&con->c_flags, CONN_ACTIVE);
664 1.1 rmind }
665 1.1 rmind KASSERT(con->c_refcnt > 0);
666 1.1 rmind atomic_dec_uint(&con->c_refcnt);
667 1.1 rmind }
668 1.1 rmind
669 1.1 rmind /*
670 1.13 rmind * npf_conn_getnat: return associated NAT data entry and indicate
671 1.1 rmind * whether it is a "forwards" or "backwards" stream.
672 1.1 rmind */
673 1.1 rmind npf_nat_t *
674 1.13 rmind npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
675 1.1 rmind {
676 1.1 rmind KASSERT(con->c_refcnt > 0);
677 1.22 christos *forw = (con->c_flags & PFIL_ALL) == (u_int)di;
678 1.1 rmind return con->c_nat;
679 1.1 rmind }
680 1.1 rmind
681 1.1 rmind /*
682 1.1 rmind * npf_conn_expired: criterion to check if connection is expired.
683 1.1 rmind */
684 1.26 rmind bool
685 1.27 rmind npf_conn_expired(npf_t *npf, const npf_conn_t *con, uint64_t tsnow)
686 1.1 rmind {
687 1.27 rmind const int etime = npf_state_etime(npf, &con->c_state, con->c_proto);
688 1.22 christos int elapsed;
689 1.1 rmind
690 1.1 rmind if (__predict_false(con->c_flags & CONN_EXPIRE)) {
691 1.1 rmind /* Explicitly marked to be expired. */
692 1.1 rmind return true;
693 1.1 rmind }
694 1.22 christos
695 1.22 christos /*
696 1.22 christos * Note: another thread may update 'atime' and it might
697 1.22 christos * become greater than 'now'.
698 1.22 christos */
699 1.22 christos elapsed = (int64_t)tsnow - con->c_atime;
700 1.22 christos return elapsed > etime;
701 1.1 rmind }
702 1.1 rmind
703 1.1 rmind /*
704 1.26 rmind * npf_conn_remove: unlink the connection and mark as expired.
705 1.1 rmind */
706 1.7 rmind void
707 1.26 rmind npf_conn_remove(npf_conndb_t *cd, npf_conn_t *con)
708 1.1 rmind {
709 1.26 rmind /* Remove both entries of the connection. */
710 1.26 rmind mutex_enter(&con->c_lock);
711 1.26 rmind if ((con->c_flags & CONN_REMOVED) == 0) {
712 1.27 rmind npf_connkey_t *fw, *bk;
713 1.26 rmind npf_conn_t *ret __diagused;
714 1.1 rmind
715 1.27 rmind fw = npf_conn_getforwkey(con);
716 1.27 rmind ret = npf_conndb_remove(cd, fw);
717 1.26 rmind KASSERT(ret == con);
718 1.27 rmind
719 1.27 rmind bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
720 1.27 rmind ret = npf_conndb_remove(cd, bk);
721 1.26 rmind KASSERT(ret == con);
722 1.1 rmind }
723 1.6 rmind
724 1.26 rmind /* Flag the removal and expiration. */
725 1.26 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
726 1.26 rmind mutex_exit(&con->c_lock);
727 1.1 rmind }
728 1.1 rmind
729 1.6 rmind /*
730 1.6 rmind * npf_conn_worker: G/C to run from a worker thread.
731 1.6 rmind */
732 1.22 christos void
733 1.22 christos npf_conn_worker(npf_t *npf)
734 1.1 rmind {
735 1.26 rmind npf_conndb_gc(npf, npf->conn_db, false, true);
736 1.1 rmind }
737 1.1 rmind
738 1.1 rmind /*
739 1.10 rmind * npf_conndb_export: construct a list of connections prepared for saving.
740 1.1 rmind * Note: this is expected to be an expensive operation.
741 1.1 rmind */
742 1.1 rmind int
743 1.25 rmind npf_conndb_export(npf_t *npf, nvlist_t *npf_dict)
744 1.1 rmind {
745 1.26 rmind npf_conn_t *head, *con;
746 1.1 rmind
747 1.1 rmind /*
748 1.1 rmind * Note: acquire conn_lock to prevent from the database
749 1.1 rmind * destruction and G/C thread.
750 1.1 rmind */
751 1.22 christos mutex_enter(&npf->conn_lock);
752 1.22 christos if (npf->conn_tracking != CONN_TRACKING_ON) {
753 1.22 christos mutex_exit(&npf->conn_lock);
754 1.1 rmind return 0;
755 1.1 rmind }
756 1.26 rmind head = npf_conndb_getlist(npf->conn_db);
757 1.26 rmind con = head;
758 1.1 rmind while (con) {
759 1.25 rmind nvlist_t *cdict;
760 1.1 rmind
761 1.22 christos if ((cdict = npf_conn_export(npf, con)) != NULL) {
762 1.25 rmind nvlist_append_nvlist_array(npf_dict, "conn-list", cdict);
763 1.25 rmind nvlist_destroy(cdict);
764 1.1 rmind }
765 1.26 rmind if ((con = npf_conndb_getnext(npf->conn_db, con)) == head) {
766 1.26 rmind break;
767 1.26 rmind }
768 1.1 rmind }
769 1.22 christos mutex_exit(&npf->conn_lock);
770 1.5 joerg return 0;
771 1.1 rmind }
772 1.1 rmind
773 1.1 rmind /*
774 1.10 rmind * npf_conn_export: serialise a single connection.
775 1.10 rmind */
776 1.25 rmind static nvlist_t *
777 1.27 rmind npf_conn_export(npf_t *npf, npf_conn_t *con)
778 1.10 rmind {
779 1.25 rmind nvlist_t *cdict, *kdict;
780 1.27 rmind npf_connkey_t *fw, *bk;
781 1.27 rmind unsigned alen;
782 1.10 rmind
783 1.10 rmind if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
784 1.10 rmind return NULL;
785 1.10 rmind }
786 1.25 rmind cdict = nvlist_create(0);
787 1.25 rmind nvlist_add_number(cdict, "flags", con->c_flags);
788 1.25 rmind nvlist_add_number(cdict, "proto", con->c_proto);
789 1.10 rmind if (con->c_ifid) {
790 1.22 christos const char *ifname = npf_ifmap_getname(npf, con->c_ifid);
791 1.25 rmind nvlist_add_string(cdict, "ifname", ifname);
792 1.10 rmind }
793 1.25 rmind nvlist_add_binary(cdict, "state", &con->c_state, sizeof(npf_state_t));
794 1.10 rmind
795 1.27 rmind fw = npf_conn_getforwkey(con);
796 1.27 rmind alen = NPF_CONNKEY_ALEN(fw);
797 1.27 rmind bk = npf_conn_getbackkey(con, alen);
798 1.27 rmind
799 1.27 rmind kdict = npf_connkey_export(fw);
800 1.25 rmind nvlist_move_nvlist(cdict, "forw-key", kdict);
801 1.10 rmind
802 1.27 rmind kdict = npf_connkey_export(bk);
803 1.25 rmind nvlist_move_nvlist(cdict, "back-key", kdict);
804 1.10 rmind
805 1.27 rmind /* Let the address length be based on on first key. */
806 1.27 rmind nvlist_add_number(cdict, "alen", alen);
807 1.27 rmind
808 1.10 rmind if (con->c_nat) {
809 1.10 rmind npf_nat_export(cdict, con->c_nat);
810 1.10 rmind }
811 1.10 rmind return cdict;
812 1.10 rmind }
813 1.10 rmind
814 1.10 rmind /*
815 1.6 rmind * npf_conn_import: fully reconstruct a single connection from a
816 1.25 rmind * nvlist and insert into the given database.
817 1.1 rmind */
818 1.1 rmind int
819 1.25 rmind npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
820 1.6 rmind npf_ruleset_t *natlist)
821 1.1 rmind {
822 1.1 rmind npf_conn_t *con;
823 1.1 rmind npf_connkey_t *fw, *bk;
824 1.25 rmind const nvlist_t *nat, *conkey;
825 1.10 rmind const char *ifname;
826 1.25 rmind const void *state;
827 1.27 rmind unsigned alen, idx;
828 1.25 rmind size_t len;
829 1.1 rmind
830 1.27 rmind /*
831 1.27 rmind * To determine the length of the connection, which depends
832 1.27 rmind * on the address length in the connection keys.
833 1.27 rmind */
834 1.27 rmind alen = dnvlist_get_number(cdict, "alen", 0);
835 1.27 rmind idx = NPF_CONNCACHE(alen);
836 1.27 rmind
837 1.1 rmind /* Allocate a connection and initialise it (clear first). */
838 1.27 rmind con = pool_cache_get(npf->conn_cache[idx], PR_WAITOK);
839 1.1 rmind memset(con, 0, sizeof(npf_conn_t));
840 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
841 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
842 1.1 rmind
843 1.25 rmind con->c_proto = dnvlist_get_number(cdict, "proto", 0);
844 1.25 rmind con->c_flags = dnvlist_get_number(cdict, "flags", 0);
845 1.1 rmind con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
846 1.22 christos conn_update_atime(con);
847 1.1 rmind
848 1.25 rmind ifname = dnvlist_get_string(cdict, "ifname", NULL);
849 1.25 rmind if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
850 1.10 rmind goto err;
851 1.10 rmind }
852 1.10 rmind
853 1.25 rmind state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
854 1.25 rmind if (!state || len != sizeof(npf_state_t)) {
855 1.1 rmind goto err;
856 1.1 rmind }
857 1.25 rmind memcpy(&con->c_state, state, sizeof(npf_state_t));
858 1.1 rmind
859 1.11 rmind /* Reconstruct NAT association, if any. */
860 1.25 rmind if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
861 1.25 rmind (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
862 1.11 rmind goto err;
863 1.11 rmind }
864 1.1 rmind
865 1.1 rmind /*
866 1.1 rmind * Fetch and copy the keys for each direction.
867 1.1 rmind */
868 1.27 rmind fw = npf_conn_getforwkey(con);
869 1.25 rmind conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
870 1.25 rmind if (conkey == NULL || !npf_connkey_import(conkey, fw)) {
871 1.1 rmind goto err;
872 1.1 rmind }
873 1.27 rmind bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
874 1.25 rmind conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
875 1.25 rmind if (conkey == NULL || !npf_connkey_import(conkey, bk)) {
876 1.1 rmind goto err;
877 1.1 rmind }
878 1.27 rmind
879 1.27 rmind /* Guard against the contradicting address lengths. */
880 1.27 rmind if (NPF_CONNKEY_ALEN(fw) != alen || NPF_CONNKEY_ALEN(bk) != alen) {
881 1.27 rmind goto err;
882 1.27 rmind }
883 1.1 rmind
884 1.1 rmind /* Insert the entries and the connection itself. */
885 1.27 rmind if (!npf_conndb_insert(cd, fw, con, true)) {
886 1.1 rmind goto err;
887 1.1 rmind }
888 1.27 rmind if (!npf_conndb_insert(cd, bk, con, false)) {
889 1.1 rmind npf_conndb_remove(cd, fw);
890 1.1 rmind goto err;
891 1.1 rmind }
892 1.12 rmind
893 1.12 rmind NPF_PRINTF(("NPF: imported conn %p\n", con));
894 1.1 rmind npf_conndb_enqueue(cd, con);
895 1.1 rmind return 0;
896 1.1 rmind err:
897 1.22 christos npf_conn_destroy(npf, con);
898 1.1 rmind return EINVAL;
899 1.1 rmind }
900 1.1 rmind
901 1.20 christos int
902 1.25 rmind npf_conn_find(npf_t *npf, const nvlist_t *idict, nvlist_t **odict)
903 1.20 christos {
904 1.25 rmind const nvlist_t *kdict;
905 1.20 christos npf_connkey_t key;
906 1.20 christos npf_conn_t *con;
907 1.20 christos uint16_t dir;
908 1.20 christos bool forw;
909 1.20 christos
910 1.25 rmind kdict = dnvlist_get_nvlist(idict, "key", NULL);
911 1.25 rmind if (!kdict || !npf_connkey_import(kdict, &key)) {
912 1.20 christos return EINVAL;
913 1.25 rmind }
914 1.22 christos con = npf_conndb_lookup(npf->conn_db, &key, &forw);
915 1.20 christos if (con == NULL) {
916 1.20 christos return ESRCH;
917 1.20 christos }
918 1.27 rmind dir = dnvlist_get_number(idict, "direction", 0);
919 1.27 rmind if (!npf_conn_check(con, NULL, dir, true)) {
920 1.20 christos atomic_dec_uint(&con->c_refcnt);
921 1.20 christos return ESRCH;
922 1.20 christos }
923 1.22 christos *odict = npf_conn_export(npf, con);
924 1.20 christos atomic_dec_uint(&con->c_refcnt);
925 1.25 rmind return *odict ? 0 : ENOSPC;
926 1.20 christos }
927 1.20 christos
928 1.1 rmind #if defined(DDB) || defined(_NPF_TESTING)
929 1.1 rmind
930 1.1 rmind void
931 1.27 rmind npf_conn_print(npf_conn_t *con)
932 1.1 rmind {
933 1.27 rmind const npf_connkey_t *fw = npf_conn_getforwkey(con);
934 1.27 rmind const npf_connkey_t *bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
935 1.27 rmind const unsigned proto = con->c_proto;
936 1.22 christos struct timespec tspnow;
937 1.1 rmind
938 1.22 christos getnanouptime(&tspnow);
939 1.22 christos printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
940 1.27 rmind proto, con->c_flags, (long)(tspnow.tv_sec - con->c_atime),
941 1.27 rmind npf_state_etime(npf_getkernctx(), &con->c_state, proto));
942 1.27 rmind npf_connkey_print(fw);
943 1.27 rmind npf_connkey_print(bk);
944 1.1 rmind npf_state_dump(&con->c_state);
945 1.1 rmind if (con->c_nat) {
946 1.1 rmind npf_nat_dump(con->c_nat);
947 1.1 rmind }
948 1.1 rmind }
949 1.1 rmind
950 1.1 rmind #endif
951