Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.6
      1  1.6     rmind /*	$NetBSD: npf_conn.c,v 1.6 2014/07/23 01:25:34 rmind Exp $	*/
      2  1.1     rmind 
      3  1.1     rmind /*-
      4  1.1     rmind  * Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
      5  1.1     rmind  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      6  1.1     rmind  * All rights reserved.
      7  1.1     rmind  *
      8  1.1     rmind  * This material is based upon work partially supported by The
      9  1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
     10  1.1     rmind  *
     11  1.1     rmind  * Redistribution and use in source and binary forms, with or without
     12  1.1     rmind  * modification, are permitted provided that the following conditions
     13  1.1     rmind  * are met:
     14  1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     15  1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     16  1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     17  1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     18  1.1     rmind  *    documentation and/or other materials provided with the distribution.
     19  1.1     rmind  *
     20  1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     31  1.1     rmind  */
     32  1.1     rmind 
     33  1.1     rmind /*
     34  1.1     rmind  * NPF connection tracking for stateful filtering and translation.
     35  1.1     rmind  *
     36  1.1     rmind  * Overview
     37  1.1     rmind  *
     38  1.1     rmind  *	Connection direction is identified by the direction of its first
     39  1.1     rmind  *	packet.  Packets can be incoming or outgoing with respect to an
     40  1.1     rmind  *	interface.  To describe the packet in the context of connection
     41  1.1     rmind  *	direction we will use the terms "forwards stream" and "backwards
     42  1.1     rmind  *	stream".  All connections have two keys and thus two entries:
     43  1.1     rmind  *
     44  1.1     rmind  *		npf_conn_t::c_forw_entry for the forwards stream and
     45  1.1     rmind  *		npf_conn_t::c_back_entry for the backwards stream.
     46  1.1     rmind  *
     47  1.1     rmind  *	The keys are formed from the 5-tuple (source/destination address,
     48  1.1     rmind  *	source/destination port and the protocol).  Additional matching
     49  1.1     rmind  *	is performed for the interface (a common behaviour is equivalent
     50  1.1     rmind  *	to the 6-tuple lookup including the interface ID).  Note that the
     51  1.1     rmind  *	key may be formed using translated values in a case of NAT.
     52  1.1     rmind  *
     53  1.1     rmind  *	Connections can serve two purposes: for the implicit passing or
     54  1.1     rmind  *	to accommodate the dynamic NAT.  Connections for the former purpose
     55  1.1     rmind  *	are created by the rules with "stateful" attribute and are used for
     56  1.1     rmind  *	stateful filtering.  Such connections indicate that the packet of
     57  1.1     rmind  *	the backwards stream should be passed without inspection of the
     58  1.1     rmind  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     59  1.1     rmind  *	with a connection.  Such connections are created by the NAT policies
     60  1.1     rmind  *	and they have a relationship with NAT translation structure via
     61  1.1     rmind  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     62  1.1     rmind  *	which is a common case.
     63  1.1     rmind  *
     64  1.1     rmind  * Connection life-cycle
     65  1.1     rmind  *
     66  1.1     rmind  *	Connections are established when a packet matches said rule or
     67  1.1     rmind  *	NAT policy.  Both keys of the established connection are inserted
     68  1.1     rmind  *	into the connection database.  A garbage collection thread
     69  1.1     rmind  *	periodically scans all connections and depending on connection
     70  1.1     rmind  *	properties (e.g. last activity time, protocol) removes connection
     71  1.1     rmind  *	entries and expires the actual connections.
     72  1.1     rmind  *
     73  1.1     rmind  *	Each connection has a reference count.  The reference is acquired
     74  1.1     rmind  *	on lookup and should be released by the caller.  It guarantees that
     75  1.1     rmind  *	the connection will not be destroyed, although it may be expired.
     76  1.1     rmind  *
     77  1.1     rmind  * Synchronisation
     78  1.1     rmind  *
     79  1.1     rmind  *	Connection database is accessed in a lock-less manner by the main
     80  1.1     rmind  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     81  1.1     rmind  *	are always called from a software interrupt, the database is
     82  1.1     rmind  *	protected using passive serialisation.  The main place which can
     83  1.1     rmind  *	destroy a connection is npf_conn_worker().  The database itself
     84  1.1     rmind  *	can be replaced and destroyed in npf_conn_reload().
     85  1.1     rmind  *
     86  1.1     rmind  * ALG support
     87  1.1     rmind  *
     88  1.1     rmind  *	Application-level gateways (ALGs) can override generic connection
     89  1.1     rmind  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     90  1.1     rmind  *	performing their own lookup using different key.  Recursive call
     91  1.1     rmind  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     92  1.1     rmind  *	npf_conn_lookup() function for this purpose.
     93  1.1     rmind  *
     94  1.1     rmind  * Lock order
     95  1.1     rmind  *
     96  1.6     rmind  *	npf_config_lock ->
     97  1.6     rmind  *		conn_lock ->
     98  1.6     rmind  *			npf_conn_t::c_lock
     99  1.1     rmind  */
    100  1.1     rmind 
    101  1.1     rmind #include <sys/cdefs.h>
    102  1.6     rmind __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.6 2014/07/23 01:25:34 rmind Exp $");
    103  1.1     rmind 
    104  1.1     rmind #include <sys/param.h>
    105  1.1     rmind #include <sys/types.h>
    106  1.1     rmind 
    107  1.1     rmind #include <netinet/in.h>
    108  1.1     rmind #include <netinet/tcp.h>
    109  1.1     rmind 
    110  1.1     rmind #include <sys/atomic.h>
    111  1.1     rmind #include <sys/condvar.h>
    112  1.1     rmind #include <sys/kmem.h>
    113  1.1     rmind #include <sys/kthread.h>
    114  1.1     rmind #include <sys/mutex.h>
    115  1.1     rmind #include <net/pfil.h>
    116  1.1     rmind #include <sys/pool.h>
    117  1.1     rmind #include <sys/queue.h>
    118  1.1     rmind #include <sys/systm.h>
    119  1.1     rmind 
    120  1.1     rmind #define __NPF_CONN_PRIVATE
    121  1.1     rmind #include "npf_conn.h"
    122  1.1     rmind #include "npf_impl.h"
    123  1.1     rmind 
    124  1.1     rmind /*
    125  1.1     rmind  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    126  1.1     rmind  */
    127  1.1     rmind CTASSERT(PFIL_ALL == (0x001 | 0x002));
    128  1.1     rmind #define	CONN_ACTIVE	0x004	/* visible on inspection */
    129  1.1     rmind #define	CONN_PASS	0x008	/* perform implicit passing */
    130  1.1     rmind #define	CONN_EXPIRE	0x010	/* explicitly expire */
    131  1.1     rmind #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    132  1.1     rmind 
    133  1.1     rmind /*
    134  1.6     rmind  * Connection tracking state: disabled (off) or enabled (on).
    135  1.1     rmind  */
    136  1.6     rmind enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    137  1.1     rmind static volatile int	conn_tracking	__cacheline_aligned;
    138  1.1     rmind 
    139  1.1     rmind /* Connection tracking database, connection cache and the lock. */
    140  1.1     rmind static npf_conndb_t *	conn_db		__read_mostly;
    141  1.1     rmind static pool_cache_t	conn_cache	__read_mostly;
    142  1.1     rmind static kmutex_t		conn_lock	__cacheline_aligned;
    143  1.1     rmind 
    144  1.6     rmind static void	npf_conn_gc(npf_conndb_t *, bool, bool);
    145  1.1     rmind static void	npf_conn_worker(void);
    146  1.1     rmind static void	npf_conn_destroy(npf_conn_t *);
    147  1.1     rmind 
    148  1.1     rmind /*
    149  1.1     rmind  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    150  1.1     rmind  */
    151  1.1     rmind 
    152  1.1     rmind void
    153  1.1     rmind npf_conn_sysinit(void)
    154  1.1     rmind {
    155  1.1     rmind 	conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
    156  1.1     rmind 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
    157  1.1     rmind 	mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
    158  1.1     rmind 	conn_tracking = CONN_TRACKING_OFF;
    159  1.6     rmind 	conn_db = npf_conndb_create();
    160  1.1     rmind 
    161  1.1     rmind 	npf_worker_register(npf_conn_worker);
    162  1.1     rmind }
    163  1.1     rmind 
    164  1.1     rmind void
    165  1.1     rmind npf_conn_sysfini(void)
    166  1.1     rmind {
    167  1.6     rmind 	/* Note: the caller should have flushed the connections. */
    168  1.6     rmind 	KASSERT(conn_tracking == CONN_TRACKING_OFF);
    169  1.1     rmind 	npf_worker_unregister(npf_conn_worker);
    170  1.1     rmind 
    171  1.6     rmind 	npf_conndb_destroy(conn_db);
    172  1.1     rmind 	pool_cache_destroy(conn_cache);
    173  1.1     rmind 	mutex_destroy(&conn_lock);
    174  1.1     rmind }
    175  1.1     rmind 
    176  1.1     rmind /*
    177  1.6     rmind  * npf_conn_load: perform the load by flushing the current connection
    178  1.6     rmind  * database and replacing it with the new one or just destroying.
    179  1.1     rmind  *
    180  1.6     rmind  * => The caller must disable the connection tracking and ensure that
    181  1.6     rmind  *    there are no connection database lookups or references in-flight.
    182  1.1     rmind  */
    183  1.6     rmind void
    184  1.6     rmind npf_conn_load(npf_conndb_t *ndb, bool track)
    185  1.1     rmind {
    186  1.6     rmind 	npf_conndb_t *odb = NULL;
    187  1.1     rmind 
    188  1.6     rmind 	KASSERT(npf_config_locked_p());
    189  1.1     rmind 
    190  1.1     rmind 	/*
    191  1.6     rmind 	 * The connection database is in the quiescent state.
    192  1.6     rmind 	 * Prevent G/C thread from running and install a new database.
    193  1.1     rmind 	 */
    194  1.6     rmind 	mutex_enter(&conn_lock);
    195  1.6     rmind 	if (ndb) {
    196  1.6     rmind 		KASSERT(conn_tracking == CONN_TRACKING_OFF);
    197  1.6     rmind 		odb = conn_db;
    198  1.6     rmind 		conn_db = ndb;
    199  1.6     rmind 		membar_sync();
    200  1.6     rmind 	}
    201  1.6     rmind 	if (track) {
    202  1.6     rmind 		/* After this point lookups start flying in. */
    203  1.6     rmind 		conn_tracking = CONN_TRACKING_ON;
    204  1.1     rmind 	}
    205  1.6     rmind 	mutex_exit(&conn_lock);
    206  1.1     rmind 
    207  1.1     rmind 	if (odb) {
    208  1.6     rmind 		/*
    209  1.6     rmind 		 * Flush all, no sync since the caller did it for us.
    210  1.6     rmind 		 * Also, release the pool cache memory.
    211  1.6     rmind 		 */
    212  1.6     rmind 		npf_conn_gc(odb, true, false);
    213  1.1     rmind 		npf_conndb_destroy(odb);
    214  1.6     rmind 		pool_cache_invalidate(conn_cache);
    215  1.1     rmind 	}
    216  1.1     rmind }
    217  1.1     rmind 
    218  1.1     rmind /*
    219  1.1     rmind  * npf_conn_tracking: enable/disable connection tracking.
    220  1.1     rmind  */
    221  1.1     rmind void
    222  1.1     rmind npf_conn_tracking(bool track)
    223  1.1     rmind {
    224  1.6     rmind 	KASSERT(npf_config_locked_p());
    225  1.6     rmind 	conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
    226  1.1     rmind }
    227  1.1     rmind 
    228  1.6     rmind static inline bool
    229  1.1     rmind npf_conn_trackable_p(const npf_cache_t *npc)
    230  1.1     rmind {
    231  1.1     rmind 	/*
    232  1.1     rmind 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    233  1.1     rmind 	 * not cached - protocol is not supported or packet is invalid.
    234  1.1     rmind 	 */
    235  1.1     rmind 	if (conn_tracking != CONN_TRACKING_ON) {
    236  1.1     rmind 		return false;
    237  1.1     rmind 	}
    238  1.1     rmind 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    239  1.1     rmind 		return false;
    240  1.1     rmind 	}
    241  1.1     rmind 	return true;
    242  1.1     rmind }
    243  1.1     rmind 
    244  1.1     rmind /*
    245  1.1     rmind  * npf_conn_conkey: construct a key for the connection lookup.
    246  1.1     rmind  */
    247  1.1     rmind bool
    248  1.1     rmind npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
    249  1.1     rmind {
    250  1.1     rmind 	const u_int alen = npc->npc_alen;
    251  1.1     rmind 	const struct tcphdr *th;
    252  1.1     rmind 	const struct udphdr *uh;
    253  1.1     rmind 	u_int keylen, isrc, idst;
    254  1.1     rmind 	uint16_t id[2];
    255  1.1     rmind 
    256  1.1     rmind 	switch (npc->npc_proto) {
    257  1.1     rmind 	case IPPROTO_TCP:
    258  1.1     rmind 		KASSERT(npf_iscached(npc, NPC_TCP));
    259  1.1     rmind 		th = npc->npc_l4.tcp;
    260  1.1     rmind 		id[NPF_SRC] = th->th_sport;
    261  1.1     rmind 		id[NPF_DST] = th->th_dport;
    262  1.1     rmind 		break;
    263  1.1     rmind 	case IPPROTO_UDP:
    264  1.1     rmind 		KASSERT(npf_iscached(npc, NPC_UDP));
    265  1.1     rmind 		uh = npc->npc_l4.udp;
    266  1.1     rmind 		id[NPF_SRC] = uh->uh_sport;
    267  1.1     rmind 		id[NPF_DST] = uh->uh_dport;
    268  1.1     rmind 		break;
    269  1.1     rmind 	case IPPROTO_ICMP:
    270  1.1     rmind 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    271  1.1     rmind 			const struct icmp *ic = npc->npc_l4.icmp;
    272  1.1     rmind 			id[NPF_SRC] = ic->icmp_id;
    273  1.1     rmind 			id[NPF_DST] = ic->icmp_id;
    274  1.1     rmind 			break;
    275  1.1     rmind 		}
    276  1.1     rmind 		return false;
    277  1.1     rmind 	case IPPROTO_ICMPV6:
    278  1.1     rmind 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    279  1.1     rmind 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    280  1.1     rmind 			id[NPF_SRC] = ic6->icmp6_id;
    281  1.1     rmind 			id[NPF_DST] = ic6->icmp6_id;
    282  1.1     rmind 			break;
    283  1.1     rmind 		}
    284  1.1     rmind 		return false;
    285  1.1     rmind 	default:
    286  1.1     rmind 		/* Unsupported protocol. */
    287  1.1     rmind 		return false;
    288  1.1     rmind 	}
    289  1.1     rmind 
    290  1.1     rmind 	/*
    291  1.1     rmind 	 * Finally, construct a key formed out of 32-bit integers.
    292  1.1     rmind 	 */
    293  1.1     rmind 	if (__predict_true(forw)) {
    294  1.1     rmind 		isrc = NPF_SRC, idst = NPF_DST;
    295  1.1     rmind 	} else {
    296  1.1     rmind 		isrc = NPF_DST, idst = NPF_SRC;
    297  1.1     rmind 	}
    298  1.1     rmind 
    299  1.1     rmind 	key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff);
    300  1.1     rmind 	key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    301  1.1     rmind 
    302  1.1     rmind 	if (__predict_true(alen == sizeof(in_addr_t))) {
    303  1.1     rmind 		key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0];
    304  1.1     rmind 		key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0];
    305  1.1     rmind 		keylen = 4 * sizeof(uint32_t);
    306  1.1     rmind 	} else {
    307  1.1     rmind 		const u_int nwords = alen >> 2;
    308  1.1     rmind 		memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen);
    309  1.1     rmind 		memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen);
    310  1.1     rmind 		keylen = (2 + (nwords * 2)) * sizeof(uint32_t);
    311  1.1     rmind 	}
    312  1.2     rmind 	(void)keylen;
    313  1.1     rmind 	return true;
    314  1.1     rmind }
    315  1.1     rmind 
    316  1.3  christos static __inline void
    317  1.1     rmind connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
    318  1.1     rmind {
    319  1.1     rmind 	const u_int alen = key->ck_key[0] & 0xffff;
    320  1.1     rmind 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
    321  1.1     rmind 
    322  1.1     rmind 	KASSERT(alen > 0);
    323  1.1     rmind 	memcpy(addr, naddr, alen);
    324  1.1     rmind }
    325  1.1     rmind 
    326  1.3  christos static __inline void
    327  1.1     rmind connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
    328  1.1     rmind {
    329  1.1     rmind 	const uint32_t oid = key->ck_key[1];
    330  1.1     rmind 	const u_int shift = 16 * !di;
    331  1.1     rmind 	const uint32_t mask = 0xffff0000 >> shift;
    332  1.1     rmind 
    333  1.1     rmind 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
    334  1.1     rmind }
    335  1.1     rmind 
    336  1.1     rmind /*
    337  1.1     rmind  * npf_conn_lookup: lookup if there is an established connection.
    338  1.1     rmind  *
    339  1.1     rmind  * => If found, we will hold a reference for the caller.
    340  1.1     rmind  */
    341  1.1     rmind npf_conn_t *
    342  1.4     rmind npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
    343  1.1     rmind {
    344  1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    345  1.1     rmind 	npf_conn_t *con;
    346  1.1     rmind 	npf_connkey_t key;
    347  1.1     rmind 	u_int flags, cifid;
    348  1.1     rmind 	bool ok, pforw;
    349  1.1     rmind 
    350  1.1     rmind 	/* Construct a key and lookup for a connection in the store. */
    351  1.1     rmind 	if (!npf_conn_conkey(npc, &key, true)) {
    352  1.1     rmind 		return NULL;
    353  1.1     rmind 	}
    354  1.1     rmind 	con = npf_conndb_lookup(conn_db, &key, forw);
    355  1.1     rmind 	if (con == NULL) {
    356  1.1     rmind 		return NULL;
    357  1.1     rmind 	}
    358  1.1     rmind 	KASSERT(npc->npc_proto == con->c_proto);
    359  1.1     rmind 
    360  1.1     rmind 	/* Check if connection is active and not expired. */
    361  1.1     rmind 	flags = con->c_flags;
    362  1.1     rmind 	ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    363  1.1     rmind 
    364  1.1     rmind 	if (__predict_false(!ok)) {
    365  1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    366  1.1     rmind 		return NULL;
    367  1.1     rmind 	}
    368  1.1     rmind 
    369  1.1     rmind 	/*
    370  1.1     rmind 	 * Match the interface and the direction of the connection entry
    371  1.1     rmind 	 * and the packet.
    372  1.1     rmind 	 */
    373  1.1     rmind 	cifid = con->c_ifid;
    374  1.1     rmind 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
    375  1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    376  1.1     rmind 		return NULL;
    377  1.1     rmind 	}
    378  1.1     rmind 	pforw = (flags & PFIL_ALL) == di;
    379  1.1     rmind 	if (__predict_false(*forw != pforw)) {
    380  1.1     rmind 		atomic_dec_uint(&con->c_refcnt);
    381  1.1     rmind 		return NULL;
    382  1.1     rmind 	}
    383  1.1     rmind 
    384  1.1     rmind 	/* Update the last activity time. */
    385  1.1     rmind 	getnanouptime(&con->c_atime);
    386  1.1     rmind 	return con;
    387  1.1     rmind }
    388  1.1     rmind 
    389  1.1     rmind /*
    390  1.1     rmind  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    391  1.1     rmind  *
    392  1.1     rmind  * => If found, we will hold a reference for the caller.
    393  1.1     rmind  */
    394  1.1     rmind npf_conn_t *
    395  1.4     rmind npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
    396  1.1     rmind {
    397  1.4     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    398  1.1     rmind 	npf_conn_t *con;
    399  1.1     rmind 	bool forw, ok;
    400  1.1     rmind 
    401  1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    402  1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    403  1.1     rmind 		return NULL;
    404  1.1     rmind 	}
    405  1.1     rmind 
    406  1.1     rmind 	/* Query ALG which may lookup connection for us. */
    407  1.4     rmind 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    408  1.1     rmind 		/* Note: reference is held. */
    409  1.1     rmind 		return con;
    410  1.1     rmind 	}
    411  1.1     rmind 	if (nbuf_head_mbuf(nbuf) == NULL) {
    412  1.1     rmind 		*error = ENOMEM;
    413  1.1     rmind 		return NULL;
    414  1.1     rmind 	}
    415  1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    416  1.1     rmind 
    417  1.1     rmind 	/* Main lookup of the connection. */
    418  1.4     rmind 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
    419  1.1     rmind 		return NULL;
    420  1.1     rmind 	}
    421  1.1     rmind 
    422  1.1     rmind 	/* Inspect the protocol data and handle state changes. */
    423  1.1     rmind 	mutex_enter(&con->c_lock);
    424  1.4     rmind 	ok = npf_state_inspect(npc, &con->c_state, forw);
    425  1.1     rmind 	mutex_exit(&con->c_lock);
    426  1.1     rmind 
    427  1.1     rmind 	if (__predict_false(!ok)) {
    428  1.1     rmind 		/* Invalid: let the rules deal with it. */
    429  1.1     rmind 		npf_conn_release(con);
    430  1.1     rmind 		npf_stats_inc(NPF_STAT_INVALID_STATE);
    431  1.1     rmind 		con = NULL;
    432  1.1     rmind 	}
    433  1.1     rmind 	return con;
    434  1.1     rmind }
    435  1.1     rmind 
    436  1.1     rmind /*
    437  1.1     rmind  * npf_conn_establish: create a new connection, insert into the global list.
    438  1.1     rmind  *
    439  1.1     rmind  * => Connection is created with the reference held for the caller.
    440  1.1     rmind  * => Connection will be activated on the first reference release.
    441  1.1     rmind  */
    442  1.1     rmind npf_conn_t *
    443  1.4     rmind npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
    444  1.1     rmind {
    445  1.4     rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    446  1.1     rmind 	npf_conn_t *con;
    447  1.1     rmind 
    448  1.1     rmind 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    449  1.1     rmind 
    450  1.1     rmind 	if (!npf_conn_trackable_p(npc)) {
    451  1.1     rmind 		return NULL;
    452  1.1     rmind 	}
    453  1.1     rmind 
    454  1.1     rmind 	/* Allocate and initialise the new connection. */
    455  1.1     rmind 	con = pool_cache_get(conn_cache, PR_NOWAIT);
    456  1.1     rmind 	if (__predict_false(!con)) {
    457  1.1     rmind 		return NULL;
    458  1.1     rmind 	}
    459  1.1     rmind 	NPF_PRINTF(("NPF: create conn %p\n", con));
    460  1.6     rmind 	npf_stats_inc(NPF_STAT_CONN_CREATE);
    461  1.1     rmind 
    462  1.1     rmind 	/* Reference count and flags (indicate direction). */
    463  1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    464  1.1     rmind 	con->c_flags = (di & PFIL_ALL);
    465  1.1     rmind 	con->c_refcnt = 1;
    466  1.1     rmind 	con->c_rproc = NULL;
    467  1.1     rmind 	con->c_nat = NULL;
    468  1.1     rmind 
    469  1.1     rmind 	/* Initialize protocol state. */
    470  1.4     rmind 	if (!npf_state_init(npc, &con->c_state)) {
    471  1.1     rmind 		goto err;
    472  1.1     rmind 	}
    473  1.1     rmind 
    474  1.1     rmind 	KASSERT(npf_iscached(npc, NPC_IP46));
    475  1.1     rmind 	npf_connkey_t *fw = &con->c_forw_entry;
    476  1.1     rmind 	npf_connkey_t *bk = &con->c_back_entry;
    477  1.1     rmind 
    478  1.1     rmind 	/*
    479  1.1     rmind 	 * Construct "forwards" and "backwards" keys.  Also, set the
    480  1.1     rmind 	 * interface ID for this connection (unless it is global).
    481  1.1     rmind 	 */
    482  1.1     rmind 	if (!npf_conn_conkey(npc, fw, true)) {
    483  1.1     rmind 		goto err;
    484  1.1     rmind 	}
    485  1.1     rmind 	if (!npf_conn_conkey(npc, bk, false)) {
    486  1.1     rmind 		goto err;
    487  1.1     rmind 	}
    488  1.1     rmind 	fw->ck_backptr = bk->ck_backptr = con;
    489  1.1     rmind 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
    490  1.1     rmind 	con->c_proto = npc->npc_proto;
    491  1.1     rmind 
    492  1.1     rmind 	/* Set last activity time for a new connection. */
    493  1.1     rmind 	getnanouptime(&con->c_atime);
    494  1.1     rmind 
    495  1.1     rmind 	/*
    496  1.1     rmind 	 * Insert both keys (entries representing directions) of the
    497  1.1     rmind 	 * connection.  At this point, it becomes visible.
    498  1.1     rmind 	 */
    499  1.1     rmind 	if (!npf_conndb_insert(conn_db, fw, con)) {
    500  1.1     rmind 		goto err;
    501  1.1     rmind 	}
    502  1.1     rmind 	if (!npf_conndb_insert(conn_db, bk, con)) {
    503  1.1     rmind 		/* We have hit the duplicate. */
    504  1.1     rmind 		npf_conndb_remove(conn_db, fw);
    505  1.6     rmind 		npf_stats_inc(NPF_STAT_RACE_CONN);
    506  1.1     rmind 		goto err;
    507  1.1     rmind 	}
    508  1.1     rmind 
    509  1.1     rmind 	/* Finally, insert into the connection list. */
    510  1.1     rmind 	NPF_PRINTF(("NPF: establish conn %p\n", con));
    511  1.1     rmind 	npf_conndb_enqueue(conn_db, con);
    512  1.1     rmind 	return con;
    513  1.1     rmind err:
    514  1.1     rmind 	npf_conn_destroy(con);
    515  1.1     rmind 	return NULL;
    516  1.1     rmind }
    517  1.1     rmind 
    518  1.1     rmind static void
    519  1.1     rmind npf_conn_destroy(npf_conn_t *con)
    520  1.1     rmind {
    521  1.1     rmind 	if (con->c_nat) {
    522  1.1     rmind 		/* Release any NAT structures. */
    523  1.1     rmind 		npf_nat_destroy(con->c_nat);
    524  1.1     rmind 	}
    525  1.1     rmind 	if (con->c_rproc) {
    526  1.1     rmind 		/* Release the rule procedure. */
    527  1.1     rmind 		npf_rproc_release(con->c_rproc);
    528  1.1     rmind 	}
    529  1.1     rmind 
    530  1.1     rmind 	/* Destroy the state. */
    531  1.1     rmind 	npf_state_destroy(&con->c_state);
    532  1.1     rmind 	mutex_destroy(&con->c_lock);
    533  1.1     rmind 
    534  1.1     rmind 	/* Free the structure, increase the counter. */
    535  1.1     rmind 	pool_cache_put(conn_cache, con);
    536  1.6     rmind 	npf_stats_inc(NPF_STAT_CONN_DESTROY);
    537  1.1     rmind 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    538  1.1     rmind }
    539  1.1     rmind 
    540  1.1     rmind /*
    541  1.1     rmind  * npf_conn_setnat: associate NAT entry with the connection, update and
    542  1.1     rmind  * re-insert connection entry using the translation values.
    543  1.1     rmind  */
    544  1.1     rmind int
    545  1.1     rmind npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    546  1.1     rmind     npf_nat_t *nt, u_int ntype)
    547  1.1     rmind {
    548  1.1     rmind 	static const u_int nat_type_dimap[] = {
    549  1.1     rmind 		[NPF_NATOUT] = NPF_DST,
    550  1.1     rmind 		[NPF_NATIN] = NPF_SRC,
    551  1.1     rmind 	};
    552  1.1     rmind 	npf_connkey_t key, *bk;
    553  1.2     rmind 	npf_conn_t *ret __diagused;
    554  1.1     rmind 	npf_addr_t *taddr;
    555  1.1     rmind 	in_port_t tport;
    556  1.1     rmind 	u_int tidx;
    557  1.1     rmind 
    558  1.1     rmind 	KASSERT(con->c_refcnt > 0);
    559  1.1     rmind 
    560  1.1     rmind 	npf_nat_gettrans(nt, &taddr, &tport);
    561  1.1     rmind 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    562  1.1     rmind 	tidx = nat_type_dimap[ntype];
    563  1.1     rmind 
    564  1.1     rmind 	/* Construct a "backwards" key. */
    565  1.1     rmind 	if (!npf_conn_conkey(npc, &key, false)) {
    566  1.1     rmind 		return EINVAL;
    567  1.1     rmind 	}
    568  1.1     rmind 
    569  1.1     rmind 	/* Acquire the lock and check for the races. */
    570  1.1     rmind 	mutex_enter(&con->c_lock);
    571  1.1     rmind 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    572  1.1     rmind 		/* The connection got expired. */
    573  1.1     rmind 		mutex_exit(&con->c_lock);
    574  1.1     rmind 		return EINVAL;
    575  1.1     rmind 	}
    576  1.1     rmind 	if (__predict_false(con->c_nat != NULL)) {
    577  1.1     rmind 		/* Race with a duplicate packet. */
    578  1.1     rmind 		mutex_exit(&con->c_lock);
    579  1.1     rmind 		npf_stats_inc(NPF_STAT_RACE_NAT);
    580  1.1     rmind 		return EISCONN;
    581  1.1     rmind 	}
    582  1.1     rmind 
    583  1.1     rmind 	/* Remove the "backwards" entry. */
    584  1.1     rmind 	ret = npf_conndb_remove(conn_db, &key);
    585  1.1     rmind 	KASSERT(ret == con);
    586  1.1     rmind 
    587  1.1     rmind 	/* Set the source/destination IDs to the translation values. */
    588  1.1     rmind 	bk = &con->c_back_entry;
    589  1.1     rmind 	connkey_set_addr(bk, taddr, tidx);
    590  1.1     rmind 	if (tport) {
    591  1.1     rmind 		connkey_set_id(bk, tport, tidx);
    592  1.1     rmind 	}
    593  1.1     rmind 
    594  1.1     rmind 	/* Finally, re-insert the "backwards" entry. */
    595  1.1     rmind 	if (!npf_conndb_insert(conn_db, bk, con)) {
    596  1.1     rmind 		/*
    597  1.1     rmind 		 * Race: we have hit the duplicate, remove the "forwards"
    598  1.1     rmind 		 * entry and expire our connection; it is no longer valid.
    599  1.1     rmind 		 */
    600  1.1     rmind 		(void)npf_conndb_remove(conn_db, &con->c_forw_entry);
    601  1.1     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    602  1.1     rmind 		mutex_exit(&con->c_lock);
    603  1.1     rmind 
    604  1.1     rmind 		npf_stats_inc(NPF_STAT_RACE_NAT);
    605  1.1     rmind 		return EISCONN;
    606  1.1     rmind 	}
    607  1.1     rmind 
    608  1.1     rmind 	/* Associate the NAT entry and release the lock. */
    609  1.1     rmind 	con->c_nat = nt;
    610  1.1     rmind 	mutex_exit(&con->c_lock);
    611  1.1     rmind 	return 0;
    612  1.1     rmind }
    613  1.1     rmind 
    614  1.1     rmind /*
    615  1.1     rmind  * npf_conn_expire: explicitly mark connection as expired.
    616  1.1     rmind  */
    617  1.1     rmind void
    618  1.1     rmind npf_conn_expire(npf_conn_t *con)
    619  1.1     rmind {
    620  1.1     rmind 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    621  1.1     rmind 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    622  1.1     rmind }
    623  1.1     rmind 
    624  1.1     rmind /*
    625  1.1     rmind  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    626  1.1     rmind  */
    627  1.1     rmind bool
    628  1.1     rmind npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
    629  1.1     rmind {
    630  1.1     rmind 	KASSERT(con->c_refcnt > 0);
    631  1.1     rmind 	if (__predict_true(con->c_flags & CONN_PASS)) {
    632  1.1     rmind 		*rp = con->c_rproc;
    633  1.1     rmind 		return true;
    634  1.1     rmind 	}
    635  1.1     rmind 	return false;
    636  1.1     rmind }
    637  1.1     rmind 
    638  1.1     rmind /*
    639  1.1     rmind  * npf_conn_setpass: mark connection as a "pass" one and associate the
    640  1.1     rmind  * rule procedure with it.
    641  1.1     rmind  */
    642  1.1     rmind void
    643  1.1     rmind npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
    644  1.1     rmind {
    645  1.1     rmind 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    646  1.1     rmind 	KASSERT(con->c_refcnt > 0);
    647  1.1     rmind 	KASSERT(con->c_rproc == NULL);
    648  1.1     rmind 
    649  1.1     rmind 	/*
    650  1.1     rmind 	 * No need for atomic since the connection is not yet active.
    651  1.1     rmind 	 * If rproc is set, the caller transfers its reference to us,
    652  1.1     rmind 	 * which will be released on npf_conn_destroy().
    653  1.1     rmind 	 */
    654  1.1     rmind 	con->c_flags |= CONN_PASS;
    655  1.1     rmind 	con->c_rproc = rp;
    656  1.1     rmind }
    657  1.1     rmind 
    658  1.1     rmind /*
    659  1.1     rmind  * npf_conn_release: release a reference, which might allow G/C thread
    660  1.1     rmind  * to destroy this connection.
    661  1.1     rmind  */
    662  1.1     rmind void
    663  1.1     rmind npf_conn_release(npf_conn_t *con)
    664  1.1     rmind {
    665  1.1     rmind 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    666  1.1     rmind 		/* Activate: after this, connection is globally visible. */
    667  1.1     rmind 		con->c_flags |= CONN_ACTIVE;
    668  1.1     rmind 	}
    669  1.1     rmind 	KASSERT(con->c_refcnt > 0);
    670  1.1     rmind 	atomic_dec_uint(&con->c_refcnt);
    671  1.1     rmind }
    672  1.1     rmind 
    673  1.1     rmind /*
    674  1.1     rmind  * npf_conn_retnat: return associated NAT data entry and indicate
    675  1.1     rmind  * whether it is a "forwards" or "backwards" stream.
    676  1.1     rmind  */
    677  1.1     rmind npf_nat_t *
    678  1.1     rmind npf_conn_retnat(npf_conn_t *con, const int di, bool *forw)
    679  1.1     rmind {
    680  1.1     rmind 	KASSERT(con->c_refcnt > 0);
    681  1.1     rmind 	*forw = (con->c_flags & PFIL_ALL) == di;
    682  1.1     rmind 	return con->c_nat;
    683  1.1     rmind }
    684  1.1     rmind 
    685  1.1     rmind /*
    686  1.1     rmind  * npf_conn_expired: criterion to check if connection is expired.
    687  1.1     rmind  */
    688  1.1     rmind static inline bool
    689  1.1     rmind npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
    690  1.1     rmind {
    691  1.1     rmind 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
    692  1.1     rmind 	struct timespec tsdiff;
    693  1.1     rmind 
    694  1.1     rmind 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    695  1.1     rmind 		/* Explicitly marked to be expired. */
    696  1.1     rmind 		return true;
    697  1.1     rmind 	}
    698  1.1     rmind 	timespecsub(tsnow, &con->c_atime, &tsdiff);
    699  1.1     rmind 	return tsdiff.tv_sec > etime;
    700  1.1     rmind }
    701  1.1     rmind 
    702  1.1     rmind /*
    703  1.6     rmind  * npf_conn_gc: garbage collect the expired connections.
    704  1.6     rmind  *
    705  1.6     rmind  * => Must run in a single-threaded manner.
    706  1.6     rmind  * => If it is a flush request, then destroy all connections.
    707  1.6     rmind  * => If 'sync' is true, then perform passive serialisation.
    708  1.1     rmind  */
    709  1.1     rmind static void
    710  1.6     rmind npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
    711  1.1     rmind {
    712  1.1     rmind 	npf_conn_t *con, *prev, *gclist = NULL;
    713  1.1     rmind 	struct timespec tsnow;
    714  1.1     rmind 
    715  1.1     rmind 	getnanouptime(&tsnow);
    716  1.1     rmind 
    717  1.1     rmind 	/*
    718  1.1     rmind 	 * Scan all connections and check them for expiration.
    719  1.1     rmind 	 */
    720  1.1     rmind 	prev = NULL;
    721  1.1     rmind 	con = npf_conndb_getlist(cd);
    722  1.1     rmind 	while (con) {
    723  1.1     rmind 		npf_conn_t *next = con->c_next;
    724  1.1     rmind 
    725  1.1     rmind 		/* Expired?  Flushing all? */
    726  1.6     rmind 		if (!npf_conn_expired(con, &tsnow) && !flush) {
    727  1.1     rmind 			prev = con;
    728  1.1     rmind 			con = next;
    729  1.1     rmind 			continue;
    730  1.1     rmind 		}
    731  1.1     rmind 
    732  1.1     rmind 		/* Remove both entries of the connection. */
    733  1.1     rmind 		mutex_enter(&con->c_lock);
    734  1.1     rmind 		if ((con->c_flags & CONN_REMOVED) == 0) {
    735  1.1     rmind 			npf_conn_t *ret __diagused;
    736  1.1     rmind 
    737  1.1     rmind 			ret = npf_conndb_remove(cd, &con->c_forw_entry);
    738  1.1     rmind 			KASSERT(ret == con);
    739  1.1     rmind 			ret = npf_conndb_remove(cd, &con->c_back_entry);
    740  1.1     rmind 			KASSERT(ret == con);
    741  1.1     rmind 		}
    742  1.1     rmind 
    743  1.1     rmind 		/* Flag the removal and expiration. */
    744  1.1     rmind 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    745  1.1     rmind 		mutex_exit(&con->c_lock);
    746  1.1     rmind 
    747  1.1     rmind 		/* Move to the G/C list. */
    748  1.1     rmind 		npf_conndb_dequeue(cd, con, prev);
    749  1.1     rmind 		con->c_next = gclist;
    750  1.1     rmind 		gclist = con;
    751  1.1     rmind 
    752  1.1     rmind 		/* Next.. */
    753  1.1     rmind 		con = next;
    754  1.1     rmind 	}
    755  1.1     rmind 	npf_conndb_settail(cd, prev);
    756  1.6     rmind 
    757  1.6     rmind 	/*
    758  1.6     rmind 	 * Ensure it is safe to destroy the connections.
    759  1.6     rmind 	 * Note: drop the conn_lock (see the lock order).
    760  1.6     rmind 	 */
    761  1.6     rmind 	if (sync) {
    762  1.6     rmind 		mutex_exit(&conn_lock);
    763  1.6     rmind 		if (gclist) {
    764  1.6     rmind 			npf_config_enter();
    765  1.6     rmind 			npf_config_sync();
    766  1.6     rmind 			npf_config_exit();
    767  1.6     rmind 		}
    768  1.1     rmind 	}
    769  1.1     rmind 
    770  1.1     rmind 	/*
    771  1.1     rmind 	 * Garbage collect all expired connections.
    772  1.1     rmind 	 * May need to wait for the references to drain.
    773  1.1     rmind 	 */
    774  1.1     rmind 	con = gclist;
    775  1.1     rmind 	while (con) {
    776  1.1     rmind 		npf_conn_t *next = con->c_next;
    777  1.1     rmind 
    778  1.1     rmind 		/*
    779  1.1     rmind 		 * Destroy only if removed and no references.
    780  1.1     rmind 		 * Otherwise, wait for a tiny moment.
    781  1.1     rmind 		 */
    782  1.1     rmind 		if (__predict_false(con->c_refcnt)) {
    783  1.1     rmind 			kpause("npfcongc", false, 1, NULL);
    784  1.1     rmind 			continue;
    785  1.1     rmind 		}
    786  1.1     rmind 		npf_conn_destroy(con);
    787  1.1     rmind 		con = next;
    788  1.1     rmind 	}
    789  1.1     rmind }
    790  1.1     rmind 
    791  1.6     rmind /*
    792  1.6     rmind  * npf_conn_worker: G/C to run from a worker thread.
    793  1.6     rmind  */
    794  1.6     rmind static void
    795  1.6     rmind npf_conn_worker(void)
    796  1.1     rmind {
    797  1.6     rmind 	mutex_enter(&conn_lock);
    798  1.6     rmind 	/* Note: the conn_lock will be released (sync == true). */
    799  1.6     rmind 	npf_conn_gc(conn_db, false, true);
    800  1.1     rmind }
    801  1.1     rmind 
    802  1.1     rmind /*
    803  1.6     rmind  * npf_conn_export: construct a list of connections prepared for saving.
    804  1.1     rmind  * Note: this is expected to be an expensive operation.
    805  1.1     rmind  */
    806  1.1     rmind int
    807  1.6     rmind npf_conn_export(prop_array_t conlist)
    808  1.1     rmind {
    809  1.1     rmind 	npf_conn_t *con, *prev;
    810  1.1     rmind 
    811  1.1     rmind 	/*
    812  1.1     rmind 	 * Note: acquire conn_lock to prevent from the database
    813  1.1     rmind 	 * destruction and G/C thread.
    814  1.1     rmind 	 */
    815  1.1     rmind 	mutex_enter(&conn_lock);
    816  1.6     rmind 	if (conn_tracking != CONN_TRACKING_ON) {
    817  1.1     rmind 		mutex_exit(&conn_lock);
    818  1.1     rmind 		return 0;
    819  1.1     rmind 	}
    820  1.1     rmind 	prev = NULL;
    821  1.1     rmind 	con = npf_conndb_getlist(conn_db);
    822  1.1     rmind 	while (con) {
    823  1.1     rmind 		npf_conn_t *next = con->c_next;
    824  1.1     rmind 		prop_data_t d;
    825  1.1     rmind 
    826  1.1     rmind 		if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE)
    827  1.1     rmind 			goto skip;
    828  1.1     rmind 
    829  1.1     rmind 		prop_dictionary_t cdict = prop_dictionary_create();
    830  1.1     rmind 		prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
    831  1.1     rmind 		prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
    832  1.1     rmind 		/* FIXME: interface-id */
    833  1.1     rmind 
    834  1.1     rmind 		d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
    835  1.1     rmind 		prop_dictionary_set_and_rel(cdict, "state", d);
    836  1.1     rmind 
    837  1.1     rmind 		const uint32_t *fkey = con->c_forw_entry.ck_key;
    838  1.1     rmind 		d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
    839  1.1     rmind 		prop_dictionary_set_and_rel(cdict, "forw-key", d);
    840  1.1     rmind 
    841  1.1     rmind 		const uint32_t *bkey = con->c_back_entry.ck_key;
    842  1.1     rmind 		d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
    843  1.1     rmind 		prop_dictionary_set_and_rel(cdict, "back-key", d);
    844  1.1     rmind 
    845  1.1     rmind 		if (con->c_nat) {
    846  1.6     rmind 			npf_nat_export(cdict, con->c_nat);
    847  1.1     rmind 		}
    848  1.1     rmind 		prop_array_add(conlist, cdict);
    849  1.1     rmind 		prop_object_release(cdict);
    850  1.1     rmind skip:
    851  1.1     rmind 		prev = con;
    852  1.1     rmind 		con = next;
    853  1.1     rmind 	}
    854  1.1     rmind 	npf_conndb_settail(conn_db, prev);
    855  1.1     rmind 	mutex_exit(&conn_lock);
    856  1.5     joerg 	return 0;
    857  1.1     rmind }
    858  1.1     rmind 
    859  1.1     rmind /*
    860  1.6     rmind  * npf_conn_import: fully reconstruct a single connection from a
    861  1.6     rmind  * directory and insert into the given database.
    862  1.1     rmind  */
    863  1.1     rmind int
    864  1.6     rmind npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
    865  1.6     rmind     npf_ruleset_t *natlist)
    866  1.1     rmind {
    867  1.1     rmind 	npf_conn_t *con;
    868  1.1     rmind 	npf_connkey_t *fw, *bk;
    869  1.1     rmind 	prop_object_t obj;
    870  1.1     rmind 	const void *d;
    871  1.1     rmind 
    872  1.1     rmind 	/* Allocate a connection and initialise it (clear first). */
    873  1.1     rmind 	con = pool_cache_get(conn_cache, PR_WAITOK);
    874  1.1     rmind 	memset(con, 0, sizeof(npf_conn_t));
    875  1.1     rmind 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    876  1.1     rmind 
    877  1.1     rmind 	prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
    878  1.1     rmind 	prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
    879  1.1     rmind 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
    880  1.1     rmind 	getnanouptime(&con->c_atime);
    881  1.1     rmind 
    882  1.1     rmind 	obj = prop_dictionary_get(cdict, "state");
    883  1.1     rmind 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    884  1.1     rmind 	    prop_data_size(obj) != sizeof(npf_state_t)) {
    885  1.1     rmind 		goto err;
    886  1.1     rmind 	}
    887  1.1     rmind 	memcpy(&con->c_state, d, sizeof(npf_state_t));
    888  1.1     rmind 
    889  1.1     rmind 	/* Reconstruct NAT association, if any, or return NULL. */
    890  1.6     rmind 	con->c_nat = npf_nat_import(cdict, natlist, con);
    891  1.1     rmind 
    892  1.1     rmind 	/*
    893  1.1     rmind 	 * Fetch and copy the keys for each direction.
    894  1.1     rmind 	 */
    895  1.1     rmind 	obj = prop_dictionary_get(cdict, "forw-key");
    896  1.1     rmind 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    897  1.1     rmind 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    898  1.1     rmind 		goto err;
    899  1.1     rmind 	}
    900  1.1     rmind 	fw = &con->c_forw_entry;
    901  1.1     rmind 	memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
    902  1.1     rmind 
    903  1.1     rmind 	obj = prop_dictionary_get(cdict, "back-key");
    904  1.1     rmind 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    905  1.1     rmind 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    906  1.1     rmind 		goto err;
    907  1.1     rmind 	}
    908  1.1     rmind 	bk = &con->c_back_entry;
    909  1.1     rmind 	memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
    910  1.1     rmind 
    911  1.1     rmind 	fw->ck_backptr = bk->ck_backptr = con;
    912  1.1     rmind 
    913  1.1     rmind 	/* Insert the entries and the connection itself. */
    914  1.1     rmind 	if (!npf_conndb_insert(cd, fw, con)) {
    915  1.1     rmind 		goto err;
    916  1.1     rmind 	}
    917  1.1     rmind 	if (!npf_conndb_insert(cd, bk, con)) {
    918  1.1     rmind 		npf_conndb_remove(cd, fw);
    919  1.1     rmind 		goto err;
    920  1.1     rmind 	}
    921  1.1     rmind 	npf_conndb_enqueue(cd, con);
    922  1.1     rmind 	return 0;
    923  1.1     rmind err:
    924  1.1     rmind 	npf_conn_destroy(con);
    925  1.1     rmind 	return EINVAL;
    926  1.1     rmind }
    927  1.1     rmind 
    928  1.1     rmind #if defined(DDB) || defined(_NPF_TESTING)
    929  1.1     rmind 
    930  1.1     rmind void
    931  1.1     rmind npf_conn_print(const npf_conn_t *con)
    932  1.1     rmind {
    933  1.1     rmind 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
    934  1.1     rmind 	const uint32_t *fkey = con->c_forw_entry.ck_key;
    935  1.1     rmind 	const uint32_t *bkey = con->c_back_entry.ck_key;
    936  1.1     rmind 	const u_int proto = con->c_proto;
    937  1.1     rmind 	struct timespec tsnow, tsdiff;
    938  1.1     rmind 	const void *src, *dst;
    939  1.1     rmind 	int etime;
    940  1.1     rmind 
    941  1.1     rmind 	getnanouptime(&tsnow);
    942  1.1     rmind 	timespecsub(&tsnow, &con->c_atime, &tsdiff);
    943  1.1     rmind 	etime = npf_state_etime(&con->c_state, proto);
    944  1.1     rmind 
    945  1.1     rmind 	printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
    946  1.1     rmind 	    con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
    947  1.1     rmind 
    948  1.1     rmind 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
    949  1.1     rmind 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
    950  1.1     rmind 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
    951  1.1     rmind 
    952  1.1     rmind 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
    953  1.1     rmind 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
    954  1.1     rmind 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
    955  1.1     rmind 
    956  1.1     rmind 	npf_state_dump(&con->c_state);
    957  1.1     rmind 	if (con->c_nat) {
    958  1.1     rmind 		npf_nat_dump(con->c_nat);
    959  1.1     rmind 	}
    960  1.1     rmind }
    961  1.1     rmind 
    962  1.1     rmind #endif
    963