npf_conn.c revision 1.32 1 1.1 rmind /*-
2 1.32 rmind * Copyright (c) 2014-2020 Mindaugas Rasiukevicius <rmind at noxt eu>
3 1.1 rmind * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
4 1.1 rmind * All rights reserved.
5 1.1 rmind *
6 1.1 rmind * This material is based upon work partially supported by The
7 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8 1.1 rmind *
9 1.1 rmind * Redistribution and use in source and binary forms, with or without
10 1.1 rmind * modification, are permitted provided that the following conditions
11 1.1 rmind * are met:
12 1.1 rmind * 1. Redistributions of source code must retain the above copyright
13 1.1 rmind * notice, this list of conditions and the following disclaimer.
14 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 rmind * notice, this list of conditions and the following disclaimer in the
16 1.1 rmind * documentation and/or other materials provided with the distribution.
17 1.1 rmind *
18 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
29 1.1 rmind */
30 1.1 rmind
31 1.1 rmind /*
32 1.1 rmind * NPF connection tracking for stateful filtering and translation.
33 1.1 rmind *
34 1.1 rmind * Overview
35 1.1 rmind *
36 1.26 rmind * Packets can be incoming or outgoing with respect to an interface.
37 1.1 rmind * Connection direction is identified by the direction of its first
38 1.26 rmind * packet. The meaning of incoming/outgoing packet in the context of
39 1.26 rmind * connection direction can be confusing. Therefore, we will use the
40 1.26 rmind * terms "forwards stream" and "backwards stream", where packets in
41 1.26 rmind * the forwards stream mean the packets travelling in the direction
42 1.26 rmind * as the connection direction.
43 1.26 rmind *
44 1.26 rmind * All connections have two keys and thus two entries:
45 1.1 rmind *
46 1.27 rmind * - npf_conn_getforwkey(con) -- for the forwards stream;
47 1.27 rmind * - npf_conn_getbackkey(con, alen) -- for the backwards stream.
48 1.27 rmind *
49 1.27 rmind * Note: the keys are stored in npf_conn_t::c_keys[], which is used
50 1.27 rmind * to allocate variable-length npf_conn_t structures based on whether
51 1.32 rmind * the IPv4 or IPv6 addresses are used.
52 1.1 rmind *
53 1.32 rmind * The key is an n-tuple used to identify the connection flow: see the
54 1.32 rmind * npf_connkey.c source file for the description of the key layouts.
55 1.32 rmind * The key may be formed using translated values in a case of NAT.
56 1.1 rmind *
57 1.32 rmind * Connections can serve two purposes: for the implicit passing and/or
58 1.1 rmind * to accommodate the dynamic NAT. Connections for the former purpose
59 1.1 rmind * are created by the rules with "stateful" attribute and are used for
60 1.1 rmind * stateful filtering. Such connections indicate that the packet of
61 1.1 rmind * the backwards stream should be passed without inspection of the
62 1.1 rmind * ruleset. The other purpose is to associate a dynamic NAT mechanism
63 1.1 rmind * with a connection. Such connections are created by the NAT policies
64 1.1 rmind * and they have a relationship with NAT translation structure via
65 1.1 rmind * npf_conn_t::c_nat. A single connection can serve both purposes,
66 1.1 rmind * which is a common case.
67 1.1 rmind *
68 1.1 rmind * Connection life-cycle
69 1.1 rmind *
70 1.1 rmind * Connections are established when a packet matches said rule or
71 1.1 rmind * NAT policy. Both keys of the established connection are inserted
72 1.1 rmind * into the connection database. A garbage collection thread
73 1.1 rmind * periodically scans all connections and depending on connection
74 1.1 rmind * properties (e.g. last activity time, protocol) removes connection
75 1.1 rmind * entries and expires the actual connections.
76 1.1 rmind *
77 1.1 rmind * Each connection has a reference count. The reference is acquired
78 1.1 rmind * on lookup and should be released by the caller. It guarantees that
79 1.1 rmind * the connection will not be destroyed, although it may be expired.
80 1.1 rmind *
81 1.32 rmind * Synchronization
82 1.1 rmind *
83 1.32 rmind * Connection database is accessed in a lock-free manner by the main
84 1.1 rmind * routines: npf_conn_inspect() and npf_conn_establish(). Since they
85 1.1 rmind * are always called from a software interrupt, the database is
86 1.32 rmind * protected using EBR. The main place which can destroy a connection
87 1.32 rmind * is npf_conn_worker(). The database itself can be replaced and
88 1.32 rmind * destroyed in npf_conn_reload().
89 1.1 rmind *
90 1.1 rmind * ALG support
91 1.1 rmind *
92 1.1 rmind * Application-level gateways (ALGs) can override generic connection
93 1.1 rmind * inspection (npf_alg_conn() call in npf_conn_inspect() function) by
94 1.1 rmind * performing their own lookup using different key. Recursive call
95 1.1 rmind * to npf_conn_inspect() is not allowed. The ALGs ought to use the
96 1.1 rmind * npf_conn_lookup() function for this purpose.
97 1.1 rmind *
98 1.1 rmind * Lock order
99 1.1 rmind *
100 1.6 rmind * npf_config_lock ->
101 1.6 rmind * conn_lock ->
102 1.6 rmind * npf_conn_t::c_lock
103 1.1 rmind */
104 1.1 rmind
105 1.22 christos #ifdef _KERNEL
106 1.1 rmind #include <sys/cdefs.h>
107 1.32 rmind __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.32 2020/05/30 14:16:56 rmind Exp $");
108 1.1 rmind
109 1.1 rmind #include <sys/param.h>
110 1.1 rmind #include <sys/types.h>
111 1.1 rmind
112 1.1 rmind #include <netinet/in.h>
113 1.1 rmind #include <netinet/tcp.h>
114 1.1 rmind
115 1.1 rmind #include <sys/atomic.h>
116 1.1 rmind #include <sys/kmem.h>
117 1.1 rmind #include <sys/mutex.h>
118 1.1 rmind #include <net/pfil.h>
119 1.1 rmind #include <sys/pool.h>
120 1.1 rmind #include <sys/queue.h>
121 1.1 rmind #include <sys/systm.h>
122 1.22 christos #endif
123 1.1 rmind
124 1.1 rmind #define __NPF_CONN_PRIVATE
125 1.1 rmind #include "npf_conn.h"
126 1.1 rmind #include "npf_impl.h"
127 1.1 rmind
128 1.27 rmind /* A helper to select the IPv4 or IPv6 connection cache. */
129 1.27 rmind #define NPF_CONNCACHE(alen) (((alen) >> 4) & 0x1)
130 1.27 rmind
131 1.1 rmind /*
132 1.1 rmind * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
133 1.1 rmind */
134 1.1 rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
135 1.1 rmind #define CONN_ACTIVE 0x004 /* visible on inspection */
136 1.1 rmind #define CONN_PASS 0x008 /* perform implicit passing */
137 1.1 rmind #define CONN_EXPIRE 0x010 /* explicitly expire */
138 1.1 rmind #define CONN_REMOVED 0x020 /* "forw/back" entries removed */
139 1.1 rmind
140 1.6 rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
141 1.1 rmind
142 1.32 rmind static int npf_conn_export(npf_t *, npf_conn_t *, nvlist_t *);
143 1.1 rmind
144 1.1 rmind /*
145 1.32 rmind * npf_conn_sys{init,fini}: initialize/destroy connection tracking.
146 1.1 rmind */
147 1.1 rmind
148 1.1 rmind void
149 1.29 christos npf_conn_init(npf_t *npf)
150 1.1 rmind {
151 1.32 rmind npf_conn_params_t *params = npf_param_allocgroup(npf,
152 1.32 rmind NPF_PARAMS_CONN, sizeof(npf_conn_params_t));
153 1.32 rmind npf_param_t param_map[] = {
154 1.32 rmind {
155 1.32 rmind "state.key.interface",
156 1.32 rmind ¶ms->connkey_interface,
157 1.32 rmind .default_val = 1, // true
158 1.32 rmind .min = 0, .max = 1
159 1.32 rmind },
160 1.32 rmind {
161 1.32 rmind "state.key.direction",
162 1.32 rmind ¶ms->connkey_direction,
163 1.32 rmind .default_val = 1, // true
164 1.32 rmind .min = 0, .max = 1
165 1.32 rmind },
166 1.32 rmind };
167 1.32 rmind npf_param_register(npf, param_map, __arraycount(param_map));
168 1.32 rmind
169 1.27 rmind npf->conn_cache[0] = pool_cache_init(
170 1.27 rmind offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V4WORDS * 2]),
171 1.27 rmind 0, 0, 0, "npfcn4pl", NULL, IPL_NET, NULL, NULL, NULL);
172 1.27 rmind npf->conn_cache[1] = pool_cache_init(
173 1.27 rmind offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V6WORDS * 2]),
174 1.27 rmind 0, 0, 0, "npfcn6pl", NULL, IPL_NET, NULL, NULL, NULL);
175 1.27 rmind
176 1.22 christos mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
177 1.32 rmind atomic_store_relaxed(&npf->conn_tracking, CONN_TRACKING_OFF);
178 1.22 christos npf->conn_db = npf_conndb_create();
179 1.27 rmind npf_conndb_sysinit(npf);
180 1.32 rmind
181 1.32 rmind npf_worker_addfunc(npf, npf_conn_worker);
182 1.1 rmind }
183 1.1 rmind
184 1.1 rmind void
185 1.22 christos npf_conn_fini(npf_t *npf)
186 1.1 rmind {
187 1.32 rmind const size_t len = sizeof(npf_conn_params_t);
188 1.27 rmind
189 1.6 rmind /* Note: the caller should have flushed the connections. */
190 1.32 rmind KASSERT(atomic_load_relaxed(&npf->conn_tracking) == CONN_TRACKING_OFF);
191 1.1 rmind
192 1.22 christos npf_conndb_destroy(npf->conn_db);
193 1.27 rmind pool_cache_destroy(npf->conn_cache[0]);
194 1.27 rmind pool_cache_destroy(npf->conn_cache[1]);
195 1.22 christos mutex_destroy(&npf->conn_lock);
196 1.32 rmind
197 1.32 rmind npf_param_freegroup(npf, NPF_PARAMS_CONN, len);
198 1.32 rmind npf_conndb_sysfini(npf);
199 1.1 rmind }
200 1.1 rmind
201 1.1 rmind /*
202 1.6 rmind * npf_conn_load: perform the load by flushing the current connection
203 1.6 rmind * database and replacing it with the new one or just destroying.
204 1.1 rmind *
205 1.6 rmind * => The caller must disable the connection tracking and ensure that
206 1.6 rmind * there are no connection database lookups or references in-flight.
207 1.1 rmind */
208 1.6 rmind void
209 1.22 christos npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
210 1.1 rmind {
211 1.6 rmind npf_conndb_t *odb = NULL;
212 1.1 rmind
213 1.22 christos KASSERT(npf_config_locked_p(npf));
214 1.1 rmind
215 1.1 rmind /*
216 1.6 rmind * The connection database is in the quiescent state.
217 1.6 rmind * Prevent G/C thread from running and install a new database.
218 1.1 rmind */
219 1.22 christos mutex_enter(&npf->conn_lock);
220 1.6 rmind if (ndb) {
221 1.32 rmind KASSERT(atomic_load_relaxed(&npf->conn_tracking)
222 1.32 rmind == CONN_TRACKING_OFF);
223 1.32 rmind odb = atomic_load_relaxed(&npf->conn_db);
224 1.6 rmind membar_sync();
225 1.32 rmind atomic_store_relaxed(&npf->conn_db, ndb);
226 1.6 rmind }
227 1.6 rmind if (track) {
228 1.6 rmind /* After this point lookups start flying in. */
229 1.32 rmind membar_producer();
230 1.32 rmind atomic_store_relaxed(&npf->conn_tracking, CONN_TRACKING_ON);
231 1.1 rmind }
232 1.22 christos mutex_exit(&npf->conn_lock);
233 1.1 rmind
234 1.1 rmind if (odb) {
235 1.6 rmind /*
236 1.6 rmind * Flush all, no sync since the caller did it for us.
237 1.6 rmind * Also, release the pool cache memory.
238 1.6 rmind */
239 1.26 rmind npf_conndb_gc(npf, odb, true, false);
240 1.1 rmind npf_conndb_destroy(odb);
241 1.27 rmind pool_cache_invalidate(npf->conn_cache[0]);
242 1.27 rmind pool_cache_invalidate(npf->conn_cache[1]);
243 1.1 rmind }
244 1.1 rmind }
245 1.1 rmind
246 1.1 rmind /*
247 1.1 rmind * npf_conn_tracking: enable/disable connection tracking.
248 1.1 rmind */
249 1.1 rmind void
250 1.22 christos npf_conn_tracking(npf_t *npf, bool track)
251 1.1 rmind {
252 1.22 christos KASSERT(npf_config_locked_p(npf));
253 1.32 rmind atomic_store_relaxed(&npf->conn_tracking,
254 1.32 rmind track ? CONN_TRACKING_ON : CONN_TRACKING_OFF);
255 1.1 rmind }
256 1.1 rmind
257 1.6 rmind static inline bool
258 1.1 rmind npf_conn_trackable_p(const npf_cache_t *npc)
259 1.1 rmind {
260 1.22 christos const npf_t *npf = npc->npc_ctx;
261 1.22 christos
262 1.1 rmind /*
263 1.1 rmind * Check if connection tracking is on. Also, if layer 3 and 4 are
264 1.1 rmind * not cached - protocol is not supported or packet is invalid.
265 1.1 rmind */
266 1.32 rmind if (atomic_load_relaxed(&npf->conn_tracking) != CONN_TRACKING_ON) {
267 1.1 rmind return false;
268 1.1 rmind }
269 1.1 rmind if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
270 1.1 rmind return false;
271 1.1 rmind }
272 1.1 rmind return true;
273 1.1 rmind }
274 1.1 rmind
275 1.22 christos static inline void
276 1.22 christos conn_update_atime(npf_conn_t *con)
277 1.22 christos {
278 1.22 christos struct timespec tsnow;
279 1.22 christos
280 1.22 christos getnanouptime(&tsnow);
281 1.32 rmind atomic_store_relaxed(&con->c_atime, tsnow.tv_sec);
282 1.22 christos }
283 1.22 christos
284 1.1 rmind /*
285 1.27 rmind * npf_conn_check: check that:
286 1.27 rmind *
287 1.27 rmind * - the connection is active;
288 1.27 rmind *
289 1.27 rmind * - the packet is travelling in the right direction with the respect
290 1.27 rmind * to the connection direction (if interface-id is not zero);
291 1.27 rmind *
292 1.27 rmind * - the packet is travelling on the same interface as the
293 1.27 rmind * connection interface (if interface-id is not zero).
294 1.18 christos */
295 1.18 christos static bool
296 1.27 rmind npf_conn_check(const npf_conn_t *con, const nbuf_t *nbuf,
297 1.32 rmind const unsigned di, const npf_flow_t flow)
298 1.18 christos {
299 1.32 rmind const uint32_t flags = atomic_load_relaxed(&con->c_flags);
300 1.32 rmind const unsigned ifid = atomic_load_relaxed(&con->c_ifid);
301 1.32 rmind bool active;
302 1.18 christos
303 1.27 rmind active = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
304 1.27 rmind if (__predict_false(!active)) {
305 1.18 christos return false;
306 1.18 christos }
307 1.27 rmind if (ifid && nbuf) {
308 1.32 rmind const bool match = (flags & PFIL_ALL) == di;
309 1.32 rmind npf_flow_t pflow = match ? NPF_FLOW_FORW : NPF_FLOW_BACK;
310 1.32 rmind
311 1.32 rmind if (__predict_false(flow != pflow)) {
312 1.27 rmind return false;
313 1.27 rmind }
314 1.27 rmind if (__predict_false(ifid != nbuf->nb_ifid)) {
315 1.27 rmind return false;
316 1.27 rmind }
317 1.18 christos }
318 1.18 christos return true;
319 1.18 christos }
320 1.18 christos
321 1.18 christos /*
322 1.1 rmind * npf_conn_lookup: lookup if there is an established connection.
323 1.1 rmind *
324 1.1 rmind * => If found, we will hold a reference for the caller.
325 1.1 rmind */
326 1.1 rmind npf_conn_t *
327 1.32 rmind npf_conn_lookup(const npf_cache_t *npc, const unsigned di, npf_flow_t *flow)
328 1.1 rmind {
329 1.22 christos npf_t *npf = npc->npc_ctx;
330 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
331 1.1 rmind npf_conn_t *con;
332 1.1 rmind npf_connkey_t key;
333 1.1 rmind
334 1.1 rmind /* Construct a key and lookup for a connection in the store. */
335 1.32 rmind if (!npf_conn_conkey(npc, &key, di, NPF_FLOW_FORW)) {
336 1.1 rmind return NULL;
337 1.1 rmind }
338 1.32 rmind con = npf_conndb_lookup(npf, &key, flow);
339 1.1 rmind if (con == NULL) {
340 1.1 rmind return NULL;
341 1.1 rmind }
342 1.32 rmind KASSERT(npc->npc_proto == atomic_load_relaxed(&con->c_proto));
343 1.1 rmind
344 1.27 rmind /* Extra checks for the connection and packet. */
345 1.32 rmind if (!npf_conn_check(con, nbuf, di, *flow)) {
346 1.1 rmind atomic_dec_uint(&con->c_refcnt);
347 1.1 rmind return NULL;
348 1.1 rmind }
349 1.1 rmind
350 1.1 rmind /* Update the last activity time. */
351 1.22 christos conn_update_atime(con);
352 1.1 rmind return con;
353 1.1 rmind }
354 1.1 rmind
355 1.1 rmind /*
356 1.1 rmind * npf_conn_inspect: lookup a connection and inspecting the protocol data.
357 1.1 rmind *
358 1.1 rmind * => If found, we will hold a reference for the caller.
359 1.1 rmind */
360 1.1 rmind npf_conn_t *
361 1.32 rmind npf_conn_inspect(npf_cache_t *npc, const unsigned di, int *error)
362 1.1 rmind {
363 1.4 rmind nbuf_t *nbuf = npc->npc_nbuf;
364 1.32 rmind npf_flow_t flow;
365 1.1 rmind npf_conn_t *con;
366 1.32 rmind bool ok;
367 1.1 rmind
368 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
369 1.1 rmind if (!npf_conn_trackable_p(npc)) {
370 1.1 rmind return NULL;
371 1.1 rmind }
372 1.1 rmind
373 1.1 rmind /* Query ALG which may lookup connection for us. */
374 1.4 rmind if ((con = npf_alg_conn(npc, di)) != NULL) {
375 1.1 rmind /* Note: reference is held. */
376 1.1 rmind return con;
377 1.1 rmind }
378 1.1 rmind if (nbuf_head_mbuf(nbuf) == NULL) {
379 1.1 rmind *error = ENOMEM;
380 1.1 rmind return NULL;
381 1.1 rmind }
382 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
383 1.1 rmind
384 1.32 rmind /* The main lookup of the connection (acquires a reference). */
385 1.32 rmind if ((con = npf_conn_lookup(npc, di, &flow)) == NULL) {
386 1.1 rmind return NULL;
387 1.1 rmind }
388 1.1 rmind
389 1.1 rmind /* Inspect the protocol data and handle state changes. */
390 1.1 rmind mutex_enter(&con->c_lock);
391 1.32 rmind ok = npf_state_inspect(npc, &con->c_state, flow);
392 1.1 rmind mutex_exit(&con->c_lock);
393 1.1 rmind
394 1.17 rmind /* If invalid state: let the rules deal with it. */
395 1.1 rmind if (__predict_false(!ok)) {
396 1.1 rmind npf_conn_release(con);
397 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
398 1.17 rmind return NULL;
399 1.17 rmind }
400 1.32 rmind #if 0
401 1.17 rmind /*
402 1.32 rmind * TODO -- determine when this might be wanted/used.
403 1.32 rmind *
404 1.32 rmind * Note: skipping the connection lookup and ruleset inspection
405 1.32 rmind * on other interfaces will also bypass dynamic NAT.
406 1.17 rmind */
407 1.32 rmind if (atomic_load_relaxed(&con->c_flags) & CONN_GPASS) {
408 1.32 rmind /*
409 1.32 rmind * Note: if tagging fails, then give this packet a chance
410 1.32 rmind * to go through a regular ruleset.
411 1.32 rmind */
412 1.32 rmind (void)nbuf_add_tag(nbuf, NPF_NTAG_PASS);
413 1.1 rmind }
414 1.32 rmind #endif
415 1.1 rmind return con;
416 1.1 rmind }
417 1.1 rmind
418 1.1 rmind /*
419 1.1 rmind * npf_conn_establish: create a new connection, insert into the global list.
420 1.1 rmind *
421 1.1 rmind * => Connection is created with the reference held for the caller.
422 1.1 rmind * => Connection will be activated on the first reference release.
423 1.1 rmind */
424 1.1 rmind npf_conn_t *
425 1.32 rmind npf_conn_establish(npf_cache_t *npc, const unsigned di, bool global)
426 1.1 rmind {
427 1.22 christos npf_t *npf = npc->npc_ctx;
428 1.27 rmind const unsigned alen = npc->npc_alen;
429 1.27 rmind const unsigned idx = NPF_CONNCACHE(alen);
430 1.4 rmind const nbuf_t *nbuf = npc->npc_nbuf;
431 1.27 rmind npf_connkey_t *fw, *bk;
432 1.32 rmind npf_conndb_t *conn_db;
433 1.1 rmind npf_conn_t *con;
434 1.15 rmind int error = 0;
435 1.1 rmind
436 1.1 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
437 1.1 rmind
438 1.1 rmind if (!npf_conn_trackable_p(npc)) {
439 1.1 rmind return NULL;
440 1.1 rmind }
441 1.1 rmind
442 1.32 rmind /* Allocate and initialize the new connection. */
443 1.27 rmind con = pool_cache_get(npf->conn_cache[idx], PR_NOWAIT);
444 1.1 rmind if (__predict_false(!con)) {
445 1.22 christos npf_worker_signal(npf);
446 1.1 rmind return NULL;
447 1.1 rmind }
448 1.1 rmind NPF_PRINTF(("NPF: create conn %p\n", con));
449 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
450 1.1 rmind
451 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
452 1.32 rmind atomic_store_relaxed(&con->c_flags, di & PFIL_ALL);
453 1.32 rmind atomic_store_relaxed(&con->c_refcnt, 0);
454 1.1 rmind con->c_rproc = NULL;
455 1.1 rmind con->c_nat = NULL;
456 1.1 rmind
457 1.27 rmind con->c_proto = npc->npc_proto;
458 1.27 rmind CTASSERT(sizeof(con->c_proto) >= sizeof(npc->npc_proto));
459 1.29 christos con->c_alen = alen;
460 1.27 rmind
461 1.15 rmind /* Initialize the protocol state. */
462 1.4 rmind if (!npf_state_init(npc, &con->c_state)) {
463 1.29 christos npf_conn_destroy(npf, con);
464 1.15 rmind return NULL;
465 1.1 rmind }
466 1.27 rmind KASSERT(npf_iscached(npc, NPC_IP46));
467 1.1 rmind
468 1.27 rmind fw = npf_conn_getforwkey(con);
469 1.27 rmind bk = npf_conn_getbackkey(con, alen);
470 1.1 rmind
471 1.1 rmind /*
472 1.1 rmind * Construct "forwards" and "backwards" keys. Also, set the
473 1.1 rmind * interface ID for this connection (unless it is global).
474 1.1 rmind */
475 1.32 rmind if (!npf_conn_conkey(npc, fw, di, NPF_FLOW_FORW) ||
476 1.32 rmind !npf_conn_conkey(npc, bk, di ^ PFIL_ALL, NPF_FLOW_BACK)) {
477 1.29 christos npf_conn_destroy(npf, con);
478 1.15 rmind return NULL;
479 1.1 rmind }
480 1.27 rmind con->c_ifid = global ? nbuf->nb_ifid : 0;
481 1.1 rmind
482 1.15 rmind /*
483 1.15 rmind * Set last activity time for a new connection and acquire
484 1.15 rmind * a reference for the caller before we make it visible.
485 1.15 rmind */
486 1.22 christos conn_update_atime(con);
487 1.32 rmind atomic_store_relaxed(&con->c_refcnt, 1);
488 1.1 rmind
489 1.1 rmind /*
490 1.1 rmind * Insert both keys (entries representing directions) of the
491 1.15 rmind * connection. At this point it becomes visible, but we activate
492 1.15 rmind * the connection later.
493 1.1 rmind */
494 1.15 rmind mutex_enter(&con->c_lock);
495 1.32 rmind conn_db = atomic_load_relaxed(&npf->conn_db);
496 1.32 rmind if (!npf_conndb_insert(conn_db, fw, con, NPF_FLOW_FORW)) {
497 1.15 rmind error = EISCONN;
498 1.1 rmind goto err;
499 1.1 rmind }
500 1.32 rmind if (!npf_conndb_insert(conn_db, bk, con, NPF_FLOW_BACK)) {
501 1.15 rmind npf_conn_t *ret __diagused;
502 1.32 rmind ret = npf_conndb_remove(conn_db, fw);
503 1.15 rmind KASSERT(ret == con);
504 1.15 rmind error = EISCONN;
505 1.15 rmind goto err;
506 1.15 rmind }
507 1.15 rmind err:
508 1.15 rmind /*
509 1.15 rmind * If we have hit the duplicate: mark the connection as expired
510 1.15 rmind * and let the G/C thread to take care of it. We cannot do it
511 1.15 rmind * here since there might be references acquired already.
512 1.15 rmind */
513 1.15 rmind if (error) {
514 1.16 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
515 1.16 rmind atomic_dec_uint(&con->c_refcnt);
516 1.22 christos npf_stats_inc(npf, NPF_STAT_RACE_CONN);
517 1.15 rmind } else {
518 1.15 rmind NPF_PRINTF(("NPF: establish conn %p\n", con));
519 1.1 rmind }
520 1.1 rmind
521 1.1 rmind /* Finally, insert into the connection list. */
522 1.32 rmind npf_conndb_enqueue(conn_db, con);
523 1.15 rmind mutex_exit(&con->c_lock);
524 1.15 rmind
525 1.15 rmind return error ? NULL : con;
526 1.1 rmind }
527 1.1 rmind
528 1.26 rmind void
529 1.22 christos npf_conn_destroy(npf_t *npf, npf_conn_t *con)
530 1.1 rmind {
531 1.29 christos const unsigned idx __unused = NPF_CONNCACHE(con->c_alen);
532 1.27 rmind
533 1.32 rmind KASSERT(atomic_load_relaxed(&con->c_refcnt) == 0);
534 1.15 rmind
535 1.1 rmind if (con->c_nat) {
536 1.1 rmind /* Release any NAT structures. */
537 1.32 rmind npf_nat_destroy(con, con->c_nat);
538 1.1 rmind }
539 1.1 rmind if (con->c_rproc) {
540 1.1 rmind /* Release the rule procedure. */
541 1.1 rmind npf_rproc_release(con->c_rproc);
542 1.1 rmind }
543 1.1 rmind
544 1.1 rmind /* Destroy the state. */
545 1.1 rmind npf_state_destroy(&con->c_state);
546 1.1 rmind mutex_destroy(&con->c_lock);
547 1.1 rmind
548 1.1 rmind /* Free the structure, increase the counter. */
549 1.27 rmind pool_cache_put(npf->conn_cache[idx], con);
550 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
551 1.1 rmind NPF_PRINTF(("NPF: conn %p destroyed\n", con));
552 1.1 rmind }
553 1.1 rmind
554 1.1 rmind /*
555 1.1 rmind * npf_conn_setnat: associate NAT entry with the connection, update and
556 1.1 rmind * re-insert connection entry using the translation values.
557 1.16 rmind *
558 1.16 rmind * => The caller must be holding a reference.
559 1.1 rmind */
560 1.1 rmind int
561 1.1 rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
562 1.27 rmind npf_nat_t *nt, unsigned ntype)
563 1.1 rmind {
564 1.32 rmind static const unsigned nat_type_which[] = {
565 1.32 rmind /* See the description in npf_nat_which(). */
566 1.1 rmind [NPF_NATOUT] = NPF_DST,
567 1.1 rmind [NPF_NATIN] = NPF_SRC,
568 1.1 rmind };
569 1.22 christos npf_t *npf = npc->npc_ctx;
570 1.2 rmind npf_conn_t *ret __diagused;
571 1.32 rmind npf_conndb_t *conn_db;
572 1.32 rmind npf_connkey_t *bk;
573 1.1 rmind npf_addr_t *taddr;
574 1.1 rmind in_port_t tport;
575 1.32 rmind uint32_t flags;
576 1.1 rmind
577 1.32 rmind KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
578 1.1 rmind
579 1.1 rmind npf_nat_gettrans(nt, &taddr, &tport);
580 1.1 rmind KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
581 1.1 rmind
582 1.1 rmind /* Acquire the lock and check for the races. */
583 1.1 rmind mutex_enter(&con->c_lock);
584 1.32 rmind flags = atomic_load_relaxed(&con->c_flags);
585 1.32 rmind if (__predict_false(flags & CONN_EXPIRE)) {
586 1.1 rmind /* The connection got expired. */
587 1.1 rmind mutex_exit(&con->c_lock);
588 1.1 rmind return EINVAL;
589 1.1 rmind }
590 1.32 rmind KASSERT((flags & CONN_REMOVED) == 0);
591 1.15 rmind
592 1.1 rmind if (__predict_false(con->c_nat != NULL)) {
593 1.1 rmind /* Race with a duplicate packet. */
594 1.1 rmind mutex_exit(&con->c_lock);
595 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
596 1.1 rmind return EISCONN;
597 1.1 rmind }
598 1.1 rmind
599 1.27 rmind /* Remove the "backwards" key. */
600 1.32 rmind conn_db = atomic_load_relaxed(&npf->conn_db);
601 1.32 rmind bk = npf_conn_getbackkey(con, con->c_alen);
602 1.32 rmind ret = npf_conndb_remove(conn_db, bk);
603 1.1 rmind KASSERT(ret == con);
604 1.1 rmind
605 1.1 rmind /* Set the source/destination IDs to the translation values. */
606 1.32 rmind npf_conn_adjkey(bk, taddr, tport, nat_type_which[ntype]);
607 1.1 rmind
608 1.27 rmind /* Finally, re-insert the "backwards" key. */
609 1.32 rmind if (!npf_conndb_insert(conn_db, bk, con, NPF_FLOW_BACK)) {
610 1.1 rmind /*
611 1.1 rmind * Race: we have hit the duplicate, remove the "forwards"
612 1.27 rmind * key and expire our connection; it is no longer valid.
613 1.1 rmind */
614 1.32 rmind npf_connkey_t *fw = npf_conn_getforwkey(con);
615 1.32 rmind ret = npf_conndb_remove(conn_db, fw);
616 1.15 rmind KASSERT(ret == con);
617 1.15 rmind
618 1.1 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
619 1.1 rmind mutex_exit(&con->c_lock);
620 1.1 rmind
621 1.22 christos npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
622 1.1 rmind return EISCONN;
623 1.1 rmind }
624 1.1 rmind
625 1.1 rmind /* Associate the NAT entry and release the lock. */
626 1.1 rmind con->c_nat = nt;
627 1.1 rmind mutex_exit(&con->c_lock);
628 1.1 rmind return 0;
629 1.1 rmind }
630 1.1 rmind
631 1.1 rmind /*
632 1.1 rmind * npf_conn_expire: explicitly mark connection as expired.
633 1.32 rmind *
634 1.32 rmind * => Must be called with: a) reference held b) the relevant lock held.
635 1.32 rmind * The relevant lock should prevent from connection destruction, e.g.
636 1.32 rmind * npf_t::conn_lock or npf_natpolicy_t::n_lock.
637 1.1 rmind */
638 1.1 rmind void
639 1.1 rmind npf_conn_expire(npf_conn_t *con)
640 1.1 rmind {
641 1.1 rmind atomic_or_uint(&con->c_flags, CONN_EXPIRE);
642 1.1 rmind }
643 1.1 rmind
644 1.1 rmind /*
645 1.1 rmind * npf_conn_pass: return true if connection is "pass" one, otherwise false.
646 1.1 rmind */
647 1.1 rmind bool
648 1.23 christos npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
649 1.1 rmind {
650 1.32 rmind KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
651 1.32 rmind if (__predict_true(atomic_load_relaxed(&con->c_flags) & CONN_PASS)) {
652 1.32 rmind mi->mi_retfl = atomic_load_relaxed(&con->c_retfl);
653 1.24 rmind mi->mi_rid = con->c_rid;
654 1.1 rmind *rp = con->c_rproc;
655 1.1 rmind return true;
656 1.1 rmind }
657 1.1 rmind return false;
658 1.1 rmind }
659 1.1 rmind
660 1.1 rmind /*
661 1.1 rmind * npf_conn_setpass: mark connection as a "pass" one and associate the
662 1.1 rmind * rule procedure with it.
663 1.1 rmind */
664 1.1 rmind void
665 1.23 christos npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
666 1.1 rmind {
667 1.32 rmind KASSERT((atomic_load_relaxed(&con->c_flags) & CONN_ACTIVE) == 0);
668 1.32 rmind KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
669 1.1 rmind KASSERT(con->c_rproc == NULL);
670 1.1 rmind
671 1.1 rmind /*
672 1.1 rmind * No need for atomic since the connection is not yet active.
673 1.1 rmind * If rproc is set, the caller transfers its reference to us,
674 1.1 rmind * which will be released on npf_conn_destroy().
675 1.1 rmind */
676 1.14 rmind atomic_or_uint(&con->c_flags, CONN_PASS);
677 1.1 rmind con->c_rproc = rp;
678 1.24 rmind if (rp) {
679 1.24 rmind con->c_rid = mi->mi_rid;
680 1.24 rmind con->c_retfl = mi->mi_retfl;
681 1.24 rmind }
682 1.1 rmind }
683 1.1 rmind
684 1.1 rmind /*
685 1.1 rmind * npf_conn_release: release a reference, which might allow G/C thread
686 1.1 rmind * to destroy this connection.
687 1.1 rmind */
688 1.1 rmind void
689 1.1 rmind npf_conn_release(npf_conn_t *con)
690 1.1 rmind {
691 1.32 rmind const unsigned flags = atomic_load_relaxed(&con->c_flags);
692 1.32 rmind
693 1.32 rmind if ((flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
694 1.1 rmind /* Activate: after this, connection is globally visible. */
695 1.14 rmind atomic_or_uint(&con->c_flags, CONN_ACTIVE);
696 1.1 rmind }
697 1.32 rmind KASSERT(atomic_load_relaxed(&con->c_refcnt) > 0);
698 1.1 rmind atomic_dec_uint(&con->c_refcnt);
699 1.1 rmind }
700 1.1 rmind
701 1.1 rmind /*
702 1.32 rmind * npf_conn_getnat: return the associated NAT entry, if any.
703 1.1 rmind */
704 1.1 rmind npf_nat_t *
705 1.32 rmind npf_conn_getnat(const npf_conn_t *con)
706 1.1 rmind {
707 1.1 rmind return con->c_nat;
708 1.1 rmind }
709 1.1 rmind
710 1.1 rmind /*
711 1.1 rmind * npf_conn_expired: criterion to check if connection is expired.
712 1.1 rmind */
713 1.26 rmind bool
714 1.27 rmind npf_conn_expired(npf_t *npf, const npf_conn_t *con, uint64_t tsnow)
715 1.1 rmind {
716 1.32 rmind const unsigned flags = atomic_load_relaxed(&con->c_flags);
717 1.27 rmind const int etime = npf_state_etime(npf, &con->c_state, con->c_proto);
718 1.22 christos int elapsed;
719 1.1 rmind
720 1.32 rmind if (__predict_false(flags & CONN_EXPIRE)) {
721 1.1 rmind /* Explicitly marked to be expired. */
722 1.1 rmind return true;
723 1.1 rmind }
724 1.22 christos
725 1.22 christos /*
726 1.22 christos * Note: another thread may update 'atime' and it might
727 1.22 christos * become greater than 'now'.
728 1.22 christos */
729 1.32 rmind elapsed = (int64_t)tsnow - atomic_load_relaxed(&con->c_atime);
730 1.22 christos return elapsed > etime;
731 1.1 rmind }
732 1.1 rmind
733 1.1 rmind /*
734 1.26 rmind * npf_conn_remove: unlink the connection and mark as expired.
735 1.1 rmind */
736 1.7 rmind void
737 1.26 rmind npf_conn_remove(npf_conndb_t *cd, npf_conn_t *con)
738 1.1 rmind {
739 1.26 rmind /* Remove both entries of the connection. */
740 1.26 rmind mutex_enter(&con->c_lock);
741 1.32 rmind if ((atomic_load_relaxed(&con->c_flags) & CONN_REMOVED) == 0) {
742 1.27 rmind npf_connkey_t *fw, *bk;
743 1.26 rmind npf_conn_t *ret __diagused;
744 1.1 rmind
745 1.27 rmind fw = npf_conn_getforwkey(con);
746 1.27 rmind ret = npf_conndb_remove(cd, fw);
747 1.26 rmind KASSERT(ret == con);
748 1.27 rmind
749 1.27 rmind bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
750 1.27 rmind ret = npf_conndb_remove(cd, bk);
751 1.26 rmind KASSERT(ret == con);
752 1.1 rmind }
753 1.6 rmind
754 1.26 rmind /* Flag the removal and expiration. */
755 1.26 rmind atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
756 1.26 rmind mutex_exit(&con->c_lock);
757 1.1 rmind }
758 1.1 rmind
759 1.6 rmind /*
760 1.32 rmind * npf_conn_worker: G/C to run from a worker thread or via npfk_gc().
761 1.6 rmind */
762 1.22 christos void
763 1.22 christos npf_conn_worker(npf_t *npf)
764 1.1 rmind {
765 1.32 rmind npf_conndb_t *conn_db = atomic_load_relaxed(&npf->conn_db);
766 1.32 rmind npf_conndb_gc(npf, conn_db, false, true);
767 1.1 rmind }
768 1.1 rmind
769 1.1 rmind /*
770 1.10 rmind * npf_conndb_export: construct a list of connections prepared for saving.
771 1.1 rmind * Note: this is expected to be an expensive operation.
772 1.1 rmind */
773 1.1 rmind int
774 1.32 rmind npf_conndb_export(npf_t *npf, nvlist_t *nvl)
775 1.1 rmind {
776 1.26 rmind npf_conn_t *head, *con;
777 1.32 rmind npf_conndb_t *conn_db;
778 1.1 rmind
779 1.1 rmind /*
780 1.1 rmind * Note: acquire conn_lock to prevent from the database
781 1.1 rmind * destruction and G/C thread.
782 1.1 rmind */
783 1.22 christos mutex_enter(&npf->conn_lock);
784 1.32 rmind if (atomic_load_relaxed(&npf->conn_tracking) != CONN_TRACKING_ON) {
785 1.22 christos mutex_exit(&npf->conn_lock);
786 1.1 rmind return 0;
787 1.1 rmind }
788 1.32 rmind conn_db = atomic_load_relaxed(&npf->conn_db);
789 1.32 rmind head = npf_conndb_getlist(conn_db);
790 1.26 rmind con = head;
791 1.1 rmind while (con) {
792 1.32 rmind nvlist_t *con_nvl;
793 1.1 rmind
794 1.32 rmind con_nvl = nvlist_create(0);
795 1.32 rmind if (npf_conn_export(npf, con, con_nvl) == 0) {
796 1.32 rmind nvlist_append_nvlist_array(nvl, "conn-list", con_nvl);
797 1.1 rmind }
798 1.32 rmind nvlist_destroy(con_nvl);
799 1.32 rmind
800 1.32 rmind if ((con = npf_conndb_getnext(conn_db, con)) == head) {
801 1.26 rmind break;
802 1.26 rmind }
803 1.1 rmind }
804 1.22 christos mutex_exit(&npf->conn_lock);
805 1.5 joerg return 0;
806 1.1 rmind }
807 1.1 rmind
808 1.1 rmind /*
809 1.32 rmind * npf_conn_export: serialize a single connection.
810 1.10 rmind */
811 1.32 rmind static int
812 1.32 rmind npf_conn_export(npf_t *npf, npf_conn_t *con, nvlist_t *nvl)
813 1.10 rmind {
814 1.32 rmind nvlist_t *knvl;
815 1.27 rmind npf_connkey_t *fw, *bk;
816 1.32 rmind unsigned flags, alen;
817 1.10 rmind
818 1.32 rmind flags = atomic_load_relaxed(&con->c_flags);
819 1.32 rmind if ((flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
820 1.32 rmind return ESRCH;
821 1.10 rmind }
822 1.32 rmind nvlist_add_number(nvl, "flags", flags);
823 1.32 rmind nvlist_add_number(nvl, "proto", con->c_proto);
824 1.10 rmind if (con->c_ifid) {
825 1.30 rmind char ifname[IFNAMSIZ];
826 1.30 rmind npf_ifmap_copyname(npf, con->c_ifid, ifname, sizeof(ifname));
827 1.32 rmind nvlist_add_string(nvl, "ifname", ifname);
828 1.10 rmind }
829 1.32 rmind nvlist_add_binary(nvl, "state", &con->c_state, sizeof(npf_state_t));
830 1.10 rmind
831 1.27 rmind fw = npf_conn_getforwkey(con);
832 1.27 rmind alen = NPF_CONNKEY_ALEN(fw);
833 1.29 christos KASSERT(alen == con->c_alen);
834 1.27 rmind bk = npf_conn_getbackkey(con, alen);
835 1.27 rmind
836 1.32 rmind knvl = npf_connkey_export(npf, fw);
837 1.32 rmind nvlist_move_nvlist(nvl, "forw-key", knvl);
838 1.10 rmind
839 1.32 rmind knvl = npf_connkey_export(npf, bk);
840 1.32 rmind nvlist_move_nvlist(nvl, "back-key", knvl);
841 1.10 rmind
842 1.27 rmind /* Let the address length be based on on first key. */
843 1.32 rmind nvlist_add_number(nvl, "alen", alen);
844 1.27 rmind
845 1.10 rmind if (con->c_nat) {
846 1.32 rmind npf_nat_export(npf, con->c_nat, nvl);
847 1.10 rmind }
848 1.32 rmind return 0;
849 1.10 rmind }
850 1.10 rmind
851 1.10 rmind /*
852 1.6 rmind * npf_conn_import: fully reconstruct a single connection from a
853 1.25 rmind * nvlist and insert into the given database.
854 1.1 rmind */
855 1.1 rmind int
856 1.25 rmind npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
857 1.6 rmind npf_ruleset_t *natlist)
858 1.1 rmind {
859 1.1 rmind npf_conn_t *con;
860 1.1 rmind npf_connkey_t *fw, *bk;
861 1.25 rmind const nvlist_t *nat, *conkey;
862 1.32 rmind unsigned flags, alen, idx;
863 1.10 rmind const char *ifname;
864 1.25 rmind const void *state;
865 1.25 rmind size_t len;
866 1.1 rmind
867 1.27 rmind /*
868 1.27 rmind * To determine the length of the connection, which depends
869 1.27 rmind * on the address length in the connection keys.
870 1.27 rmind */
871 1.27 rmind alen = dnvlist_get_number(cdict, "alen", 0);
872 1.27 rmind idx = NPF_CONNCACHE(alen);
873 1.27 rmind
874 1.32 rmind /* Allocate a connection and initialize it (clear first). */
875 1.27 rmind con = pool_cache_get(npf->conn_cache[idx], PR_WAITOK);
876 1.1 rmind memset(con, 0, sizeof(npf_conn_t));
877 1.1 rmind mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
878 1.22 christos npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
879 1.1 rmind
880 1.25 rmind con->c_proto = dnvlist_get_number(cdict, "proto", 0);
881 1.32 rmind flags = dnvlist_get_number(cdict, "flags", 0);
882 1.32 rmind flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
883 1.32 rmind atomic_store_relaxed(&con->c_flags, flags);
884 1.22 christos conn_update_atime(con);
885 1.1 rmind
886 1.25 rmind ifname = dnvlist_get_string(cdict, "ifname", NULL);
887 1.25 rmind if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
888 1.10 rmind goto err;
889 1.10 rmind }
890 1.10 rmind
891 1.25 rmind state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
892 1.25 rmind if (!state || len != sizeof(npf_state_t)) {
893 1.1 rmind goto err;
894 1.1 rmind }
895 1.25 rmind memcpy(&con->c_state, state, sizeof(npf_state_t));
896 1.1 rmind
897 1.11 rmind /* Reconstruct NAT association, if any. */
898 1.25 rmind if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
899 1.25 rmind (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
900 1.11 rmind goto err;
901 1.11 rmind }
902 1.1 rmind
903 1.1 rmind /*
904 1.1 rmind * Fetch and copy the keys for each direction.
905 1.1 rmind */
906 1.27 rmind fw = npf_conn_getforwkey(con);
907 1.25 rmind conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
908 1.32 rmind if (conkey == NULL || !npf_connkey_import(npf, conkey, fw)) {
909 1.1 rmind goto err;
910 1.1 rmind }
911 1.27 rmind bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
912 1.25 rmind conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
913 1.32 rmind if (conkey == NULL || !npf_connkey_import(npf, conkey, bk)) {
914 1.1 rmind goto err;
915 1.1 rmind }
916 1.27 rmind
917 1.27 rmind /* Guard against the contradicting address lengths. */
918 1.27 rmind if (NPF_CONNKEY_ALEN(fw) != alen || NPF_CONNKEY_ALEN(bk) != alen) {
919 1.27 rmind goto err;
920 1.27 rmind }
921 1.1 rmind
922 1.1 rmind /* Insert the entries and the connection itself. */
923 1.32 rmind if (!npf_conndb_insert(cd, fw, con, NPF_FLOW_FORW)) {
924 1.1 rmind goto err;
925 1.1 rmind }
926 1.32 rmind if (!npf_conndb_insert(cd, bk, con, NPF_FLOW_BACK)) {
927 1.1 rmind npf_conndb_remove(cd, fw);
928 1.1 rmind goto err;
929 1.1 rmind }
930 1.12 rmind
931 1.12 rmind NPF_PRINTF(("NPF: imported conn %p\n", con));
932 1.1 rmind npf_conndb_enqueue(cd, con);
933 1.1 rmind return 0;
934 1.1 rmind err:
935 1.29 christos npf_conn_destroy(npf, con);
936 1.1 rmind return EINVAL;
937 1.1 rmind }
938 1.1 rmind
939 1.32 rmind /*
940 1.32 rmind * npf_conn_find: lookup a connection in the list of connections
941 1.32 rmind */
942 1.20 christos int
943 1.32 rmind npf_conn_find(npf_t *npf, const nvlist_t *req, nvlist_t *resp)
944 1.20 christos {
945 1.32 rmind const nvlist_t *key_nv;
946 1.32 rmind npf_conn_t *con;
947 1.20 christos npf_connkey_t key;
948 1.32 rmind npf_flow_t flow;
949 1.32 rmind int error;
950 1.20 christos
951 1.32 rmind key_nv = dnvlist_get_nvlist(req, "key", NULL);
952 1.32 rmind if (!key_nv || !npf_connkey_import(npf, key_nv, &key)) {
953 1.20 christos return EINVAL;
954 1.25 rmind }
955 1.32 rmind con = npf_conndb_lookup(npf, &key, &flow);
956 1.20 christos if (con == NULL) {
957 1.20 christos return ESRCH;
958 1.20 christos }
959 1.32 rmind if (!npf_conn_check(con, NULL, 0, NPF_FLOW_FORW)) {
960 1.20 christos atomic_dec_uint(&con->c_refcnt);
961 1.20 christos return ESRCH;
962 1.20 christos }
963 1.32 rmind error = npf_conn_export(npf, con, resp);
964 1.32 rmind nvlist_add_number(resp, "flow", flow);
965 1.20 christos atomic_dec_uint(&con->c_refcnt);
966 1.32 rmind return error;
967 1.20 christos }
968 1.20 christos
969 1.1 rmind #if defined(DDB) || defined(_NPF_TESTING)
970 1.1 rmind
971 1.1 rmind void
972 1.27 rmind npf_conn_print(npf_conn_t *con)
973 1.1 rmind {
974 1.27 rmind const npf_connkey_t *fw = npf_conn_getforwkey(con);
975 1.27 rmind const npf_connkey_t *bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
976 1.32 rmind const unsigned flags = atomic_load_relaxed(&con->c_flags);
977 1.27 rmind const unsigned proto = con->c_proto;
978 1.22 christos struct timespec tspnow;
979 1.1 rmind
980 1.22 christos getnanouptime(&tspnow);
981 1.22 christos printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
982 1.32 rmind proto, flags, (long)(tspnow.tv_sec - con->c_atime),
983 1.27 rmind npf_state_etime(npf_getkernctx(), &con->c_state, proto));
984 1.27 rmind npf_connkey_print(fw);
985 1.27 rmind npf_connkey_print(bk);
986 1.1 rmind npf_state_dump(&con->c_state);
987 1.1 rmind if (con->c_nat) {
988 1.1 rmind npf_nat_dump(con->c_nat);
989 1.1 rmind }
990 1.1 rmind }
991 1.1 rmind
992 1.1 rmind #endif
993