Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.29
      1   1.1     rmind /*-
      2  1.26     rmind  * Copyright (c) 2014-2018 Mindaugas Rasiukevicius <rmind at netbsd org>
      3   1.1     rmind  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      4   1.1     rmind  * All rights reserved.
      5   1.1     rmind  *
      6   1.1     rmind  * This material is based upon work partially supported by The
      7   1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      8   1.1     rmind  *
      9   1.1     rmind  * Redistribution and use in source and binary forms, with or without
     10   1.1     rmind  * modification, are permitted provided that the following conditions
     11   1.1     rmind  * are met:
     12   1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     13   1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     14   1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     16   1.1     rmind  *    documentation and/or other materials provided with the distribution.
     17   1.1     rmind  *
     18   1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19   1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20   1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21   1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22   1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23   1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24   1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25   1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26   1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27   1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28   1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     29   1.1     rmind  */
     30   1.1     rmind 
     31   1.1     rmind /*
     32   1.1     rmind  * NPF connection tracking for stateful filtering and translation.
     33   1.1     rmind  *
     34   1.1     rmind  * Overview
     35   1.1     rmind  *
     36  1.26     rmind  *	Packets can be incoming or outgoing with respect to an interface.
     37   1.1     rmind  *	Connection direction is identified by the direction of its first
     38  1.26     rmind  *	packet.  The meaning of incoming/outgoing packet in the context of
     39  1.26     rmind  *	connection direction can be confusing.  Therefore, we will use the
     40  1.26     rmind  *	terms "forwards stream" and "backwards stream", where packets in
     41  1.26     rmind  *	the forwards stream mean the packets travelling in the direction
     42  1.26     rmind  *	as the connection direction.
     43  1.26     rmind  *
     44  1.26     rmind  *	All connections have two keys and thus two entries:
     45   1.1     rmind  *
     46  1.27     rmind  *	- npf_conn_getforwkey(con)        -- for the forwards stream;
     47  1.27     rmind  *	- npf_conn_getbackkey(con, alen)  -- for the backwards stream.
     48  1.27     rmind  *
     49  1.27     rmind  *	Note: the keys are stored in npf_conn_t::c_keys[], which is used
     50  1.27     rmind  *	to allocate variable-length npf_conn_t structures based on whether
     51  1.27     rmind  *	the IPv4 or IPv6 addresses are used.  See the npf_connkey.c source
     52  1.27     rmind  *	file for the description of the key layouts.
     53   1.1     rmind  *
     54   1.1     rmind  *	The keys are formed from the 5-tuple (source/destination address,
     55   1.1     rmind  *	source/destination port and the protocol).  Additional matching
     56   1.1     rmind  *	is performed for the interface (a common behaviour is equivalent
     57   1.1     rmind  *	to the 6-tuple lookup including the interface ID).  Note that the
     58   1.1     rmind  *	key may be formed using translated values in a case of NAT.
     59   1.1     rmind  *
     60   1.1     rmind  *	Connections can serve two purposes: for the implicit passing or
     61   1.1     rmind  *	to accommodate the dynamic NAT.  Connections for the former purpose
     62   1.1     rmind  *	are created by the rules with "stateful" attribute and are used for
     63   1.1     rmind  *	stateful filtering.  Such connections indicate that the packet of
     64   1.1     rmind  *	the backwards stream should be passed without inspection of the
     65   1.1     rmind  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     66   1.1     rmind  *	with a connection.  Such connections are created by the NAT policies
     67   1.1     rmind  *	and they have a relationship with NAT translation structure via
     68   1.1     rmind  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     69   1.1     rmind  *	which is a common case.
     70   1.1     rmind  *
     71   1.1     rmind  * Connection life-cycle
     72   1.1     rmind  *
     73   1.1     rmind  *	Connections are established when a packet matches said rule or
     74   1.1     rmind  *	NAT policy.  Both keys of the established connection are inserted
     75   1.1     rmind  *	into the connection database.  A garbage collection thread
     76   1.1     rmind  *	periodically scans all connections and depending on connection
     77   1.1     rmind  *	properties (e.g. last activity time, protocol) removes connection
     78   1.1     rmind  *	entries and expires the actual connections.
     79   1.1     rmind  *
     80   1.1     rmind  *	Each connection has a reference count.  The reference is acquired
     81   1.1     rmind  *	on lookup and should be released by the caller.  It guarantees that
     82   1.1     rmind  *	the connection will not be destroyed, although it may be expired.
     83   1.1     rmind  *
     84   1.1     rmind  * Synchronisation
     85   1.1     rmind  *
     86   1.1     rmind  *	Connection database is accessed in a lock-less manner by the main
     87   1.1     rmind  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     88   1.1     rmind  *	are always called from a software interrupt, the database is
     89   1.1     rmind  *	protected using passive serialisation.  The main place which can
     90   1.1     rmind  *	destroy a connection is npf_conn_worker().  The database itself
     91   1.1     rmind  *	can be replaced and destroyed in npf_conn_reload().
     92   1.1     rmind  *
     93   1.1     rmind  * ALG support
     94   1.1     rmind  *
     95   1.1     rmind  *	Application-level gateways (ALGs) can override generic connection
     96   1.1     rmind  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     97   1.1     rmind  *	performing their own lookup using different key.  Recursive call
     98   1.1     rmind  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     99   1.1     rmind  *	npf_conn_lookup() function for this purpose.
    100   1.1     rmind  *
    101   1.1     rmind  * Lock order
    102   1.1     rmind  *
    103   1.6     rmind  *	npf_config_lock ->
    104   1.6     rmind  *		conn_lock ->
    105   1.6     rmind  *			npf_conn_t::c_lock
    106   1.1     rmind  */
    107   1.1     rmind 
    108  1.22  christos #ifdef _KERNEL
    109   1.1     rmind #include <sys/cdefs.h>
    110  1.28  christos __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.29 2019/08/06 11:40:15 christos Exp $");
    111   1.1     rmind 
    112   1.1     rmind #include <sys/param.h>
    113   1.1     rmind #include <sys/types.h>
    114   1.1     rmind 
    115   1.1     rmind #include <netinet/in.h>
    116   1.1     rmind #include <netinet/tcp.h>
    117   1.1     rmind 
    118   1.1     rmind #include <sys/atomic.h>
    119   1.1     rmind #include <sys/kmem.h>
    120   1.1     rmind #include <sys/mutex.h>
    121   1.1     rmind #include <net/pfil.h>
    122   1.1     rmind #include <sys/pool.h>
    123   1.1     rmind #include <sys/queue.h>
    124   1.1     rmind #include <sys/systm.h>
    125  1.22  christos #endif
    126   1.1     rmind 
    127   1.1     rmind #define __NPF_CONN_PRIVATE
    128   1.1     rmind #include "npf_conn.h"
    129   1.1     rmind #include "npf_impl.h"
    130   1.1     rmind 
    131  1.27     rmind /* A helper to select the IPv4 or IPv6 connection cache. */
    132  1.27     rmind #define	NPF_CONNCACHE(alen)	(((alen) >> 4) & 0x1)
    133  1.27     rmind 
    134   1.1     rmind /*
    135   1.1     rmind  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    136   1.1     rmind  */
    137   1.1     rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
    138   1.1     rmind #define	CONN_ACTIVE	0x004	/* visible on inspection */
    139   1.1     rmind #define	CONN_PASS	0x008	/* perform implicit passing */
    140   1.1     rmind #define	CONN_EXPIRE	0x010	/* explicitly expire */
    141   1.1     rmind #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    142   1.1     rmind 
    143   1.6     rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    144   1.1     rmind 
    145  1.27     rmind static nvlist_t *npf_conn_export(npf_t *, npf_conn_t *);
    146   1.1     rmind 
    147   1.1     rmind /*
    148   1.1     rmind  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    149   1.1     rmind  */
    150   1.1     rmind 
    151   1.1     rmind void
    152  1.29  christos npf_conn_init(npf_t *npf)
    153   1.1     rmind {
    154  1.27     rmind 	npf->conn_cache[0] = pool_cache_init(
    155  1.27     rmind 	    offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V4WORDS * 2]),
    156  1.27     rmind 	    0, 0, 0, "npfcn4pl", NULL, IPL_NET, NULL, NULL, NULL);
    157  1.27     rmind 	npf->conn_cache[1] = pool_cache_init(
    158  1.27     rmind 	    offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V6WORDS * 2]),
    159  1.27     rmind 	    0, 0, 0, "npfcn6pl", NULL, IPL_NET, NULL, NULL, NULL);
    160  1.27     rmind 
    161  1.22  christos 	mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
    162  1.22  christos 	npf->conn_tracking = CONN_TRACKING_OFF;
    163  1.22  christos 	npf->conn_db = npf_conndb_create();
    164  1.27     rmind 	npf_conndb_sysinit(npf);
    165   1.1     rmind }
    166   1.1     rmind 
    167   1.1     rmind void
    168  1.22  christos npf_conn_fini(npf_t *npf)
    169   1.1     rmind {
    170  1.27     rmind 	npf_conndb_sysfini(npf);
    171  1.27     rmind 
    172   1.6     rmind 	/* Note: the caller should have flushed the connections. */
    173  1.22  christos 	KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
    174  1.22  christos 	npf_worker_unregister(npf, npf_conn_worker);
    175   1.1     rmind 
    176  1.22  christos 	npf_conndb_destroy(npf->conn_db);
    177  1.27     rmind 	pool_cache_destroy(npf->conn_cache[0]);
    178  1.27     rmind 	pool_cache_destroy(npf->conn_cache[1]);
    179  1.22  christos 	mutex_destroy(&npf->conn_lock);
    180   1.1     rmind }
    181   1.1     rmind 
    182   1.1     rmind /*
    183   1.6     rmind  * npf_conn_load: perform the load by flushing the current connection
    184   1.6     rmind  * database and replacing it with the new one or just destroying.
    185   1.1     rmind  *
    186   1.6     rmind  * => The caller must disable the connection tracking and ensure that
    187   1.6     rmind  *    there are no connection database lookups or references in-flight.
    188   1.1     rmind  */
    189   1.6     rmind void
    190  1.22  christos npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
    191   1.1     rmind {
    192   1.6     rmind 	npf_conndb_t *odb = NULL;
    193   1.1     rmind 
    194  1.22  christos 	KASSERT(npf_config_locked_p(npf));
    195   1.1     rmind 
    196   1.1     rmind 	/*
    197   1.6     rmind 	 * The connection database is in the quiescent state.
    198   1.6     rmind 	 * Prevent G/C thread from running and install a new database.
    199   1.1     rmind 	 */
    200  1.22  christos 	mutex_enter(&npf->conn_lock);
    201   1.6     rmind 	if (ndb) {
    202  1.22  christos 		KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
    203  1.22  christos 		odb = npf->conn_db;
    204  1.22  christos 		npf->conn_db = ndb;
    205   1.6     rmind 		membar_sync();
    206   1.6     rmind 	}
    207   1.6     rmind 	if (track) {
    208   1.6     rmind 		/* After this point lookups start flying in. */
    209  1.22  christos 		npf->conn_tracking = CONN_TRACKING_ON;
    210   1.1     rmind 	}
    211  1.22  christos 	mutex_exit(&npf->conn_lock);
    212   1.1     rmind 
    213   1.1     rmind 	if (odb) {
    214   1.6     rmind 		/*
    215   1.6     rmind 		 * Flush all, no sync since the caller did it for us.
    216   1.6     rmind 		 * Also, release the pool cache memory.
    217   1.6     rmind 		 */
    218  1.26     rmind 		npf_conndb_gc(npf, odb, true, false);
    219   1.1     rmind 		npf_conndb_destroy(odb);
    220  1.27     rmind 		pool_cache_invalidate(npf->conn_cache[0]);
    221  1.27     rmind 		pool_cache_invalidate(npf->conn_cache[1]);
    222   1.1     rmind 	}
    223   1.1     rmind }
    224   1.1     rmind 
    225   1.1     rmind /*
    226   1.1     rmind  * npf_conn_tracking: enable/disable connection tracking.
    227   1.1     rmind  */
    228   1.1     rmind void
    229  1.22  christos npf_conn_tracking(npf_t *npf, bool track)
    230   1.1     rmind {
    231  1.22  christos 	KASSERT(npf_config_locked_p(npf));
    232  1.22  christos 	npf->conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
    233   1.1     rmind }
    234   1.1     rmind 
    235   1.6     rmind static inline bool
    236   1.1     rmind npf_conn_trackable_p(const npf_cache_t *npc)
    237   1.1     rmind {
    238  1.22  christos 	const npf_t *npf = npc->npc_ctx;
    239  1.22  christos 
    240   1.1     rmind 	/*
    241   1.1     rmind 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    242   1.1     rmind 	 * not cached - protocol is not supported or packet is invalid.
    243   1.1     rmind 	 */
    244  1.22  christos 	if (npf->conn_tracking != CONN_TRACKING_ON) {
    245   1.1     rmind 		return false;
    246   1.1     rmind 	}
    247   1.1     rmind 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    248   1.1     rmind 		return false;
    249   1.1     rmind 	}
    250   1.1     rmind 	return true;
    251   1.1     rmind }
    252   1.1     rmind 
    253  1.22  christos static inline void
    254  1.22  christos conn_update_atime(npf_conn_t *con)
    255  1.22  christos {
    256  1.22  christos 	struct timespec tsnow;
    257  1.22  christos 
    258  1.22  christos 	getnanouptime(&tsnow);
    259  1.22  christos 	con->c_atime = tsnow.tv_sec;
    260  1.22  christos }
    261  1.22  christos 
    262   1.1     rmind /*
    263  1.27     rmind  * npf_conn_check: check that:
    264  1.27     rmind  *
    265  1.27     rmind  *	- the connection is active;
    266  1.27     rmind  *
    267  1.27     rmind  *	- the packet is travelling in the right direction with the respect
    268  1.27     rmind  *	  to the connection direction (if interface-id is not zero);
    269  1.27     rmind  *
    270  1.27     rmind  *	- the packet is travelling on the same interface as the
    271  1.27     rmind  *	  connection interface (if interface-id is not zero).
    272  1.18  christos  */
    273  1.18  christos static bool
    274  1.27     rmind npf_conn_check(const npf_conn_t *con, const nbuf_t *nbuf,
    275  1.27     rmind     const unsigned di, const bool forw)
    276  1.18  christos {
    277  1.22  christos 	const uint32_t flags = con->c_flags;
    278  1.27     rmind 	const unsigned ifid = con->c_ifid;
    279  1.27     rmind 	bool active, pforw;
    280  1.18  christos 
    281  1.27     rmind 	active = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    282  1.27     rmind 	if (__predict_false(!active)) {
    283  1.18  christos 		return false;
    284  1.18  christos 	}
    285  1.27     rmind 	if (ifid && nbuf) {
    286  1.27     rmind 		pforw = (flags & PFIL_ALL) == (unsigned)di;
    287  1.27     rmind 		if (__predict_false(forw != pforw)) {
    288  1.27     rmind 			return false;
    289  1.27     rmind 		}
    290  1.27     rmind 		if (__predict_false(ifid != nbuf->nb_ifid)) {
    291  1.27     rmind 			return false;
    292  1.27     rmind 		}
    293  1.18  christos 	}
    294  1.18  christos 	return true;
    295  1.18  christos }
    296  1.18  christos 
    297  1.18  christos /*
    298   1.1     rmind  * npf_conn_lookup: lookup if there is an established connection.
    299   1.1     rmind  *
    300   1.1     rmind  * => If found, we will hold a reference for the caller.
    301   1.1     rmind  */
    302   1.1     rmind npf_conn_t *
    303   1.4     rmind npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
    304   1.1     rmind {
    305  1.22  christos 	npf_t *npf = npc->npc_ctx;
    306   1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    307   1.1     rmind 	npf_conn_t *con;
    308   1.1     rmind 	npf_connkey_t key;
    309   1.1     rmind 
    310   1.1     rmind 	/* Construct a key and lookup for a connection in the store. */
    311   1.1     rmind 	if (!npf_conn_conkey(npc, &key, true)) {
    312   1.1     rmind 		return NULL;
    313   1.1     rmind 	}
    314  1.22  christos 	con = npf_conndb_lookup(npf->conn_db, &key, forw);
    315   1.1     rmind 	if (con == NULL) {
    316   1.1     rmind 		return NULL;
    317   1.1     rmind 	}
    318   1.1     rmind 	KASSERT(npc->npc_proto == con->c_proto);
    319   1.1     rmind 
    320  1.27     rmind 	/* Extra checks for the connection and packet. */
    321  1.27     rmind 	if (!npf_conn_check(con, nbuf, di, *forw)) {
    322   1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    323   1.1     rmind 		return NULL;
    324   1.1     rmind 	}
    325   1.1     rmind 
    326   1.1     rmind 	/* Update the last activity time. */
    327  1.22  christos 	conn_update_atime(con);
    328   1.1     rmind 	return con;
    329   1.1     rmind }
    330   1.1     rmind 
    331   1.1     rmind /*
    332   1.1     rmind  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    333   1.1     rmind  *
    334   1.1     rmind  * => If found, we will hold a reference for the caller.
    335   1.1     rmind  */
    336   1.1     rmind npf_conn_t *
    337   1.4     rmind npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
    338   1.1     rmind {
    339   1.4     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    340   1.1     rmind 	npf_conn_t *con;
    341   1.1     rmind 	bool forw, ok;
    342   1.1     rmind 
    343   1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    344   1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    345   1.1     rmind 		return NULL;
    346   1.1     rmind 	}
    347   1.1     rmind 
    348   1.1     rmind 	/* Query ALG which may lookup connection for us. */
    349   1.4     rmind 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    350   1.1     rmind 		/* Note: reference is held. */
    351   1.1     rmind 		return con;
    352   1.1     rmind 	}
    353   1.1     rmind 	if (nbuf_head_mbuf(nbuf) == NULL) {
    354   1.1     rmind 		*error = ENOMEM;
    355   1.1     rmind 		return NULL;
    356   1.1     rmind 	}
    357   1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    358   1.1     rmind 
    359   1.1     rmind 	/* Main lookup of the connection. */
    360   1.4     rmind 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
    361   1.1     rmind 		return NULL;
    362   1.1     rmind 	}
    363   1.1     rmind 
    364   1.1     rmind 	/* Inspect the protocol data and handle state changes. */
    365   1.1     rmind 	mutex_enter(&con->c_lock);
    366   1.4     rmind 	ok = npf_state_inspect(npc, &con->c_state, forw);
    367   1.1     rmind 	mutex_exit(&con->c_lock);
    368   1.1     rmind 
    369  1.17     rmind 	/* If invalid state: let the rules deal with it. */
    370   1.1     rmind 	if (__predict_false(!ok)) {
    371   1.1     rmind 		npf_conn_release(con);
    372  1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
    373  1.17     rmind 		return NULL;
    374  1.17     rmind 	}
    375  1.17     rmind 
    376  1.17     rmind 	/*
    377  1.17     rmind 	 * If this is multi-end state, then specially tag the packet
    378  1.17     rmind 	 * so it will be just passed-through on other interfaces.
    379  1.17     rmind 	 */
    380  1.17     rmind 	if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
    381  1.17     rmind 		npf_conn_release(con);
    382  1.17     rmind 		*error = ENOMEM;
    383  1.17     rmind 		return NULL;
    384   1.1     rmind 	}
    385   1.1     rmind 	return con;
    386   1.1     rmind }
    387   1.1     rmind 
    388   1.1     rmind /*
    389   1.1     rmind  * npf_conn_establish: create a new connection, insert into the global list.
    390   1.1     rmind  *
    391   1.1     rmind  * => Connection is created with the reference held for the caller.
    392   1.1     rmind  * => Connection will be activated on the first reference release.
    393   1.1     rmind  */
    394   1.1     rmind npf_conn_t *
    395  1.27     rmind npf_conn_establish(npf_cache_t *npc, int di, bool global)
    396   1.1     rmind {
    397  1.22  christos 	npf_t *npf = npc->npc_ctx;
    398  1.27     rmind 	const unsigned alen = npc->npc_alen;
    399  1.27     rmind 	const unsigned idx = NPF_CONNCACHE(alen);
    400   1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    401  1.27     rmind 	npf_connkey_t *fw, *bk;
    402   1.1     rmind 	npf_conn_t *con;
    403  1.15     rmind 	int error = 0;
    404   1.1     rmind 
    405   1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    406   1.1     rmind 
    407   1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    408   1.1     rmind 		return NULL;
    409   1.1     rmind 	}
    410   1.1     rmind 
    411   1.1     rmind 	/* Allocate and initialise the new connection. */
    412  1.27     rmind 	con = pool_cache_get(npf->conn_cache[idx], PR_NOWAIT);
    413   1.1     rmind 	if (__predict_false(!con)) {
    414  1.22  christos 		npf_worker_signal(npf);
    415   1.1     rmind 		return NULL;
    416   1.1     rmind 	}
    417   1.1     rmind 	NPF_PRINTF(("NPF: create conn %p\n", con));
    418  1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    419   1.1     rmind 
    420   1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    421   1.1     rmind 	con->c_flags = (di & PFIL_ALL);
    422  1.15     rmind 	con->c_refcnt = 0;
    423   1.1     rmind 	con->c_rproc = NULL;
    424   1.1     rmind 	con->c_nat = NULL;
    425   1.1     rmind 
    426  1.27     rmind 	con->c_proto = npc->npc_proto;
    427  1.27     rmind 	CTASSERT(sizeof(con->c_proto) >= sizeof(npc->npc_proto));
    428  1.29  christos 	con->c_alen = alen;
    429  1.27     rmind 
    430  1.15     rmind 	/* Initialize the protocol state. */
    431   1.4     rmind 	if (!npf_state_init(npc, &con->c_state)) {
    432  1.29  christos 		npf_conn_destroy(npf, con);
    433  1.15     rmind 		return NULL;
    434   1.1     rmind 	}
    435  1.27     rmind 	KASSERT(npf_iscached(npc, NPC_IP46));
    436   1.1     rmind 
    437  1.27     rmind 	fw = npf_conn_getforwkey(con);
    438  1.27     rmind 	bk = npf_conn_getbackkey(con, alen);
    439   1.1     rmind 
    440   1.1     rmind 	/*
    441   1.1     rmind 	 * Construct "forwards" and "backwards" keys.  Also, set the
    442   1.1     rmind 	 * interface ID for this connection (unless it is global).
    443   1.1     rmind 	 */
    444  1.15     rmind 	if (!npf_conn_conkey(npc, fw, true) ||
    445  1.15     rmind 	    !npf_conn_conkey(npc, bk, false)) {
    446  1.29  christos 		npf_conn_destroy(npf, con);
    447  1.15     rmind 		return NULL;
    448   1.1     rmind 	}
    449  1.27     rmind 	con->c_ifid = global ? nbuf->nb_ifid : 0;
    450   1.1     rmind 
    451  1.15     rmind 	/*
    452  1.15     rmind 	 * Set last activity time for a new connection and acquire
    453  1.15     rmind 	 * a reference for the caller before we make it visible.
    454  1.15     rmind 	 */
    455  1.22  christos 	conn_update_atime(con);
    456  1.15     rmind 	con->c_refcnt = 1;
    457   1.1     rmind 
    458   1.1     rmind 	/*
    459   1.1     rmind 	 * Insert both keys (entries representing directions) of the
    460  1.15     rmind 	 * connection.  At this point it becomes visible, but we activate
    461  1.15     rmind 	 * the connection later.
    462   1.1     rmind 	 */
    463  1.15     rmind 	mutex_enter(&con->c_lock);
    464  1.27     rmind 	if (!npf_conndb_insert(npf->conn_db, fw, con, true)) {
    465  1.15     rmind 		error = EISCONN;
    466   1.1     rmind 		goto err;
    467   1.1     rmind 	}
    468  1.27     rmind 	if (!npf_conndb_insert(npf->conn_db, bk, con, false)) {
    469  1.15     rmind 		npf_conn_t *ret __diagused;
    470  1.22  christos 		ret = npf_conndb_remove(npf->conn_db, fw);
    471  1.15     rmind 		KASSERT(ret == con);
    472  1.15     rmind 		error = EISCONN;
    473  1.15     rmind 		goto err;
    474  1.15     rmind 	}
    475  1.15     rmind err:
    476  1.15     rmind 	/*
    477  1.15     rmind 	 * If we have hit the duplicate: mark the connection as expired
    478  1.15     rmind 	 * and let the G/C thread to take care of it.  We cannot do it
    479  1.15     rmind 	 * here since there might be references acquired already.
    480  1.15     rmind 	 */
    481  1.15     rmind 	if (error) {
    482  1.16     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    483  1.16     rmind 		atomic_dec_uint(&con->c_refcnt);
    484  1.22  christos 		npf_stats_inc(npf, NPF_STAT_RACE_CONN);
    485  1.15     rmind 	} else {
    486  1.15     rmind 		NPF_PRINTF(("NPF: establish conn %p\n", con));
    487   1.1     rmind 	}
    488   1.1     rmind 
    489   1.1     rmind 	/* Finally, insert into the connection list. */
    490  1.22  christos 	npf_conndb_enqueue(npf->conn_db, con);
    491  1.15     rmind 	mutex_exit(&con->c_lock);
    492  1.15     rmind 
    493  1.15     rmind 	return error ? NULL : con;
    494   1.1     rmind }
    495   1.1     rmind 
    496  1.26     rmind void
    497  1.22  christos npf_conn_destroy(npf_t *npf, npf_conn_t *con)
    498   1.1     rmind {
    499  1.29  christos 	const unsigned idx __unused = NPF_CONNCACHE(con->c_alen);
    500  1.27     rmind 
    501  1.15     rmind 	KASSERT(con->c_refcnt == 0);
    502  1.15     rmind 
    503   1.1     rmind 	if (con->c_nat) {
    504   1.1     rmind 		/* Release any NAT structures. */
    505   1.1     rmind 		npf_nat_destroy(con->c_nat);
    506   1.1     rmind 	}
    507   1.1     rmind 	if (con->c_rproc) {
    508   1.1     rmind 		/* Release the rule procedure. */
    509   1.1     rmind 		npf_rproc_release(con->c_rproc);
    510   1.1     rmind 	}
    511   1.1     rmind 
    512   1.1     rmind 	/* Destroy the state. */
    513   1.1     rmind 	npf_state_destroy(&con->c_state);
    514   1.1     rmind 	mutex_destroy(&con->c_lock);
    515   1.1     rmind 
    516   1.1     rmind 	/* Free the structure, increase the counter. */
    517  1.27     rmind 	pool_cache_put(npf->conn_cache[idx], con);
    518  1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
    519   1.1     rmind 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    520   1.1     rmind }
    521   1.1     rmind 
    522   1.1     rmind /*
    523   1.1     rmind  * npf_conn_setnat: associate NAT entry with the connection, update and
    524   1.1     rmind  * re-insert connection entry using the translation values.
    525  1.16     rmind  *
    526  1.16     rmind  * => The caller must be holding a reference.
    527   1.1     rmind  */
    528   1.1     rmind int
    529   1.1     rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    530  1.27     rmind     npf_nat_t *nt, unsigned ntype)
    531   1.1     rmind {
    532   1.1     rmind 	static const u_int nat_type_dimap[] = {
    533   1.1     rmind 		[NPF_NATOUT] = NPF_DST,
    534   1.1     rmind 		[NPF_NATIN] = NPF_SRC,
    535   1.1     rmind 	};
    536  1.22  christos 	npf_t *npf = npc->npc_ctx;
    537  1.27     rmind 	npf_connkey_t key, *fw, *bk;
    538   1.2     rmind 	npf_conn_t *ret __diagused;
    539   1.1     rmind 	npf_addr_t *taddr;
    540   1.1     rmind 	in_port_t tport;
    541   1.1     rmind 
    542   1.1     rmind 	KASSERT(con->c_refcnt > 0);
    543   1.1     rmind 
    544   1.1     rmind 	npf_nat_gettrans(nt, &taddr, &tport);
    545   1.1     rmind 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    546   1.1     rmind 
    547   1.1     rmind 	/* Construct a "backwards" key. */
    548   1.1     rmind 	if (!npf_conn_conkey(npc, &key, false)) {
    549   1.1     rmind 		return EINVAL;
    550   1.1     rmind 	}
    551   1.1     rmind 
    552   1.1     rmind 	/* Acquire the lock and check for the races. */
    553   1.1     rmind 	mutex_enter(&con->c_lock);
    554   1.1     rmind 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    555   1.1     rmind 		/* The connection got expired. */
    556   1.1     rmind 		mutex_exit(&con->c_lock);
    557   1.1     rmind 		return EINVAL;
    558   1.1     rmind 	}
    559  1.15     rmind 	KASSERT((con->c_flags & CONN_REMOVED) == 0);
    560  1.15     rmind 
    561   1.1     rmind 	if (__predict_false(con->c_nat != NULL)) {
    562   1.1     rmind 		/* Race with a duplicate packet. */
    563   1.1     rmind 		mutex_exit(&con->c_lock);
    564  1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    565   1.1     rmind 		return EISCONN;
    566   1.1     rmind 	}
    567   1.1     rmind 
    568  1.27     rmind 	/* Remove the "backwards" key. */
    569  1.27     rmind 	fw = npf_conn_getforwkey(con);
    570  1.27     rmind 	bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
    571  1.27     rmind 	ret = npf_conndb_remove(npf->conn_db, bk);
    572   1.1     rmind 	KASSERT(ret == con);
    573   1.1     rmind 
    574   1.1     rmind 	/* Set the source/destination IDs to the translation values. */
    575  1.27     rmind 	npf_conn_adjkey(bk, taddr, tport, nat_type_dimap[ntype]);
    576   1.1     rmind 
    577  1.27     rmind 	/* Finally, re-insert the "backwards" key. */
    578  1.27     rmind 	if (!npf_conndb_insert(npf->conn_db, bk, con, false)) {
    579   1.1     rmind 		/*
    580   1.1     rmind 		 * Race: we have hit the duplicate, remove the "forwards"
    581  1.27     rmind 		 * key and expire our connection; it is no longer valid.
    582   1.1     rmind 		 */
    583  1.27     rmind 		ret = npf_conndb_remove(npf->conn_db, fw);
    584  1.15     rmind 		KASSERT(ret == con);
    585  1.15     rmind 
    586   1.1     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    587   1.1     rmind 		mutex_exit(&con->c_lock);
    588   1.1     rmind 
    589  1.22  christos 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    590   1.1     rmind 		return EISCONN;
    591   1.1     rmind 	}
    592   1.1     rmind 
    593   1.1     rmind 	/* Associate the NAT entry and release the lock. */
    594   1.1     rmind 	con->c_nat = nt;
    595   1.1     rmind 	mutex_exit(&con->c_lock);
    596   1.1     rmind 	return 0;
    597   1.1     rmind }
    598   1.1     rmind 
    599   1.1     rmind /*
    600   1.1     rmind  * npf_conn_expire: explicitly mark connection as expired.
    601   1.1     rmind  */
    602   1.1     rmind void
    603   1.1     rmind npf_conn_expire(npf_conn_t *con)
    604   1.1     rmind {
    605   1.1     rmind 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    606   1.1     rmind 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    607   1.1     rmind }
    608   1.1     rmind 
    609   1.1     rmind /*
    610   1.1     rmind  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    611   1.1     rmind  */
    612   1.1     rmind bool
    613  1.23  christos npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
    614   1.1     rmind {
    615   1.1     rmind 	KASSERT(con->c_refcnt > 0);
    616   1.1     rmind 	if (__predict_true(con->c_flags & CONN_PASS)) {
    617  1.24     rmind 		mi->mi_rid = con->c_rid;
    618  1.24     rmind 		mi->mi_retfl = con->c_retfl;
    619   1.1     rmind 		*rp = con->c_rproc;
    620   1.1     rmind 		return true;
    621   1.1     rmind 	}
    622   1.1     rmind 	return false;
    623   1.1     rmind }
    624   1.1     rmind 
    625   1.1     rmind /*
    626   1.1     rmind  * npf_conn_setpass: mark connection as a "pass" one and associate the
    627   1.1     rmind  * rule procedure with it.
    628   1.1     rmind  */
    629   1.1     rmind void
    630  1.23  christos npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
    631   1.1     rmind {
    632   1.1     rmind 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    633   1.1     rmind 	KASSERT(con->c_refcnt > 0);
    634   1.1     rmind 	KASSERT(con->c_rproc == NULL);
    635   1.1     rmind 
    636   1.1     rmind 	/*
    637   1.1     rmind 	 * No need for atomic since the connection is not yet active.
    638   1.1     rmind 	 * If rproc is set, the caller transfers its reference to us,
    639   1.1     rmind 	 * which will be released on npf_conn_destroy().
    640   1.1     rmind 	 */
    641  1.14     rmind 	atomic_or_uint(&con->c_flags, CONN_PASS);
    642   1.1     rmind 	con->c_rproc = rp;
    643  1.24     rmind 	if (rp) {
    644  1.24     rmind 		con->c_rid = mi->mi_rid;
    645  1.24     rmind 		con->c_retfl = mi->mi_retfl;
    646  1.24     rmind 	}
    647   1.1     rmind }
    648   1.1     rmind 
    649   1.1     rmind /*
    650   1.1     rmind  * npf_conn_release: release a reference, which might allow G/C thread
    651   1.1     rmind  * to destroy this connection.
    652   1.1     rmind  */
    653   1.1     rmind void
    654   1.1     rmind npf_conn_release(npf_conn_t *con)
    655   1.1     rmind {
    656   1.1     rmind 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    657   1.1     rmind 		/* Activate: after this, connection is globally visible. */
    658  1.14     rmind 		atomic_or_uint(&con->c_flags, CONN_ACTIVE);
    659   1.1     rmind 	}
    660   1.1     rmind 	KASSERT(con->c_refcnt > 0);
    661   1.1     rmind 	atomic_dec_uint(&con->c_refcnt);
    662   1.1     rmind }
    663   1.1     rmind 
    664   1.1     rmind /*
    665  1.13     rmind  * npf_conn_getnat: return associated NAT data entry and indicate
    666   1.1     rmind  * whether it is a "forwards" or "backwards" stream.
    667   1.1     rmind  */
    668   1.1     rmind npf_nat_t *
    669  1.13     rmind npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
    670   1.1     rmind {
    671   1.1     rmind 	KASSERT(con->c_refcnt > 0);
    672  1.22  christos 	*forw = (con->c_flags & PFIL_ALL) == (u_int)di;
    673   1.1     rmind 	return con->c_nat;
    674   1.1     rmind }
    675   1.1     rmind 
    676   1.1     rmind /*
    677   1.1     rmind  * npf_conn_expired: criterion to check if connection is expired.
    678   1.1     rmind  */
    679  1.26     rmind bool
    680  1.27     rmind npf_conn_expired(npf_t *npf, const npf_conn_t *con, uint64_t tsnow)
    681   1.1     rmind {
    682  1.27     rmind 	const int etime = npf_state_etime(npf, &con->c_state, con->c_proto);
    683  1.22  christos 	int elapsed;
    684   1.1     rmind 
    685   1.1     rmind 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    686   1.1     rmind 		/* Explicitly marked to be expired. */
    687   1.1     rmind 		return true;
    688   1.1     rmind 	}
    689  1.22  christos 
    690  1.22  christos 	/*
    691  1.22  christos 	 * Note: another thread may update 'atime' and it might
    692  1.22  christos 	 * become greater than 'now'.
    693  1.22  christos 	 */
    694  1.22  christos 	elapsed = (int64_t)tsnow - con->c_atime;
    695  1.22  christos 	return elapsed > etime;
    696   1.1     rmind }
    697   1.1     rmind 
    698   1.1     rmind /*
    699  1.26     rmind  * npf_conn_remove: unlink the connection and mark as expired.
    700   1.1     rmind  */
    701   1.7     rmind void
    702  1.26     rmind npf_conn_remove(npf_conndb_t *cd, npf_conn_t *con)
    703   1.1     rmind {
    704  1.26     rmind 	/* Remove both entries of the connection. */
    705  1.26     rmind 	mutex_enter(&con->c_lock);
    706  1.26     rmind 	if ((con->c_flags & CONN_REMOVED) == 0) {
    707  1.27     rmind 		npf_connkey_t *fw, *bk;
    708  1.26     rmind 		npf_conn_t *ret __diagused;
    709   1.1     rmind 
    710  1.27     rmind 		fw = npf_conn_getforwkey(con);
    711  1.27     rmind 		ret = npf_conndb_remove(cd, fw);
    712  1.26     rmind 		KASSERT(ret == con);
    713  1.27     rmind 
    714  1.27     rmind 		bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
    715  1.27     rmind 		ret = npf_conndb_remove(cd, bk);
    716  1.26     rmind 		KASSERT(ret == con);
    717   1.1     rmind 	}
    718   1.6     rmind 
    719  1.26     rmind 	/* Flag the removal and expiration. */
    720  1.26     rmind 	atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    721  1.26     rmind 	mutex_exit(&con->c_lock);
    722   1.1     rmind }
    723   1.1     rmind 
    724   1.6     rmind /*
    725   1.6     rmind  * npf_conn_worker: G/C to run from a worker thread.
    726   1.6     rmind  */
    727  1.22  christos void
    728  1.22  christos npf_conn_worker(npf_t *npf)
    729   1.1     rmind {
    730  1.26     rmind 	npf_conndb_gc(npf, npf->conn_db, false, true);
    731   1.1     rmind }
    732   1.1     rmind 
    733   1.1     rmind /*
    734  1.10     rmind  * npf_conndb_export: construct a list of connections prepared for saving.
    735   1.1     rmind  * Note: this is expected to be an expensive operation.
    736   1.1     rmind  */
    737   1.1     rmind int
    738  1.25     rmind npf_conndb_export(npf_t *npf, nvlist_t *npf_dict)
    739   1.1     rmind {
    740  1.26     rmind 	npf_conn_t *head, *con;
    741   1.1     rmind 
    742   1.1     rmind 	/*
    743   1.1     rmind 	 * Note: acquire conn_lock to prevent from the database
    744   1.1     rmind 	 * destruction and G/C thread.
    745   1.1     rmind 	 */
    746  1.22  christos 	mutex_enter(&npf->conn_lock);
    747  1.22  christos 	if (npf->conn_tracking != CONN_TRACKING_ON) {
    748  1.22  christos 		mutex_exit(&npf->conn_lock);
    749   1.1     rmind 		return 0;
    750   1.1     rmind 	}
    751  1.26     rmind 	head = npf_conndb_getlist(npf->conn_db);
    752  1.26     rmind 	con = head;
    753   1.1     rmind 	while (con) {
    754  1.25     rmind 		nvlist_t *cdict;
    755   1.1     rmind 
    756  1.22  christos 		if ((cdict = npf_conn_export(npf, con)) != NULL) {
    757  1.25     rmind 			nvlist_append_nvlist_array(npf_dict, "conn-list", cdict);
    758  1.25     rmind 			nvlist_destroy(cdict);
    759   1.1     rmind 		}
    760  1.26     rmind 		if ((con = npf_conndb_getnext(npf->conn_db, con)) == head) {
    761  1.26     rmind 			break;
    762  1.26     rmind 		}
    763   1.1     rmind 	}
    764  1.22  christos 	mutex_exit(&npf->conn_lock);
    765   1.5     joerg 	return 0;
    766   1.1     rmind }
    767   1.1     rmind 
    768   1.1     rmind /*
    769  1.10     rmind  * npf_conn_export: serialise a single connection.
    770  1.10     rmind  */
    771  1.25     rmind static nvlist_t *
    772  1.27     rmind npf_conn_export(npf_t *npf, npf_conn_t *con)
    773  1.10     rmind {
    774  1.25     rmind 	nvlist_t *cdict, *kdict;
    775  1.27     rmind 	npf_connkey_t *fw, *bk;
    776  1.27     rmind 	unsigned alen;
    777  1.10     rmind 
    778  1.10     rmind 	if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
    779  1.10     rmind 		return NULL;
    780  1.10     rmind 	}
    781  1.25     rmind 	cdict = nvlist_create(0);
    782  1.25     rmind 	nvlist_add_number(cdict, "flags", con->c_flags);
    783  1.25     rmind 	nvlist_add_number(cdict, "proto", con->c_proto);
    784  1.10     rmind 	if (con->c_ifid) {
    785  1.22  christos 		const char *ifname = npf_ifmap_getname(npf, con->c_ifid);
    786  1.25     rmind 		nvlist_add_string(cdict, "ifname", ifname);
    787  1.10     rmind 	}
    788  1.25     rmind 	nvlist_add_binary(cdict, "state", &con->c_state, sizeof(npf_state_t));
    789  1.10     rmind 
    790  1.27     rmind 	fw = npf_conn_getforwkey(con);
    791  1.27     rmind 	alen = NPF_CONNKEY_ALEN(fw);
    792  1.29  christos 	KASSERT(alen == con->c_alen);
    793  1.27     rmind 	bk = npf_conn_getbackkey(con, alen);
    794  1.27     rmind 
    795  1.27     rmind 	kdict = npf_connkey_export(fw);
    796  1.25     rmind 	nvlist_move_nvlist(cdict, "forw-key", kdict);
    797  1.10     rmind 
    798  1.27     rmind 	kdict = npf_connkey_export(bk);
    799  1.25     rmind 	nvlist_move_nvlist(cdict, "back-key", kdict);
    800  1.10     rmind 
    801  1.27     rmind 	/* Let the address length be based on on first key. */
    802  1.27     rmind 	nvlist_add_number(cdict, "alen", alen);
    803  1.27     rmind 
    804  1.10     rmind 	if (con->c_nat) {
    805  1.10     rmind 		npf_nat_export(cdict, con->c_nat);
    806  1.10     rmind 	}
    807  1.10     rmind 	return cdict;
    808  1.10     rmind }
    809  1.10     rmind 
    810  1.10     rmind /*
    811   1.6     rmind  * npf_conn_import: fully reconstruct a single connection from a
    812  1.25     rmind  * nvlist and insert into the given database.
    813   1.1     rmind  */
    814   1.1     rmind int
    815  1.25     rmind npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
    816   1.6     rmind     npf_ruleset_t *natlist)
    817   1.1     rmind {
    818   1.1     rmind 	npf_conn_t *con;
    819   1.1     rmind 	npf_connkey_t *fw, *bk;
    820  1.25     rmind 	const nvlist_t *nat, *conkey;
    821  1.10     rmind 	const char *ifname;
    822  1.25     rmind 	const void *state;
    823  1.27     rmind 	unsigned alen, idx;
    824  1.25     rmind 	size_t len;
    825   1.1     rmind 
    826  1.27     rmind 	/*
    827  1.27     rmind 	 * To determine the length of the connection, which depends
    828  1.27     rmind 	 * on the address length in the connection keys.
    829  1.27     rmind 	 */
    830  1.27     rmind 	alen = dnvlist_get_number(cdict, "alen", 0);
    831  1.27     rmind 	idx = NPF_CONNCACHE(alen);
    832  1.27     rmind 
    833   1.1     rmind 	/* Allocate a connection and initialise it (clear first). */
    834  1.27     rmind 	con = pool_cache_get(npf->conn_cache[idx], PR_WAITOK);
    835   1.1     rmind 	memset(con, 0, sizeof(npf_conn_t));
    836   1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    837  1.22  christos 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    838   1.1     rmind 
    839  1.25     rmind 	con->c_proto = dnvlist_get_number(cdict, "proto", 0);
    840  1.25     rmind 	con->c_flags = dnvlist_get_number(cdict, "flags", 0);
    841   1.1     rmind 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
    842  1.22  christos 	conn_update_atime(con);
    843   1.1     rmind 
    844  1.25     rmind 	ifname = dnvlist_get_string(cdict, "ifname", NULL);
    845  1.25     rmind 	if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
    846  1.10     rmind 		goto err;
    847  1.10     rmind 	}
    848  1.10     rmind 
    849  1.25     rmind 	state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
    850  1.25     rmind 	if (!state || len != sizeof(npf_state_t)) {
    851   1.1     rmind 		goto err;
    852   1.1     rmind 	}
    853  1.25     rmind 	memcpy(&con->c_state, state, sizeof(npf_state_t));
    854   1.1     rmind 
    855  1.11     rmind 	/* Reconstruct NAT association, if any. */
    856  1.25     rmind 	if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
    857  1.25     rmind 	    (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
    858  1.11     rmind 		goto err;
    859  1.11     rmind 	}
    860   1.1     rmind 
    861   1.1     rmind 	/*
    862   1.1     rmind 	 * Fetch and copy the keys for each direction.
    863   1.1     rmind 	 */
    864  1.27     rmind 	fw = npf_conn_getforwkey(con);
    865  1.25     rmind 	conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
    866  1.25     rmind 	if (conkey == NULL || !npf_connkey_import(conkey, fw)) {
    867   1.1     rmind 		goto err;
    868   1.1     rmind 	}
    869  1.27     rmind 	bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
    870  1.25     rmind 	conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
    871  1.25     rmind 	if (conkey == NULL || !npf_connkey_import(conkey, bk)) {
    872   1.1     rmind 		goto err;
    873   1.1     rmind 	}
    874  1.27     rmind 
    875  1.27     rmind 	/* Guard against the contradicting address lengths. */
    876  1.27     rmind 	if (NPF_CONNKEY_ALEN(fw) != alen || NPF_CONNKEY_ALEN(bk) != alen) {
    877  1.27     rmind 		goto err;
    878  1.27     rmind 	}
    879   1.1     rmind 
    880   1.1     rmind 	/* Insert the entries and the connection itself. */
    881  1.27     rmind 	if (!npf_conndb_insert(cd, fw, con, true)) {
    882   1.1     rmind 		goto err;
    883   1.1     rmind 	}
    884  1.27     rmind 	if (!npf_conndb_insert(cd, bk, con, false)) {
    885   1.1     rmind 		npf_conndb_remove(cd, fw);
    886   1.1     rmind 		goto err;
    887   1.1     rmind 	}
    888  1.12     rmind 
    889  1.12     rmind 	NPF_PRINTF(("NPF: imported conn %p\n", con));
    890   1.1     rmind 	npf_conndb_enqueue(cd, con);
    891   1.1     rmind 	return 0;
    892   1.1     rmind err:
    893  1.29  christos 	npf_conn_destroy(npf, con);
    894   1.1     rmind 	return EINVAL;
    895   1.1     rmind }
    896   1.1     rmind 
    897  1.20  christos int
    898  1.25     rmind npf_conn_find(npf_t *npf, const nvlist_t *idict, nvlist_t **odict)
    899  1.20  christos {
    900  1.25     rmind 	const nvlist_t *kdict;
    901  1.20  christos 	npf_connkey_t key;
    902  1.20  christos 	npf_conn_t *con;
    903  1.20  christos 	uint16_t dir;
    904  1.20  christos 	bool forw;
    905  1.20  christos 
    906  1.25     rmind 	kdict = dnvlist_get_nvlist(idict, "key", NULL);
    907  1.25     rmind 	if (!kdict || !npf_connkey_import(kdict, &key)) {
    908  1.20  christos 		return EINVAL;
    909  1.25     rmind 	}
    910  1.22  christos 	con = npf_conndb_lookup(npf->conn_db, &key, &forw);
    911  1.20  christos 	if (con == NULL) {
    912  1.20  christos 		return ESRCH;
    913  1.20  christos 	}
    914  1.27     rmind 	dir = dnvlist_get_number(idict, "direction", 0);
    915  1.27     rmind 	if (!npf_conn_check(con, NULL, dir, true)) {
    916  1.20  christos 		atomic_dec_uint(&con->c_refcnt);
    917  1.20  christos 		return ESRCH;
    918  1.20  christos 	}
    919  1.22  christos 	*odict = npf_conn_export(npf, con);
    920  1.20  christos 	atomic_dec_uint(&con->c_refcnt);
    921  1.25     rmind 	return *odict ? 0 : ENOSPC;
    922  1.20  christos }
    923  1.20  christos 
    924   1.1     rmind #if defined(DDB) || defined(_NPF_TESTING)
    925   1.1     rmind 
    926   1.1     rmind void
    927  1.27     rmind npf_conn_print(npf_conn_t *con)
    928   1.1     rmind {
    929  1.27     rmind 	const npf_connkey_t *fw = npf_conn_getforwkey(con);
    930  1.27     rmind 	const npf_connkey_t *bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
    931  1.27     rmind 	const unsigned proto = con->c_proto;
    932  1.22  christos 	struct timespec tspnow;
    933   1.1     rmind 
    934  1.22  christos 	getnanouptime(&tspnow);
    935  1.22  christos 	printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
    936  1.27     rmind 	    proto, con->c_flags, (long)(tspnow.tv_sec - con->c_atime),
    937  1.27     rmind 	    npf_state_etime(npf_getkernctx(), &con->c_state, proto));
    938  1.27     rmind 	npf_connkey_print(fw);
    939  1.27     rmind 	npf_connkey_print(bk);
    940   1.1     rmind 	npf_state_dump(&con->c_state);
    941   1.1     rmind 	if (con->c_nat) {
    942   1.1     rmind 		npf_nat_dump(con->c_nat);
    943   1.1     rmind 	}
    944   1.1     rmind }
    945   1.1     rmind 
    946   1.1     rmind #endif
    947