npf_conn.c revision 1.15 1 /* $NetBSD: npf_conn.c,v 1.15 2015/02/01 22:41:22 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2015 Mindaugas Rasiukevicius <rmind at netbsd org>
5 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This material is based upon work partially supported by The
9 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * NPF connection tracking for stateful filtering and translation.
35 *
36 * Overview
37 *
38 * Connection direction is identified by the direction of its first
39 * packet. Packets can be incoming or outgoing with respect to an
40 * interface. To describe the packet in the context of connection
41 * direction we will use the terms "forwards stream" and "backwards
42 * stream". All connections have two keys and thus two entries:
43 *
44 * npf_conn_t::c_forw_entry for the forwards stream and
45 * npf_conn_t::c_back_entry for the backwards stream.
46 *
47 * The keys are formed from the 5-tuple (source/destination address,
48 * source/destination port and the protocol). Additional matching
49 * is performed for the interface (a common behaviour is equivalent
50 * to the 6-tuple lookup including the interface ID). Note that the
51 * key may be formed using translated values in a case of NAT.
52 *
53 * Connections can serve two purposes: for the implicit passing or
54 * to accommodate the dynamic NAT. Connections for the former purpose
55 * are created by the rules with "stateful" attribute and are used for
56 * stateful filtering. Such connections indicate that the packet of
57 * the backwards stream should be passed without inspection of the
58 * ruleset. The other purpose is to associate a dynamic NAT mechanism
59 * with a connection. Such connections are created by the NAT policies
60 * and they have a relationship with NAT translation structure via
61 * npf_conn_t::c_nat. A single connection can serve both purposes,
62 * which is a common case.
63 *
64 * Connection life-cycle
65 *
66 * Connections are established when a packet matches said rule or
67 * NAT policy. Both keys of the established connection are inserted
68 * into the connection database. A garbage collection thread
69 * periodically scans all connections and depending on connection
70 * properties (e.g. last activity time, protocol) removes connection
71 * entries and expires the actual connections.
72 *
73 * Each connection has a reference count. The reference is acquired
74 * on lookup and should be released by the caller. It guarantees that
75 * the connection will not be destroyed, although it may be expired.
76 *
77 * Synchronisation
78 *
79 * Connection database is accessed in a lock-less manner by the main
80 * routines: npf_conn_inspect() and npf_conn_establish(). Since they
81 * are always called from a software interrupt, the database is
82 * protected using passive serialisation. The main place which can
83 * destroy a connection is npf_conn_worker(). The database itself
84 * can be replaced and destroyed in npf_conn_reload().
85 *
86 * ALG support
87 *
88 * Application-level gateways (ALGs) can override generic connection
89 * inspection (npf_alg_conn() call in npf_conn_inspect() function) by
90 * performing their own lookup using different key. Recursive call
91 * to npf_conn_inspect() is not allowed. The ALGs ought to use the
92 * npf_conn_lookup() function for this purpose.
93 *
94 * Lock order
95 *
96 * npf_config_lock ->
97 * conn_lock ->
98 * npf_conn_t::c_lock
99 */
100
101 #include <sys/cdefs.h>
102 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.15 2015/02/01 22:41:22 rmind Exp $");
103
104 #include <sys/param.h>
105 #include <sys/types.h>
106
107 #include <netinet/in.h>
108 #include <netinet/tcp.h>
109
110 #include <sys/atomic.h>
111 #include <sys/condvar.h>
112 #include <sys/kmem.h>
113 #include <sys/kthread.h>
114 #include <sys/mutex.h>
115 #include <net/pfil.h>
116 #include <sys/pool.h>
117 #include <sys/queue.h>
118 #include <sys/systm.h>
119
120 #define __NPF_CONN_PRIVATE
121 #include "npf_conn.h"
122 #include "npf_impl.h"
123
124 /*
125 * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
126 */
127 CTASSERT(PFIL_ALL == (0x001 | 0x002));
128 #define CONN_ACTIVE 0x004 /* visible on inspection */
129 #define CONN_PASS 0x008 /* perform implicit passing */
130 #define CONN_EXPIRE 0x010 /* explicitly expire */
131 #define CONN_REMOVED 0x020 /* "forw/back" entries removed */
132
133 /*
134 * Connection tracking state: disabled (off) or enabled (on).
135 */
136 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
137 static volatile int conn_tracking __cacheline_aligned;
138
139 /* Connection tracking database, connection cache and the lock. */
140 static npf_conndb_t * conn_db __read_mostly;
141 static pool_cache_t conn_cache __read_mostly;
142 static kmutex_t conn_lock __cacheline_aligned;
143
144 static void npf_conn_worker(void);
145 static void npf_conn_destroy(npf_conn_t *);
146
147 /*
148 * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
149 */
150
151 void
152 npf_conn_sysinit(void)
153 {
154 conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
155 0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
156 mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
157 conn_tracking = CONN_TRACKING_OFF;
158 conn_db = npf_conndb_create();
159
160 npf_worker_register(npf_conn_worker);
161 }
162
163 void
164 npf_conn_sysfini(void)
165 {
166 /* Note: the caller should have flushed the connections. */
167 KASSERT(conn_tracking == CONN_TRACKING_OFF);
168 npf_worker_unregister(npf_conn_worker);
169
170 npf_conndb_destroy(conn_db);
171 pool_cache_destroy(conn_cache);
172 mutex_destroy(&conn_lock);
173 }
174
175 /*
176 * npf_conn_load: perform the load by flushing the current connection
177 * database and replacing it with the new one or just destroying.
178 *
179 * => The caller must disable the connection tracking and ensure that
180 * there are no connection database lookups or references in-flight.
181 */
182 void
183 npf_conn_load(npf_conndb_t *ndb, bool track)
184 {
185 npf_conndb_t *odb = NULL;
186
187 KASSERT(npf_config_locked_p());
188
189 /*
190 * The connection database is in the quiescent state.
191 * Prevent G/C thread from running and install a new database.
192 */
193 mutex_enter(&conn_lock);
194 if (ndb) {
195 KASSERT(conn_tracking == CONN_TRACKING_OFF);
196 odb = conn_db;
197 conn_db = ndb;
198 membar_sync();
199 }
200 if (track) {
201 /* After this point lookups start flying in. */
202 conn_tracking = CONN_TRACKING_ON;
203 }
204 mutex_exit(&conn_lock);
205
206 if (odb) {
207 /*
208 * Flush all, no sync since the caller did it for us.
209 * Also, release the pool cache memory.
210 */
211 npf_conn_gc(odb, true, false);
212 npf_conndb_destroy(odb);
213 pool_cache_invalidate(conn_cache);
214 }
215 }
216
217 /*
218 * npf_conn_tracking: enable/disable connection tracking.
219 */
220 void
221 npf_conn_tracking(bool track)
222 {
223 KASSERT(npf_config_locked_p());
224 conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
225 }
226
227 static inline bool
228 npf_conn_trackable_p(const npf_cache_t *npc)
229 {
230 /*
231 * Check if connection tracking is on. Also, if layer 3 and 4 are
232 * not cached - protocol is not supported or packet is invalid.
233 */
234 if (conn_tracking != CONN_TRACKING_ON) {
235 return false;
236 }
237 if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
238 return false;
239 }
240 return true;
241 }
242
243 /*
244 * npf_conn_conkey: construct a key for the connection lookup.
245 *
246 * => Returns the key length in bytes or zero on failure.
247 */
248 unsigned
249 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
250 {
251 const u_int alen = npc->npc_alen;
252 const struct tcphdr *th;
253 const struct udphdr *uh;
254 u_int keylen, isrc, idst;
255 uint16_t id[2];
256
257 switch (npc->npc_proto) {
258 case IPPROTO_TCP:
259 KASSERT(npf_iscached(npc, NPC_TCP));
260 th = npc->npc_l4.tcp;
261 id[NPF_SRC] = th->th_sport;
262 id[NPF_DST] = th->th_dport;
263 break;
264 case IPPROTO_UDP:
265 KASSERT(npf_iscached(npc, NPC_UDP));
266 uh = npc->npc_l4.udp;
267 id[NPF_SRC] = uh->uh_sport;
268 id[NPF_DST] = uh->uh_dport;
269 break;
270 case IPPROTO_ICMP:
271 if (npf_iscached(npc, NPC_ICMP_ID)) {
272 const struct icmp *ic = npc->npc_l4.icmp;
273 id[NPF_SRC] = ic->icmp_id;
274 id[NPF_DST] = ic->icmp_id;
275 break;
276 }
277 return 0;
278 case IPPROTO_ICMPV6:
279 if (npf_iscached(npc, NPC_ICMP_ID)) {
280 const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
281 id[NPF_SRC] = ic6->icmp6_id;
282 id[NPF_DST] = ic6->icmp6_id;
283 break;
284 }
285 return 0;
286 default:
287 /* Unsupported protocol. */
288 return 0;
289 }
290
291 if (__predict_true(forw)) {
292 isrc = NPF_SRC, idst = NPF_DST;
293 } else {
294 isrc = NPF_DST, idst = NPF_SRC;
295 }
296
297 /*
298 * Construct a key formed out of 32-bit integers. The key layout:
299 *
300 * Field: | proto | alen | src-id | dst-id | src-addr | dst-addr |
301 * +--------+--------+--------+--------+----------+----------+
302 * Bits: | 16 | 16 | 16 | 16 | 32-128 | 32-128 |
303 *
304 * The source and destination are inverted if they key is for the
305 * backwards stream (forw == false). The address length depends
306 * on the 'alen' field; it is a length in bytes, either 4 or 16.
307 */
308
309 key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff);
310 key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
311
312 if (__predict_true(alen == sizeof(in_addr_t))) {
313 key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0];
314 key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0];
315 keylen = 4 * sizeof(uint32_t);
316 } else {
317 const u_int nwords = alen >> 2;
318 memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen);
319 memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen);
320 keylen = (2 + (nwords * 2)) * sizeof(uint32_t);
321 }
322 return keylen;
323 }
324
325 static __inline void
326 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
327 {
328 const u_int alen = key->ck_key[0] & 0xffff;
329 uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
330
331 KASSERT(alen > 0);
332 memcpy(addr, naddr, alen);
333 }
334
335 static __inline void
336 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
337 {
338 const uint32_t oid = key->ck_key[1];
339 const u_int shift = 16 * !di;
340 const uint32_t mask = 0xffff0000 >> shift;
341
342 key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
343 }
344
345 /*
346 * npf_conn_lookup: lookup if there is an established connection.
347 *
348 * => If found, we will hold a reference for the caller.
349 */
350 npf_conn_t *
351 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
352 {
353 const nbuf_t *nbuf = npc->npc_nbuf;
354 npf_conn_t *con;
355 npf_connkey_t key;
356 u_int flags, cifid;
357 bool ok, pforw;
358
359 /* Construct a key and lookup for a connection in the store. */
360 if (!npf_conn_conkey(npc, &key, true)) {
361 return NULL;
362 }
363 con = npf_conndb_lookup(conn_db, &key, forw);
364 if (con == NULL) {
365 return NULL;
366 }
367 KASSERT(npc->npc_proto == con->c_proto);
368
369 /* Check if connection is active and not expired. */
370 flags = con->c_flags;
371 ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
372 if (__predict_false(!ok)) {
373 atomic_dec_uint(&con->c_refcnt);
374 return NULL;
375 }
376
377 /*
378 * Match the interface and the direction of the connection entry
379 * and the packet.
380 */
381 cifid = con->c_ifid;
382 if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
383 atomic_dec_uint(&con->c_refcnt);
384 return NULL;
385 }
386 pforw = (flags & PFIL_ALL) == di;
387 if (__predict_false(*forw != pforw)) {
388 atomic_dec_uint(&con->c_refcnt);
389 return NULL;
390 }
391
392 /* Update the last activity time. */
393 getnanouptime(&con->c_atime);
394 return con;
395 }
396
397 /*
398 * npf_conn_inspect: lookup a connection and inspecting the protocol data.
399 *
400 * => If found, we will hold a reference for the caller.
401 */
402 npf_conn_t *
403 npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
404 {
405 nbuf_t *nbuf = npc->npc_nbuf;
406 npf_conn_t *con;
407 bool forw, ok;
408
409 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
410 if (!npf_conn_trackable_p(npc)) {
411 return NULL;
412 }
413
414 /* Query ALG which may lookup connection for us. */
415 if ((con = npf_alg_conn(npc, di)) != NULL) {
416 /* Note: reference is held. */
417 return con;
418 }
419 if (nbuf_head_mbuf(nbuf) == NULL) {
420 *error = ENOMEM;
421 return NULL;
422 }
423 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
424
425 /* Main lookup of the connection. */
426 if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
427 return NULL;
428 }
429
430 /* Inspect the protocol data and handle state changes. */
431 mutex_enter(&con->c_lock);
432 ok = npf_state_inspect(npc, &con->c_state, forw);
433 mutex_exit(&con->c_lock);
434
435 if (__predict_false(!ok)) {
436 /* Invalid: let the rules deal with it. */
437 npf_conn_release(con);
438 npf_stats_inc(NPF_STAT_INVALID_STATE);
439 con = NULL;
440 }
441 return con;
442 }
443
444 /*
445 * npf_conn_establish: create a new connection, insert into the global list.
446 *
447 * => Connection is created with the reference held for the caller.
448 * => Connection will be activated on the first reference release.
449 */
450 npf_conn_t *
451 npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
452 {
453 const nbuf_t *nbuf = npc->npc_nbuf;
454 npf_conn_t *con;
455 int error = 0;
456
457 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
458
459 if (!npf_conn_trackable_p(npc)) {
460 return NULL;
461 }
462
463 /* Allocate and initialise the new connection. */
464 con = pool_cache_get(conn_cache, PR_NOWAIT);
465 if (__predict_false(!con)) {
466 return NULL;
467 }
468 NPF_PRINTF(("NPF: create conn %p\n", con));
469 npf_stats_inc(NPF_STAT_CONN_CREATE);
470
471 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
472 con->c_flags = (di & PFIL_ALL);
473 con->c_refcnt = 0;
474 con->c_rproc = NULL;
475 con->c_nat = NULL;
476
477 /* Initialize the protocol state. */
478 if (!npf_state_init(npc, &con->c_state)) {
479 npf_conn_destroy(con);
480 return NULL;
481 }
482
483 KASSERT(npf_iscached(npc, NPC_IP46));
484 npf_connkey_t *fw = &con->c_forw_entry;
485 npf_connkey_t *bk = &con->c_back_entry;
486
487 /*
488 * Construct "forwards" and "backwards" keys. Also, set the
489 * interface ID for this connection (unless it is global).
490 */
491 if (!npf_conn_conkey(npc, fw, true) ||
492 !npf_conn_conkey(npc, bk, false)) {
493 npf_conn_destroy(con);
494 return NULL;
495 }
496 fw->ck_backptr = bk->ck_backptr = con;
497 con->c_ifid = per_if ? nbuf->nb_ifid : 0;
498 con->c_proto = npc->npc_proto;
499
500 /*
501 * Set last activity time for a new connection and acquire
502 * a reference for the caller before we make it visible.
503 */
504 getnanouptime(&con->c_atime);
505 con->c_refcnt = 1;
506
507 /*
508 * Insert both keys (entries representing directions) of the
509 * connection. At this point it becomes visible, but we activate
510 * the connection later.
511 */
512 mutex_enter(&con->c_lock);
513 if (!npf_conndb_insert(conn_db, fw, con)) {
514 error = EISCONN;
515 goto err;
516 }
517 if (!npf_conndb_insert(conn_db, bk, con)) {
518 npf_conn_t *ret __diagused;
519 ret = npf_conndb_remove(conn_db, fw);
520 KASSERT(ret == con);
521 error = EISCONN;
522 goto err;
523 }
524 err:
525 /*
526 * If we have hit the duplicate: mark the connection as expired
527 * and let the G/C thread to take care of it. We cannot do it
528 * here since there might be references acquired already.
529 */
530 if (error) {
531 const u_int dflags = CONN_REMOVED | CONN_EXPIRE;
532 atomic_or_uint(&con->c_flags, dflags);
533 npf_stats_inc(NPF_STAT_RACE_CONN);
534 } else {
535 NPF_PRINTF(("NPF: establish conn %p\n", con));
536 }
537
538 /* Finally, insert into the connection list. */
539 npf_conndb_enqueue(conn_db, con);
540 mutex_exit(&con->c_lock);
541
542 return error ? NULL : con;
543 }
544
545 static void
546 npf_conn_destroy(npf_conn_t *con)
547 {
548 KASSERT(con->c_refcnt == 0);
549
550 if (con->c_nat) {
551 /* Release any NAT structures. */
552 npf_nat_destroy(con->c_nat);
553 }
554 if (con->c_rproc) {
555 /* Release the rule procedure. */
556 npf_rproc_release(con->c_rproc);
557 }
558
559 /* Destroy the state. */
560 npf_state_destroy(&con->c_state);
561 mutex_destroy(&con->c_lock);
562
563 /* Free the structure, increase the counter. */
564 pool_cache_put(conn_cache, con);
565 npf_stats_inc(NPF_STAT_CONN_DESTROY);
566 NPF_PRINTF(("NPF: conn %p destroyed\n", con));
567 }
568
569 /*
570 * npf_conn_setnat: associate NAT entry with the connection, update and
571 * re-insert connection entry using the translation values.
572 */
573 int
574 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
575 npf_nat_t *nt, u_int ntype)
576 {
577 static const u_int nat_type_dimap[] = {
578 [NPF_NATOUT] = NPF_DST,
579 [NPF_NATIN] = NPF_SRC,
580 };
581 npf_connkey_t key, *bk;
582 npf_conn_t *ret __diagused;
583 npf_addr_t *taddr;
584 in_port_t tport;
585 u_int tidx;
586
587 KASSERT(con->c_refcnt > 0);
588
589 npf_nat_gettrans(nt, &taddr, &tport);
590 KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
591 tidx = nat_type_dimap[ntype];
592
593 /* Construct a "backwards" key. */
594 if (!npf_conn_conkey(npc, &key, false)) {
595 return EINVAL;
596 }
597
598 /* Acquire the lock and check for the races. */
599 mutex_enter(&con->c_lock);
600 if (__predict_false(con->c_flags & CONN_EXPIRE)) {
601 /* The connection got expired. */
602 mutex_exit(&con->c_lock);
603 return EINVAL;
604 }
605 KASSERT((con->c_flags & CONN_REMOVED) == 0);
606
607 if (__predict_false(con->c_nat != NULL)) {
608 /* Race with a duplicate packet. */
609 mutex_exit(&con->c_lock);
610 npf_stats_inc(NPF_STAT_RACE_NAT);
611 return EISCONN;
612 }
613
614 /* Remove the "backwards" entry. */
615 ret = npf_conndb_remove(conn_db, &con->c_back_entry);
616 KASSERT(ret == con);
617
618 /* Set the source/destination IDs to the translation values. */
619 bk = &con->c_back_entry;
620 connkey_set_addr(bk, taddr, tidx);
621 if (tport) {
622 connkey_set_id(bk, tport, tidx);
623 }
624
625 /* Finally, re-insert the "backwards" entry. */
626 if (!npf_conndb_insert(conn_db, bk, con)) {
627 /*
628 * Race: we have hit the duplicate, remove the "forwards"
629 * entry and expire our connection; it is no longer valid.
630 */
631 ret = npf_conndb_remove(conn_db, &con->c_forw_entry);
632 KASSERT(ret == con);
633
634 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
635 mutex_exit(&con->c_lock);
636
637 npf_stats_inc(NPF_STAT_RACE_NAT);
638 return EISCONN;
639 }
640
641 /* Associate the NAT entry and release the lock. */
642 con->c_nat = nt;
643 mutex_exit(&con->c_lock);
644 return 0;
645 }
646
647 /*
648 * npf_conn_expire: explicitly mark connection as expired.
649 */
650 void
651 npf_conn_expire(npf_conn_t *con)
652 {
653 /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
654 atomic_or_uint(&con->c_flags, CONN_EXPIRE);
655 }
656
657 /*
658 * npf_conn_pass: return true if connection is "pass" one, otherwise false.
659 */
660 bool
661 npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
662 {
663 KASSERT(con->c_refcnt > 0);
664 if (__predict_true(con->c_flags & CONN_PASS)) {
665 *rp = con->c_rproc;
666 return true;
667 }
668 return false;
669 }
670
671 /*
672 * npf_conn_setpass: mark connection as a "pass" one and associate the
673 * rule procedure with it.
674 */
675 void
676 npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
677 {
678 KASSERT((con->c_flags & CONN_ACTIVE) == 0);
679 KASSERT(con->c_refcnt > 0);
680 KASSERT(con->c_rproc == NULL);
681
682 /*
683 * No need for atomic since the connection is not yet active.
684 * If rproc is set, the caller transfers its reference to us,
685 * which will be released on npf_conn_destroy().
686 */
687 atomic_or_uint(&con->c_flags, CONN_PASS);
688 con->c_rproc = rp;
689 }
690
691 /*
692 * npf_conn_release: release a reference, which might allow G/C thread
693 * to destroy this connection.
694 */
695 void
696 npf_conn_release(npf_conn_t *con)
697 {
698 if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
699 /* Activate: after this, connection is globally visible. */
700 atomic_or_uint(&con->c_flags, CONN_ACTIVE);
701 }
702 KASSERT(con->c_refcnt > 0);
703 atomic_dec_uint(&con->c_refcnt);
704 }
705
706 /*
707 * npf_conn_getnat: return associated NAT data entry and indicate
708 * whether it is a "forwards" or "backwards" stream.
709 */
710 npf_nat_t *
711 npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
712 {
713 KASSERT(con->c_refcnt > 0);
714 *forw = (con->c_flags & PFIL_ALL) == di;
715 return con->c_nat;
716 }
717
718 /*
719 * npf_conn_expired: criterion to check if connection is expired.
720 */
721 static inline bool
722 npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
723 {
724 const int etime = npf_state_etime(&con->c_state, con->c_proto);
725 struct timespec tsdiff;
726
727 if (__predict_false(con->c_flags & CONN_EXPIRE)) {
728 /* Explicitly marked to be expired. */
729 return true;
730 }
731 timespecsub(tsnow, &con->c_atime, &tsdiff);
732 return tsdiff.tv_sec > etime;
733 }
734
735 /*
736 * npf_conn_gc: garbage collect the expired connections.
737 *
738 * => Must run in a single-threaded manner.
739 * => If it is a flush request, then destroy all connections.
740 * => If 'sync' is true, then perform passive serialisation.
741 */
742 void
743 npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
744 {
745 npf_conn_t *con, *prev, *gclist = NULL;
746 struct timespec tsnow;
747
748 getnanouptime(&tsnow);
749
750 /*
751 * Scan all connections and check them for expiration.
752 */
753 prev = NULL;
754 con = npf_conndb_getlist(cd);
755 while (con) {
756 npf_conn_t *next = con->c_next;
757
758 /* Expired? Flushing all? */
759 if (!npf_conn_expired(con, &tsnow) && !flush) {
760 prev = con;
761 con = next;
762 continue;
763 }
764
765 /* Remove both entries of the connection. */
766 mutex_enter(&con->c_lock);
767 if ((con->c_flags & CONN_REMOVED) == 0) {
768 npf_conn_t *ret __diagused;
769
770 ret = npf_conndb_remove(cd, &con->c_forw_entry);
771 KASSERT(ret == con);
772 ret = npf_conndb_remove(cd, &con->c_back_entry);
773 KASSERT(ret == con);
774 }
775
776 /* Flag the removal and expiration. */
777 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
778 mutex_exit(&con->c_lock);
779
780 /* Move to the G/C list. */
781 npf_conndb_dequeue(cd, con, prev);
782 con->c_next = gclist;
783 gclist = con;
784
785 /* Next.. */
786 con = next;
787 }
788 npf_conndb_settail(cd, prev);
789
790 /*
791 * Ensure it is safe to destroy the connections.
792 * Note: drop the conn_lock (see the lock order).
793 */
794 if (sync) {
795 mutex_exit(&conn_lock);
796 if (gclist) {
797 npf_config_enter();
798 npf_config_sync();
799 npf_config_exit();
800 }
801 }
802
803 /*
804 * Garbage collect all expired connections.
805 * May need to wait for the references to drain.
806 */
807 con = gclist;
808 while (con) {
809 npf_conn_t *next = con->c_next;
810
811 /*
812 * Destroy only if removed and no references.
813 * Otherwise, wait for a tiny moment.
814 */
815 if (__predict_false(con->c_refcnt)) {
816 kpause("npfcongc", false, 1, NULL);
817 continue;
818 }
819 npf_conn_destroy(con);
820 con = next;
821 }
822 }
823
824 /*
825 * npf_conn_worker: G/C to run from a worker thread.
826 */
827 static void
828 npf_conn_worker(void)
829 {
830 mutex_enter(&conn_lock);
831 /* Note: the conn_lock will be released (sync == true). */
832 npf_conn_gc(conn_db, false, true);
833 }
834
835 /*
836 * npf_conndb_export: construct a list of connections prepared for saving.
837 * Note: this is expected to be an expensive operation.
838 */
839 int
840 npf_conndb_export(prop_array_t conlist)
841 {
842 npf_conn_t *con, *prev;
843
844 /*
845 * Note: acquire conn_lock to prevent from the database
846 * destruction and G/C thread.
847 */
848 mutex_enter(&conn_lock);
849 if (conn_tracking != CONN_TRACKING_ON) {
850 mutex_exit(&conn_lock);
851 return 0;
852 }
853 prev = NULL;
854 con = npf_conndb_getlist(conn_db);
855 while (con) {
856 npf_conn_t *next = con->c_next;
857 prop_dictionary_t cdict;
858
859 if ((cdict = npf_conn_export(con)) != NULL) {
860 prop_array_add(conlist, cdict);
861 prop_object_release(cdict);
862 }
863 prev = con;
864 con = next;
865 }
866 npf_conndb_settail(conn_db, prev);
867 mutex_exit(&conn_lock);
868 return 0;
869 }
870
871 /*
872 * npf_conn_export: serialise a single connection.
873 */
874 prop_dictionary_t
875 npf_conn_export(const npf_conn_t *con)
876 {
877 prop_dictionary_t cdict;
878 prop_data_t d;
879
880 if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
881 return NULL;
882 }
883 cdict = prop_dictionary_create();
884 prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
885 prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
886 if (con->c_ifid) {
887 const char *ifname = npf_ifmap_getname(con->c_ifid);
888 prop_dictionary_set_cstring(cdict, "ifname", ifname);
889 }
890
891 d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
892 prop_dictionary_set_and_rel(cdict, "state", d);
893
894 const uint32_t *fkey = con->c_forw_entry.ck_key;
895 d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
896 prop_dictionary_set_and_rel(cdict, "forw-key", d);
897
898 const uint32_t *bkey = con->c_back_entry.ck_key;
899 d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
900 prop_dictionary_set_and_rel(cdict, "back-key", d);
901
902 if (con->c_nat) {
903 npf_nat_export(cdict, con->c_nat);
904 }
905 return cdict;
906 }
907
908 /*
909 * npf_conn_import: fully reconstruct a single connection from a
910 * directory and insert into the given database.
911 */
912 int
913 npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
914 npf_ruleset_t *natlist)
915 {
916 npf_conn_t *con;
917 npf_connkey_t *fw, *bk;
918 prop_object_t obj;
919 const char *ifname;
920 const void *d;
921
922 /* Allocate a connection and initialise it (clear first). */
923 con = pool_cache_get(conn_cache, PR_WAITOK);
924 memset(con, 0, sizeof(npf_conn_t));
925 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
926 npf_stats_inc(NPF_STAT_CONN_CREATE);
927
928 prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
929 prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
930 con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
931 getnanouptime(&con->c_atime);
932
933 if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) &&
934 (con->c_ifid = npf_ifmap_register(ifname)) == 0) {
935 goto err;
936 }
937
938 obj = prop_dictionary_get(cdict, "state");
939 if ((d = prop_data_data_nocopy(obj)) == NULL ||
940 prop_data_size(obj) != sizeof(npf_state_t)) {
941 goto err;
942 }
943 memcpy(&con->c_state, d, sizeof(npf_state_t));
944
945 /* Reconstruct NAT association, if any. */
946 if ((obj = prop_dictionary_get(cdict, "nat")) != NULL &&
947 (con->c_nat = npf_nat_import(obj, natlist, con)) == NULL) {
948 goto err;
949 }
950
951 /*
952 * Fetch and copy the keys for each direction.
953 */
954 obj = prop_dictionary_get(cdict, "forw-key");
955 if ((d = prop_data_data_nocopy(obj)) == NULL ||
956 prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
957 goto err;
958 }
959 fw = &con->c_forw_entry;
960 memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
961
962 obj = prop_dictionary_get(cdict, "back-key");
963 if ((d = prop_data_data_nocopy(obj)) == NULL ||
964 prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
965 goto err;
966 }
967 bk = &con->c_back_entry;
968 memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
969
970 fw->ck_backptr = bk->ck_backptr = con;
971
972 /* Insert the entries and the connection itself. */
973 if (!npf_conndb_insert(cd, fw, con)) {
974 goto err;
975 }
976 if (!npf_conndb_insert(cd, bk, con)) {
977 npf_conndb_remove(cd, fw);
978 goto err;
979 }
980
981 NPF_PRINTF(("NPF: imported conn %p\n", con));
982 npf_conndb_enqueue(cd, con);
983 return 0;
984 err:
985 npf_conn_destroy(con);
986 return EINVAL;
987 }
988
989 #if defined(DDB) || defined(_NPF_TESTING)
990
991 void
992 npf_conn_print(const npf_conn_t *con)
993 {
994 const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
995 const uint32_t *fkey = con->c_forw_entry.ck_key;
996 const uint32_t *bkey = con->c_back_entry.ck_key;
997 const u_int proto = con->c_proto;
998 struct timespec tsnow, tsdiff;
999 const void *src, *dst;
1000 int etime;
1001
1002 getnanouptime(&tsnow);
1003 timespecsub(&tsnow, &con->c_atime, &tsdiff);
1004 etime = npf_state_etime(&con->c_state, proto);
1005
1006 printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
1007 con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
1008
1009 src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
1010 printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
1011 printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
1012
1013 src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
1014 printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
1015 printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
1016
1017 npf_state_dump(&con->c_state);
1018 if (con->c_nat) {
1019 npf_nat_dump(con->c_nat);
1020 }
1021 }
1022
1023 #endif
1024