npf_conn.c revision 1.28 1 1.1 rmind /*-
2 1.26 rmind * Copyright (c) 2014-2018 Mindaugas Rasiukevicius <rmind at netbsd org>
3 1.1 rmind * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
4 1.1 rmind * All rights reserved.
5 1.1 rmind *
6 1.1 rmind * This material is based upon work partially supported by The
7 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8 1.1 rmind *
9 1.1 rmind * Redistribution and use in source and binary forms, with or without
10 1.1 rmind * modification, are permitted provided that the following conditions
11 1.1 rmind * are met:
12 1.1 rmind * 1. Redistributions of source code must retain the above copyright
13 1.1 rmind * notice, this list of conditions and the following disclaimer.
14 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 rmind * notice, this list of conditions and the following disclaimer in the
16 1.1 rmind * documentation and/or other materials provided with the distribution.
17 1.1 rmind *
18 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
29 1.1 rmind */
30 1.1 rmind
31 1.1 rmind /*
32 1.1 rmind * NPF connection tracking for stateful filtering and translation.
33 1.1 rmind *
34 1.1 rmind * Overview
35 1.1 rmind *
36 1.26 rmind * Packets can be incoming or outgoing with respect to an interface.
37 1.1 rmind * Connection direction is identified by the direction of its first
38 1.26 rmind * packet. The meaning of incoming/outgoing packet in the context of
39 1.26 rmind * connection direction can be confusing. Therefore, we will use the
40 1.26 rmind * terms "forwards stream" and "backwards stream", where packets in
41 1.26 rmind * the forwards stream mean the packets travelling in the direction
42 1.26 rmind * as the connection direction.
43 1.26 rmind *
44 1.26 rmind * All connections have two keys and thus two entries:
45 1.1 rmind *
46 1.27 rmind * - npf_conn_getforwkey(con) -- for the forwards stream;
47 1.27 rmind * - npf_conn_getbackkey(con, alen) -- for the backwards stream.
48 1.27 rmind *
49 1.27 rmind * Note: the keys are stored in npf_conn_t::c_keys[], which is used
50 1.27 rmind * to allocate variable-length npf_conn_t structures based on whether
51 1.27 rmind * the IPv4 or IPv6 addresses are used. See the npf_connkey.c source
52 1.27 rmind * file for the description of the key layouts.
53 1.1 rmind *
54 1.1 rmind * The keys are formed from the 5-tuple (source/destination address,
55 1.1 rmind * source/destination port and the protocol). Additional matching
56 1.1 rmind * is performed for the interface (a common behaviour is equivalent
57 1.1 rmind * to the 6-tuple lookup including the interface ID). Note that the
58 1.1 rmind * key may be formed using translated values in a case of NAT.
59 1.1 rmind *
60 1.1 rmind * Connections can serve two purposes: for the implicit passing or
61 1.1 rmind * to accommodate the dynamic NAT. Connections for the former purpose
62 1.1 rmind * are created by the rules with "stateful" attribute and are used for
63 1.1 rmind * stateful filtering. Such connections indicate that the packet of
64 1.1 rmind * the backwards stream should be passed without inspection of the
65 1.1 rmind * ruleset. The other purpose is to associate a dynamic NAT mechanism
66 1.1 rmind * with a connection. Such connections are created by the NAT policies
67 1.1 rmind * and they have a relationship with NAT translation structure via
68 1.1 rmind * npf_conn_t::c_nat. A single connection can serve both purposes,
69 1.1 rmind * which is a common case.
70 1.1 rmind *
71 1.1 rmind * Connection life-cycle
72 1.1 rmind *
73 1.1 rmind * Connections are established when a packet matches said rule or
74 1.1 rmind * NAT policy. Both keys of the established connection are inserted
75 1.1 rmind * into the connection database. A garbage collection thread
76 1.1 rmind * periodically scans all connections and depending on connection
77 1.1 rmind * properties (e.g. last activity time, protocol) removes connection
78 1.1 rmind * entries and expires the actual connections.
79 1.1 rmind *
80 1.1 rmind * Each connection has a reference count. The reference is acquired
81 1.1 rmind * on lookup and should be released by the caller. It guarantees that
82 1.1 rmind * the connection will not be destroyed, although it may be expired.
83 1.1 rmind *
84 1.1 rmind * Synchronisation
85 1.1 rmind *
86 1.1 rmind * Connection database is accessed in a lock-less manner by the main
87 1.1 rmind * routines: npf_conn_inspect() and npf_conn_establish(). Since they
88 1.1 rmind * are always called from a software interrupt, the database is
89 1.1 rmind * protected using passive serialisation. The main place which can
90 1.1 rmind * destroy a connection is npf_conn_worker(). The database itself
91 1.1 rmind * can be replaced and destroyed in npf_conn_reload().
92 1.1 rmind *
93 1.1 rmind * ALG support
94 1.1 rmind *
95 1.1 rmind * Application-level gateways (ALGs) can override generic connection
96 1.1 rmind * inspection (npf_alg_conn() call in npf_conn_inspect() function) by
97 1.1 rmind * performing their own lookup using different key. Recursive call
98 1.1 rmind * to npf_conn_inspect() is not allowed. The ALGs ought to use the
99 1.1 rmind * npf_conn_lookup() function for this purpose.
100 1.1 rmind *
101 1.1 rmind * Lock order
102 1.1 rmind *
103 1.6 rmind * npf_config_lock ->
104 1.6 rmind * conn_lock ->
105 1.6 rmind * npf_conn_t::c_lock
106 1.1 rmind */
107 1.1 rmind
108 1.22 christos #ifdef _KERNEL
109 1.1 rmind #include <sys/cdefs.h>
110 1.28 christos __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.28 2019/08/06 10:25:13 christos Exp $");
111 1.1 rmind
112 1.1 rmind #include <sys/param.h>
113 1.1 rmind #include <sys/types.h>
114 1.1 rmind
115 1.1 rmind #include <netinet/in.h>
116 1.1 rmind #include <netinet/tcp.h>
117 1.1 rmind
118 1.1 rmind #include <sys/atomic.h>
119 1.1 rmind #include <sys/kmem.h>
120 1.1 rmind #include <sys/mutex.h>
121 1.1 rmind #include <net/pfil.h>
122 1.1 rmind #include <sys/pool.h>
123 1.1 rmind #include <sys/queue.h>
124 1.1 rmind #include <sys/systm.h>
125 1.22 christos #endif
126 1.1 rmind
127 1.1 rmind #define __NPF_CONN_PRIVATE
128 1.1 rmind #include "npf_conn.h"
129 1.1 rmind #include "npf_impl.h"
130 1.1 rmind
131 1.27 rmind /* A helper to select the IPv4 or IPv6 connection cache. */
132 1.27 rmind #define NPF_CONNCACHE(alen) (((alen) >> 4) & 0x1)
133 1.27 rmind
134 1.1 rmind /*
135 1.1 rmind * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
136 1.1 rmind */
137 1.1 rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
138 1.1 rmind #define CONN_ACTIVE 0x004 /* visible on inspection */
139 1.1 rmind #define CONN_PASS 0x008 /* perform implicit passing */
140 1.1 rmind #define CONN_EXPIRE 0x010 /* explicitly expire */
141 1.1 rmind #define CONN_REMOVED 0x020 /* "forw/back" entries removed */
142 1.1 rmind
143 1.6 rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
144 1.1 rmind
145 1.27 rmind static nvlist_t *npf_conn_export(npf_t *, npf_conn_t *);
146 1.28 christos static void npf_conn_destroy_idx(npf_t *, npf_conn_t *, unsigned);
147 1.1 rmind
148 1.1 rmind /*
149 1.1 rmind * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
150 1.1 rmind */
151 1.1 rmind
152 1.1 rmind void
153 1.22 christos npf_conn_init(npf_t *npf, int flags)
154 1.1 rmind {
155 1.27 rmind npf->conn_cache[0] = pool_cache_init(
156 1.27 rmind offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V4WORDS * 2]),
157 1.27 rmind 0, 0, 0, "npfcn4pl", NULL, IPL_NET, NULL, NULL, NULL);
158 1.27 rmind npf->conn_cache[1] = pool_cache_init(
159 1.27 rmind offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V6WORDS * 2]),
160 1.27 rmind 0, 0, 0, "npfcn6pl", NULL, IPL_NET, NULL, NULL, NULL);
161 1.27 rmind
162 1.22 christos mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
163 1.22 christos npf->conn_tracking = CONN_TRACKING_OFF;
164 1.22 christos npf->conn_db = npf_conndb_create();
165 1.1 rmind
166 1.22 christos if ((flags & NPF_NO_GC) == 0) {
167 1.22 christos npf_worker_register(npf, npf_conn_worker);
168 1.22 christos }
169 1.27 rmind npf_conndb_sysinit(npf);
170 1.1 rmind }
171 1.1 rmind
172 1.1 rmind void
173 1.22 christos npf_conn_fini(npf_t *npf)
174 1.1 rmind {
175 1.27 rmind npf_conndb_sysfini(npf);
176 1.27 rmind
177 1.6 rmind /* Note: the caller should have flushed the connections. */
178 1.22 christos KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
179 1.22 christos npf_worker_unregister(npf, npf_conn_worker);
180 1.1 rmind
181 1.22 christos npf_conndb_destroy(npf->conn_db);
182 1.27 rmind pool_cache_destroy(npf->conn_cache[0]);
183 1.27 rmind pool_cache_destroy(npf->conn_cache[1]);
184 1.22 christos mutex_destroy(&npf->conn_lock);
185 1.1 rmind }
186 1.1 rmind
187 1.1 rmind /*
188 1.6 rmind * npf_conn_load: perform the load by flushing the current connection
189 1.6 rmind * database and replacing it with the new one or just destroying.
190 1.1 rmind *
191 1.6 rmind * => The caller must disable the connection tracking and ensure that
192 1.6 rmind * there are no connection database lookups or references in-flight.
193 1.1 rmind */
194 1.6 rmind void
195 1.22 christos npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
196 1.1 rmind {
197 1.6 rmind npf_conndb_t *odb = NULL;
198 1.1 rmind
199 1.22 christos KASSERT(npf_config_locked_p(npf));
200 1.1 rmind
201 1.1 rmind /*
202 1.6 rmind * The connection database is in the quiescent state.
203 1.6 rmind * Prevent G/C thread from running and install a new database.
204 1.1 rmind */
205 1.22 christos mutex_enter(&npf->conn_lock);
206 1.6 rmind if (ndb) {
207 1.22 christos KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
208 1.22 christos odb = npf->conn_db;
209 1.22 christos npf->conn_db = ndb;
210 1.6 rmind membar_sync();
211 1.6 rmind }
212 1.6 rmind if (track) {
213 1.6 rmind /* After this point lookups start flying in. */
214 1.22 christos npf->conn_tracking = CONN_TRACKING_ON;
215 1.1 rmind }
216 1.22 christos mutex_exit(&npf->conn_lock);
217 1.1 rmind
218 1.1 rmind if (odb) {
219 1.6 rmind /*
220 1.6 rmind * Flush all, no sync since the caller did it for us.
221 1.6 rmind * Also, release the pool cache memory.
222 1.6 rmind */
223 1.26 rmind npf_conndb_gc(npf, odb, true, false);
224 1.1 rmind npf_conndb_destroy(odb);
225 1.27 rmind pool_cache_invalidate(npf->conn_cache[0]);
226 1.27 rmind pool_cache_invalidate(npf->conn_cache[1]);
227 1.1 rmind }
228 1.1 rmind }
229 1.1 rmind
230 1.1 rmind /*
231 1.1 rmind * npf_conn_tracking: enable/disable connection tracking.
232 1.1 rmind */
233 1.1 rmind void
234 1.22 christos npf_conn_tracking(npf_t *npf, bool track)
235 1.1 rmind {
236 1.22 christos KASSERT(npf_config_locked_p(npf));
237 1.22 christos npf->conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
238 1.1 rmind }
239 1.1 rmind
240 1.6 rmind static inline bool
241 1.1 rmind npf_conn_trackable_p(const npf_cache_t *npc)
242 1.1 rmind {
243 1.22 christos const npf_t *npf = npc->npc_ctx;
244 1.22 christos
245 1.1 rmind /*
246 1.1 rmind * Check if connection tracking is on. Also, if layer 3 and 4 are
247 1.1 rmind * not cached - protocol is not supported or packet is invalid.
248 1.1 rmind */
249 1.22 christos if (npf->conn_tracking != CONN_TRACKING_ON) {
250 1.1 rmind return false;
251 1.1 rmind }
252 1.1 rmind if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
253 1.1 rmind return false;
254 1.1 rmind }
255 1.1 rmind return true;
256 1.1 rmind }
257 1.1 rmind
258 1.22 christos static inline void
259 1.22 christos conn_update_atime(npf_conn_t *con)
260 1.22 christos {
261 1.22 christos struct timespec tsnow;
262 1.22 christos
263 1.22 christos getnanouptime(&tsnow);
264 1.22 christos con->c_atime = tsnow.tv_sec;
265 1.22 christos }
266 1.22 christos
267 1.1 rmind /*
268 1.27 rmind * npf_conn_check: check that:
269 1.27 rmind *
270 1.27 rmind * - the connection is active;
271 1.27 rmind *
272 1.27 rmind * - the packet is travelling in the right direction with the respect
273 1.27 rmind * to the connection direction (if interface-id is not zero);
274 1.27 rmind *
275 1.27 rmind * - the packet is travelling on the same interface as the
276 1.27 rmind * connection interface (if interface-id is not zero).
277 1.18 christos */
278 1.18 christos static bool
279 1.27 rmind npf_conn_check(const npf_conn_t *con, const nbuf_t *nbuf,
280 1.27 rmind const unsigned di, const bool forw)
281 1.18 christos {
282 1.22 christos const uint32_t flags = con->c_flags;
283 1.27 rmind const unsigned ifid = con->c_ifid;
284 1.27 rmind bool active, pforw;
285 1.18 christos
286 1.27 rmind active = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
287 1.27 rmind if (__predict_false(!active)) {
288 1.18 christos return false;
289 1.18 christos }
290 1.27 rmind if (ifid && nbuf) {
291 1.27 rmind pforw = (flags & PFIL_ALL) == (unsigned)di;
292 1.27 rmind if (__predict_false(forw != pforw)) {
293 1.27 rmind return false;
294 1.27 rmind }
295 1.27 rmind if (__predict_false(ifid != nbuf->nb_ifid)) {
296 1.27 rmind return false;
297 1.27 rmind }
298 1.18 christos }
299 1.18 christos return true;
300 1.18 christos }
301 1.18 christos
302 1.18 christos /*
303 1.1 rmind * npf_conn_lookup: lookup if there is an established connection.
304 1.1 rmind *
305 1.1 rmind * => If found, we will hold a reference for the caller.
306 1.1 rmind */
307 1.1 rmind npf_conn_t *
308 1.4 rmind npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
309 1.1 rmind {
310 1.22 christos npf_t *npf = npc->npc_ctx;
311 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
312 1.1 rmind npf_conn_t *con;
313 1.1 rmind npf_connkey_t key;
314 1.1 rmind
315 1.1 rmind /* Construct a key and lookup for a connection in the store. */
316 1.1 rmind if (!npf_conn_conkey(npc, &key, true)) {
317 1.1 rmind return NULL;
318 1.1 rmind }
319 1.22 christos con = npf_conndb_lookup(npf->conn_db, &key, forw);
320 1.1 rmind if (con == NULL) {
321 1.1 rmind return NULL;
322 1.1 rmind }
323 1.1 rmind KASSERT(npc->npc_proto == con->c_proto);
324 1.1 rmind
325 1.27 rmind /* Extra checks for the connection and packet. */
326 1.27 rmind if (!npf_conn_check(con, nbuf, di, *forw)) {
327 1.1 rmind atomic_dec_uint(&con->c_refcnt);
328 1.1 rmind return NULL;
329 1.1 rmind }
330 1.1 rmind
331 1.1 rmind /* Update the last activity time. */
332 1.22 christos conn_update_atime(con);
333 1.1 rmind return con;
334 1.1 rmind }
335 1.1 rmind
336 1.1 rmind /*
337 1.1 rmind * npf_conn_inspect: lookup a connection and inspecting the protocol data.
338 1.1 rmind *
339 1.1 rmind * => If found, we will hold a reference for the caller.
340 1.1 rmind */
341 1.1 rmind npf_conn_t *
342 1.4 rmind npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
343 1.1 rmind {
344 1.4 rmind nbuf_t *nbuf = npc->npc_nbuf;
345 1.1 rmind npf_conn_t *con;
346 1.1 rmind bool forw, ok;
347 1.1 rmind
348 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
349 1.1 rmind if (!npf_conn_trackable_p(npc)) {
350 1.1 rmind return NULL;
351 1.1 rmind }
352 1.1 rmind
353 1.1 rmind /* Query ALG which may lookup connection for us. */
354 1.4 rmind if ((con = npf_alg_conn(npc, di)) != NULL) {
355 1.1 rmind /* Note: reference is held. */
356 1.1 rmind return con;
357 1.1 rmind }
358 1.1 rmind if (nbuf_head_mbuf(nbuf) == NULL) {
359 1.1 rmind *error = ENOMEM;
360 1.1 rmind return NULL;
361 1.1 rmind }
362 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
363 1.1 rmind
364 1.1 rmind /* Main lookup of the connection. */
365 1.4 rmind if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
366 1.1 rmind return NULL;
367 1.1 rmind }
368 1.1 rmind
369 1.1 rmind /* Inspect the protocol data and handle state changes. */
370 1.1 rmind mutex_enter(&con->c_lock);
371 1.4 rmind ok = npf_state_inspect(npc, &con->c_state, forw);
372 1.1 rmind mutex_exit(&con->c_lock);
373 1.1 rmind
374 1.17 rmind /* If invalid state: let the rules deal with it. */
375 1.1 rmind if (__predict_false(!ok)) {
376 1.1 rmind npf_conn_release(con);
377 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
378 1.17 rmind return NULL;
379 1.17 rmind }
380 1.17 rmind
381 1.17 rmind /*
382 1.17 rmind * If this is multi-end state, then specially tag the packet
383 1.17 rmind * so it will be just passed-through on other interfaces.
384 1.17 rmind */
385 1.17 rmind if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
386 1.17 rmind npf_conn_release(con);
387 1.17 rmind *error = ENOMEM;
388 1.17 rmind return NULL;
389 1.1 rmind }
390 1.1 rmind return con;
391 1.1 rmind }
392 1.1 rmind
393 1.1 rmind /*
394 1.1 rmind * npf_conn_establish: create a new connection, insert into the global list.
395 1.1 rmind *
396 1.1 rmind * => Connection is created with the reference held for the caller.
397 1.1 rmind * => Connection will be activated on the first reference release.
398 1.1 rmind */
399 1.1 rmind npf_conn_t *
400 1.27 rmind npf_conn_establish(npf_cache_t *npc, int di, bool global)
401 1.1 rmind {
402 1.22 christos npf_t *npf = npc->npc_ctx;
403 1.27 rmind const unsigned alen = npc->npc_alen;
404 1.27 rmind const unsigned idx = NPF_CONNCACHE(alen);
405 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
406 1.27 rmind npf_connkey_t *fw, *bk;
407 1.1 rmind npf_conn_t *con;
408 1.15 rmind int error = 0;
409 1.1 rmind
410 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
411 1.1 rmind
412 1.1 rmind if (!npf_conn_trackable_p(npc)) {
413 1.1 rmind return NULL;
414 1.1 rmind }
415 1.1 rmind
416 1.1 rmind /* Allocate and initialise the new connection. */
417 1.27 rmind con = pool_cache_get(npf->conn_cache[idx], PR_NOWAIT);
418 1.1 rmind if (__predict_false(!con)) {
419 1.22 christos npf_worker_signal(npf);
420 1.1 rmind return NULL;
421 1.1 rmind }
422 1.1 rmind NPF_PRINTF(("NPF: create conn %p\n", con));
423 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
424 1.1 rmind
425 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
426 1.1 rmind con->c_flags = (di & PFIL_ALL);
427 1.15 rmind con->c_refcnt = 0;
428 1.1 rmind con->c_rproc = NULL;
429 1.1 rmind con->c_nat = NULL;
430 1.1 rmind
431 1.27 rmind con->c_proto = npc->npc_proto;
432 1.27 rmind CTASSERT(sizeof(con->c_proto) >= sizeof(npc->npc_proto));
433 1.27 rmind
434 1.15 rmind /* Initialize the protocol state. */
435 1.4 rmind if (!npf_state_init(npc, &con->c_state)) {
436 1.28 christos npf_conn_destroy_idx(npf, con, idx);
437 1.15 rmind return NULL;
438 1.1 rmind }
439 1.27 rmind KASSERT(npf_iscached(npc, NPC_IP46));
440 1.1 rmind
441 1.27 rmind fw = npf_conn_getforwkey(con);
442 1.27 rmind bk = npf_conn_getbackkey(con, alen);
443 1.1 rmind
444 1.1 rmind /*
445 1.1 rmind * Construct "forwards" and "backwards" keys. Also, set the
446 1.1 rmind * interface ID for this connection (unless it is global).
447 1.1 rmind */
448 1.15 rmind if (!npf_conn_conkey(npc, fw, true) ||
449 1.15 rmind !npf_conn_conkey(npc, bk, false)) {
450 1.28 christos npf_conn_destroy_idx(npf, con, idx);
451 1.15 rmind return NULL;
452 1.1 rmind }
453 1.27 rmind con->c_ifid = global ? nbuf->nb_ifid : 0;
454 1.1 rmind
455 1.15 rmind /*
456 1.15 rmind * Set last activity time for a new connection and acquire
457 1.15 rmind * a reference for the caller before we make it visible.
458 1.15 rmind */
459 1.22 christos conn_update_atime(con);
460 1.15 rmind con->c_refcnt = 1;
461 1.1 rmind
462 1.1 rmind /*
463 1.1 rmind * Insert both keys (entries representing directions) of the
464 1.15 rmind * connection. At this point it becomes visible, but we activate
465 1.15 rmind * the connection later.
466 1.1 rmind */
467 1.15 rmind mutex_enter(&con->c_lock);
468 1.27 rmind if (!npf_conndb_insert(npf->conn_db, fw, con, true)) {
469 1.15 rmind error = EISCONN;
470 1.1 rmind goto err;
471 1.1 rmind }
472 1.27 rmind if (!npf_conndb_insert(npf->conn_db, bk, con, false)) {
473 1.15 rmind npf_conn_t *ret __diagused;
474 1.22 christos ret = npf_conndb_remove(npf->conn_db, fw);
475 1.15 rmind KASSERT(ret == con);
476 1.15 rmind error = EISCONN;
477 1.15 rmind goto err;
478 1.15 rmind }
479 1.15 rmind err:
480 1.15 rmind /*
481 1.15 rmind * If we have hit the duplicate: mark the connection as expired
482 1.15 rmind * and let the G/C thread to take care of it. We cannot do it
483 1.15 rmind * here since there might be references acquired already.
484 1.15 rmind */
485 1.15 rmind if (error) {
486 1.16 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
487 1.16 rmind atomic_dec_uint(&con->c_refcnt);
488 1.22 christos npf_stats_inc(npf, NPF_STAT_RACE_CONN);
489 1.15 rmind } else {
490 1.15 rmind NPF_PRINTF(("NPF: establish conn %p\n", con));
491 1.1 rmind }
492 1.1 rmind
493 1.1 rmind /* Finally, insert into the connection list. */
494 1.22 christos npf_conndb_enqueue(npf->conn_db, con);
495 1.15 rmind mutex_exit(&con->c_lock);
496 1.15 rmind
497 1.15 rmind return error ? NULL : con;
498 1.1 rmind }
499 1.1 rmind
500 1.26 rmind void
501 1.22 christos npf_conn_destroy(npf_t *npf, npf_conn_t *con)
502 1.1 rmind {
503 1.27 rmind const npf_connkey_t *key = npf_conn_getforwkey(con);
504 1.27 rmind const unsigned alen = NPF_CONNKEY_ALEN(key);
505 1.28 christos npf_conn_destroy_idx(npf, con, NPF_CONNCACHE(alen));
506 1.28 christos }
507 1.27 rmind
508 1.28 christos static void
509 1.28 christos npf_conn_destroy_idx(npf_t *npf, npf_conn_t *con, unsigned idx)
510 1.28 christos {
511 1.15 rmind KASSERT(con->c_refcnt == 0);
512 1.15 rmind
513 1.1 rmind if (con->c_nat) {
514 1.1 rmind /* Release any NAT structures. */
515 1.1 rmind npf_nat_destroy(con->c_nat);
516 1.1 rmind }
517 1.1 rmind if (con->c_rproc) {
518 1.1 rmind /* Release the rule procedure. */
519 1.1 rmind npf_rproc_release(con->c_rproc);
520 1.1 rmind }
521 1.1 rmind
522 1.1 rmind /* Destroy the state. */
523 1.1 rmind npf_state_destroy(&con->c_state);
524 1.1 rmind mutex_destroy(&con->c_lock);
525 1.1 rmind
526 1.1 rmind /* Free the structure, increase the counter. */
527 1.27 rmind pool_cache_put(npf->conn_cache[idx], con);
528 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
529 1.1 rmind NPF_PRINTF(("NPF: conn %p destroyed\n", con));
530 1.1 rmind }
531 1.1 rmind
532 1.1 rmind /*
533 1.1 rmind * npf_conn_setnat: associate NAT entry with the connection, update and
534 1.1 rmind * re-insert connection entry using the translation values.
535 1.16 rmind *
536 1.16 rmind * => The caller must be holding a reference.
537 1.1 rmind */
538 1.1 rmind int
539 1.1 rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
540 1.27 rmind npf_nat_t *nt, unsigned ntype)
541 1.1 rmind {
542 1.1 rmind static const u_int nat_type_dimap[] = {
543 1.1 rmind [NPF_NATOUT] = NPF_DST,
544 1.1 rmind [NPF_NATIN] = NPF_SRC,
545 1.1 rmind };
546 1.22 christos npf_t *npf = npc->npc_ctx;
547 1.27 rmind npf_connkey_t key, *fw, *bk;
548 1.2 rmind npf_conn_t *ret __diagused;
549 1.1 rmind npf_addr_t *taddr;
550 1.1 rmind in_port_t tport;
551 1.1 rmind
552 1.1 rmind KASSERT(con->c_refcnt > 0);
553 1.1 rmind
554 1.1 rmind npf_nat_gettrans(nt, &taddr, &tport);
555 1.1 rmind KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
556 1.1 rmind
557 1.1 rmind /* Construct a "backwards" key. */
558 1.1 rmind if (!npf_conn_conkey(npc, &key, false)) {
559 1.1 rmind return EINVAL;
560 1.1 rmind }
561 1.1 rmind
562 1.1 rmind /* Acquire the lock and check for the races. */
563 1.1 rmind mutex_enter(&con->c_lock);
564 1.1 rmind if (__predict_false(con->c_flags & CONN_EXPIRE)) {
565 1.1 rmind /* The connection got expired. */
566 1.1 rmind mutex_exit(&con->c_lock);
567 1.1 rmind return EINVAL;
568 1.1 rmind }
569 1.15 rmind KASSERT((con->c_flags & CONN_REMOVED) == 0);
570 1.15 rmind
571 1.1 rmind if (__predict_false(con->c_nat != NULL)) {
572 1.1 rmind /* Race with a duplicate packet. */
573 1.1 rmind mutex_exit(&con->c_lock);
574 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
575 1.1 rmind return EISCONN;
576 1.1 rmind }
577 1.1 rmind
578 1.27 rmind /* Remove the "backwards" key. */
579 1.27 rmind fw = npf_conn_getforwkey(con);
580 1.27 rmind bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
581 1.27 rmind ret = npf_conndb_remove(npf->conn_db, bk);
582 1.1 rmind KASSERT(ret == con);
583 1.1 rmind
584 1.1 rmind /* Set the source/destination IDs to the translation values. */
585 1.27 rmind npf_conn_adjkey(bk, taddr, tport, nat_type_dimap[ntype]);
586 1.1 rmind
587 1.27 rmind /* Finally, re-insert the "backwards" key. */
588 1.27 rmind if (!npf_conndb_insert(npf->conn_db, bk, con, false)) {
589 1.1 rmind /*
590 1.1 rmind * Race: we have hit the duplicate, remove the "forwards"
591 1.27 rmind * key and expire our connection; it is no longer valid.
592 1.1 rmind */
593 1.27 rmind ret = npf_conndb_remove(npf->conn_db, fw);
594 1.15 rmind KASSERT(ret == con);
595 1.15 rmind
596 1.1 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
597 1.1 rmind mutex_exit(&con->c_lock);
598 1.1 rmind
599 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
600 1.1 rmind return EISCONN;
601 1.1 rmind }
602 1.1 rmind
603 1.1 rmind /* Associate the NAT entry and release the lock. */
604 1.1 rmind con->c_nat = nt;
605 1.1 rmind mutex_exit(&con->c_lock);
606 1.1 rmind return 0;
607 1.1 rmind }
608 1.1 rmind
609 1.1 rmind /*
610 1.1 rmind * npf_conn_expire: explicitly mark connection as expired.
611 1.1 rmind */
612 1.1 rmind void
613 1.1 rmind npf_conn_expire(npf_conn_t *con)
614 1.1 rmind {
615 1.1 rmind /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
616 1.1 rmind atomic_or_uint(&con->c_flags, CONN_EXPIRE);
617 1.1 rmind }
618 1.1 rmind
619 1.1 rmind /*
620 1.1 rmind * npf_conn_pass: return true if connection is "pass" one, otherwise false.
621 1.1 rmind */
622 1.1 rmind bool
623 1.23 christos npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
624 1.1 rmind {
625 1.1 rmind KASSERT(con->c_refcnt > 0);
626 1.1 rmind if (__predict_true(con->c_flags & CONN_PASS)) {
627 1.24 rmind mi->mi_rid = con->c_rid;
628 1.24 rmind mi->mi_retfl = con->c_retfl;
629 1.1 rmind *rp = con->c_rproc;
630 1.1 rmind return true;
631 1.1 rmind }
632 1.1 rmind return false;
633 1.1 rmind }
634 1.1 rmind
635 1.1 rmind /*
636 1.1 rmind * npf_conn_setpass: mark connection as a "pass" one and associate the
637 1.1 rmind * rule procedure with it.
638 1.1 rmind */
639 1.1 rmind void
640 1.23 christos npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
641 1.1 rmind {
642 1.1 rmind KASSERT((con->c_flags & CONN_ACTIVE) == 0);
643 1.1 rmind KASSERT(con->c_refcnt > 0);
644 1.1 rmind KASSERT(con->c_rproc == NULL);
645 1.1 rmind
646 1.1 rmind /*
647 1.1 rmind * No need for atomic since the connection is not yet active.
648 1.1 rmind * If rproc is set, the caller transfers its reference to us,
649 1.1 rmind * which will be released on npf_conn_destroy().
650 1.1 rmind */
651 1.14 rmind atomic_or_uint(&con->c_flags, CONN_PASS);
652 1.1 rmind con->c_rproc = rp;
653 1.24 rmind if (rp) {
654 1.24 rmind con->c_rid = mi->mi_rid;
655 1.24 rmind con->c_retfl = mi->mi_retfl;
656 1.24 rmind }
657 1.1 rmind }
658 1.1 rmind
659 1.1 rmind /*
660 1.1 rmind * npf_conn_release: release a reference, which might allow G/C thread
661 1.1 rmind * to destroy this connection.
662 1.1 rmind */
663 1.1 rmind void
664 1.1 rmind npf_conn_release(npf_conn_t *con)
665 1.1 rmind {
666 1.1 rmind if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
667 1.1 rmind /* Activate: after this, connection is globally visible. */
668 1.14 rmind atomic_or_uint(&con->c_flags, CONN_ACTIVE);
669 1.1 rmind }
670 1.1 rmind KASSERT(con->c_refcnt > 0);
671 1.1 rmind atomic_dec_uint(&con->c_refcnt);
672 1.1 rmind }
673 1.1 rmind
674 1.1 rmind /*
675 1.13 rmind * npf_conn_getnat: return associated NAT data entry and indicate
676 1.1 rmind * whether it is a "forwards" or "backwards" stream.
677 1.1 rmind */
678 1.1 rmind npf_nat_t *
679 1.13 rmind npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
680 1.1 rmind {
681 1.1 rmind KASSERT(con->c_refcnt > 0);
682 1.22 christos *forw = (con->c_flags & PFIL_ALL) == (u_int)di;
683 1.1 rmind return con->c_nat;
684 1.1 rmind }
685 1.1 rmind
686 1.1 rmind /*
687 1.1 rmind * npf_conn_expired: criterion to check if connection is expired.
688 1.1 rmind */
689 1.26 rmind bool
690 1.27 rmind npf_conn_expired(npf_t *npf, const npf_conn_t *con, uint64_t tsnow)
691 1.1 rmind {
692 1.27 rmind const int etime = npf_state_etime(npf, &con->c_state, con->c_proto);
693 1.22 christos int elapsed;
694 1.1 rmind
695 1.1 rmind if (__predict_false(con->c_flags & CONN_EXPIRE)) {
696 1.1 rmind /* Explicitly marked to be expired. */
697 1.1 rmind return true;
698 1.1 rmind }
699 1.22 christos
700 1.22 christos /*
701 1.22 christos * Note: another thread may update 'atime' and it might
702 1.22 christos * become greater than 'now'.
703 1.22 christos */
704 1.22 christos elapsed = (int64_t)tsnow - con->c_atime;
705 1.22 christos return elapsed > etime;
706 1.1 rmind }
707 1.1 rmind
708 1.1 rmind /*
709 1.26 rmind * npf_conn_remove: unlink the connection and mark as expired.
710 1.1 rmind */
711 1.7 rmind void
712 1.26 rmind npf_conn_remove(npf_conndb_t *cd, npf_conn_t *con)
713 1.1 rmind {
714 1.26 rmind /* Remove both entries of the connection. */
715 1.26 rmind mutex_enter(&con->c_lock);
716 1.26 rmind if ((con->c_flags & CONN_REMOVED) == 0) {
717 1.27 rmind npf_connkey_t *fw, *bk;
718 1.26 rmind npf_conn_t *ret __diagused;
719 1.1 rmind
720 1.27 rmind fw = npf_conn_getforwkey(con);
721 1.27 rmind ret = npf_conndb_remove(cd, fw);
722 1.26 rmind KASSERT(ret == con);
723 1.27 rmind
724 1.27 rmind bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
725 1.27 rmind ret = npf_conndb_remove(cd, bk);
726 1.26 rmind KASSERT(ret == con);
727 1.1 rmind }
728 1.6 rmind
729 1.26 rmind /* Flag the removal and expiration. */
730 1.26 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
731 1.26 rmind mutex_exit(&con->c_lock);
732 1.1 rmind }
733 1.1 rmind
734 1.6 rmind /*
735 1.6 rmind * npf_conn_worker: G/C to run from a worker thread.
736 1.6 rmind */
737 1.22 christos void
738 1.22 christos npf_conn_worker(npf_t *npf)
739 1.1 rmind {
740 1.26 rmind npf_conndb_gc(npf, npf->conn_db, false, true);
741 1.1 rmind }
742 1.1 rmind
743 1.1 rmind /*
744 1.10 rmind * npf_conndb_export: construct a list of connections prepared for saving.
745 1.1 rmind * Note: this is expected to be an expensive operation.
746 1.1 rmind */
747 1.1 rmind int
748 1.25 rmind npf_conndb_export(npf_t *npf, nvlist_t *npf_dict)
749 1.1 rmind {
750 1.26 rmind npf_conn_t *head, *con;
751 1.1 rmind
752 1.1 rmind /*
753 1.1 rmind * Note: acquire conn_lock to prevent from the database
754 1.1 rmind * destruction and G/C thread.
755 1.1 rmind */
756 1.22 christos mutex_enter(&npf->conn_lock);
757 1.22 christos if (npf->conn_tracking != CONN_TRACKING_ON) {
758 1.22 christos mutex_exit(&npf->conn_lock);
759 1.1 rmind return 0;
760 1.1 rmind }
761 1.26 rmind head = npf_conndb_getlist(npf->conn_db);
762 1.26 rmind con = head;
763 1.1 rmind while (con) {
764 1.25 rmind nvlist_t *cdict;
765 1.1 rmind
766 1.22 christos if ((cdict = npf_conn_export(npf, con)) != NULL) {
767 1.25 rmind nvlist_append_nvlist_array(npf_dict, "conn-list", cdict);
768 1.25 rmind nvlist_destroy(cdict);
769 1.1 rmind }
770 1.26 rmind if ((con = npf_conndb_getnext(npf->conn_db, con)) == head) {
771 1.26 rmind break;
772 1.26 rmind }
773 1.1 rmind }
774 1.22 christos mutex_exit(&npf->conn_lock);
775 1.5 joerg return 0;
776 1.1 rmind }
777 1.1 rmind
778 1.1 rmind /*
779 1.10 rmind * npf_conn_export: serialise a single connection.
780 1.10 rmind */
781 1.25 rmind static nvlist_t *
782 1.27 rmind npf_conn_export(npf_t *npf, npf_conn_t *con)
783 1.10 rmind {
784 1.25 rmind nvlist_t *cdict, *kdict;
785 1.27 rmind npf_connkey_t *fw, *bk;
786 1.27 rmind unsigned alen;
787 1.10 rmind
788 1.10 rmind if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
789 1.10 rmind return NULL;
790 1.10 rmind }
791 1.25 rmind cdict = nvlist_create(0);
792 1.25 rmind nvlist_add_number(cdict, "flags", con->c_flags);
793 1.25 rmind nvlist_add_number(cdict, "proto", con->c_proto);
794 1.10 rmind if (con->c_ifid) {
795 1.22 christos const char *ifname = npf_ifmap_getname(npf, con->c_ifid);
796 1.25 rmind nvlist_add_string(cdict, "ifname", ifname);
797 1.10 rmind }
798 1.25 rmind nvlist_add_binary(cdict, "state", &con->c_state, sizeof(npf_state_t));
799 1.10 rmind
800 1.27 rmind fw = npf_conn_getforwkey(con);
801 1.27 rmind alen = NPF_CONNKEY_ALEN(fw);
802 1.27 rmind bk = npf_conn_getbackkey(con, alen);
803 1.27 rmind
804 1.27 rmind kdict = npf_connkey_export(fw);
805 1.25 rmind nvlist_move_nvlist(cdict, "forw-key", kdict);
806 1.10 rmind
807 1.27 rmind kdict = npf_connkey_export(bk);
808 1.25 rmind nvlist_move_nvlist(cdict, "back-key", kdict);
809 1.10 rmind
810 1.27 rmind /* Let the address length be based on on first key. */
811 1.27 rmind nvlist_add_number(cdict, "alen", alen);
812 1.27 rmind
813 1.10 rmind if (con->c_nat) {
814 1.10 rmind npf_nat_export(cdict, con->c_nat);
815 1.10 rmind }
816 1.10 rmind return cdict;
817 1.10 rmind }
818 1.10 rmind
819 1.10 rmind /*
820 1.6 rmind * npf_conn_import: fully reconstruct a single connection from a
821 1.25 rmind * nvlist and insert into the given database.
822 1.1 rmind */
823 1.1 rmind int
824 1.25 rmind npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
825 1.6 rmind npf_ruleset_t *natlist)
826 1.1 rmind {
827 1.1 rmind npf_conn_t *con;
828 1.1 rmind npf_connkey_t *fw, *bk;
829 1.25 rmind const nvlist_t *nat, *conkey;
830 1.10 rmind const char *ifname;
831 1.25 rmind const void *state;
832 1.27 rmind unsigned alen, idx;
833 1.25 rmind size_t len;
834 1.1 rmind
835 1.27 rmind /*
836 1.27 rmind * To determine the length of the connection, which depends
837 1.27 rmind * on the address length in the connection keys.
838 1.27 rmind */
839 1.27 rmind alen = dnvlist_get_number(cdict, "alen", 0);
840 1.27 rmind idx = NPF_CONNCACHE(alen);
841 1.27 rmind
842 1.1 rmind /* Allocate a connection and initialise it (clear first). */
843 1.27 rmind con = pool_cache_get(npf->conn_cache[idx], PR_WAITOK);
844 1.1 rmind memset(con, 0, sizeof(npf_conn_t));
845 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
846 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
847 1.1 rmind
848 1.25 rmind con->c_proto = dnvlist_get_number(cdict, "proto", 0);
849 1.25 rmind con->c_flags = dnvlist_get_number(cdict, "flags", 0);
850 1.1 rmind con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
851 1.22 christos conn_update_atime(con);
852 1.1 rmind
853 1.25 rmind ifname = dnvlist_get_string(cdict, "ifname", NULL);
854 1.25 rmind if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
855 1.10 rmind goto err;
856 1.10 rmind }
857 1.10 rmind
858 1.25 rmind state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
859 1.25 rmind if (!state || len != sizeof(npf_state_t)) {
860 1.1 rmind goto err;
861 1.1 rmind }
862 1.25 rmind memcpy(&con->c_state, state, sizeof(npf_state_t));
863 1.1 rmind
864 1.11 rmind /* Reconstruct NAT association, if any. */
865 1.25 rmind if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
866 1.25 rmind (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
867 1.11 rmind goto err;
868 1.11 rmind }
869 1.1 rmind
870 1.1 rmind /*
871 1.1 rmind * Fetch and copy the keys for each direction.
872 1.1 rmind */
873 1.27 rmind fw = npf_conn_getforwkey(con);
874 1.25 rmind conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
875 1.25 rmind if (conkey == NULL || !npf_connkey_import(conkey, fw)) {
876 1.1 rmind goto err;
877 1.1 rmind }
878 1.27 rmind bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
879 1.25 rmind conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
880 1.25 rmind if (conkey == NULL || !npf_connkey_import(conkey, bk)) {
881 1.1 rmind goto err;
882 1.1 rmind }
883 1.27 rmind
884 1.27 rmind /* Guard against the contradicting address lengths. */
885 1.27 rmind if (NPF_CONNKEY_ALEN(fw) != alen || NPF_CONNKEY_ALEN(bk) != alen) {
886 1.27 rmind goto err;
887 1.27 rmind }
888 1.1 rmind
889 1.1 rmind /* Insert the entries and the connection itself. */
890 1.27 rmind if (!npf_conndb_insert(cd, fw, con, true)) {
891 1.1 rmind goto err;
892 1.1 rmind }
893 1.27 rmind if (!npf_conndb_insert(cd, bk, con, false)) {
894 1.1 rmind npf_conndb_remove(cd, fw);
895 1.1 rmind goto err;
896 1.1 rmind }
897 1.12 rmind
898 1.12 rmind NPF_PRINTF(("NPF: imported conn %p\n", con));
899 1.1 rmind npf_conndb_enqueue(cd, con);
900 1.1 rmind return 0;
901 1.1 rmind err:
902 1.28 christos npf_conn_destroy_idx(npf, con, idx);
903 1.1 rmind return EINVAL;
904 1.1 rmind }
905 1.1 rmind
906 1.20 christos int
907 1.25 rmind npf_conn_find(npf_t *npf, const nvlist_t *idict, nvlist_t **odict)
908 1.20 christos {
909 1.25 rmind const nvlist_t *kdict;
910 1.20 christos npf_connkey_t key;
911 1.20 christos npf_conn_t *con;
912 1.20 christos uint16_t dir;
913 1.20 christos bool forw;
914 1.20 christos
915 1.25 rmind kdict = dnvlist_get_nvlist(idict, "key", NULL);
916 1.25 rmind if (!kdict || !npf_connkey_import(kdict, &key)) {
917 1.20 christos return EINVAL;
918 1.25 rmind }
919 1.22 christos con = npf_conndb_lookup(npf->conn_db, &key, &forw);
920 1.20 christos if (con == NULL) {
921 1.20 christos return ESRCH;
922 1.20 christos }
923 1.27 rmind dir = dnvlist_get_number(idict, "direction", 0);
924 1.27 rmind if (!npf_conn_check(con, NULL, dir, true)) {
925 1.20 christos atomic_dec_uint(&con->c_refcnt);
926 1.20 christos return ESRCH;
927 1.20 christos }
928 1.22 christos *odict = npf_conn_export(npf, con);
929 1.20 christos atomic_dec_uint(&con->c_refcnt);
930 1.25 rmind return *odict ? 0 : ENOSPC;
931 1.20 christos }
932 1.20 christos
933 1.1 rmind #if defined(DDB) || defined(_NPF_TESTING)
934 1.1 rmind
935 1.1 rmind void
936 1.27 rmind npf_conn_print(npf_conn_t *con)
937 1.1 rmind {
938 1.27 rmind const npf_connkey_t *fw = npf_conn_getforwkey(con);
939 1.27 rmind const npf_connkey_t *bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
940 1.27 rmind const unsigned proto = con->c_proto;
941 1.22 christos struct timespec tspnow;
942 1.1 rmind
943 1.22 christos getnanouptime(&tspnow);
944 1.22 christos printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
945 1.27 rmind proto, con->c_flags, (long)(tspnow.tv_sec - con->c_atime),
946 1.27 rmind npf_state_etime(npf_getkernctx(), &con->c_state, proto));
947 1.27 rmind npf_connkey_print(fw);
948 1.27 rmind npf_connkey_print(bk);
949 1.1 rmind npf_state_dump(&con->c_state);
950 1.1 rmind if (con->c_nat) {
951 1.1 rmind npf_nat_dump(con->c_nat);
952 1.1 rmind }
953 1.1 rmind }
954 1.1 rmind
955 1.1 rmind #endif
956