Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.15
      1 /*	$NetBSD: npf_conn.c,v 1.15 2015/02/01 22:41:22 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014-2015 Mindaugas Rasiukevicius <rmind at netbsd org>
      5  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This material is based upon work partially supported by The
      9  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * NPF connection tracking for stateful filtering and translation.
     35  *
     36  * Overview
     37  *
     38  *	Connection direction is identified by the direction of its first
     39  *	packet.  Packets can be incoming or outgoing with respect to an
     40  *	interface.  To describe the packet in the context of connection
     41  *	direction we will use the terms "forwards stream" and "backwards
     42  *	stream".  All connections have two keys and thus two entries:
     43  *
     44  *		npf_conn_t::c_forw_entry for the forwards stream and
     45  *		npf_conn_t::c_back_entry for the backwards stream.
     46  *
     47  *	The keys are formed from the 5-tuple (source/destination address,
     48  *	source/destination port and the protocol).  Additional matching
     49  *	is performed for the interface (a common behaviour is equivalent
     50  *	to the 6-tuple lookup including the interface ID).  Note that the
     51  *	key may be formed using translated values in a case of NAT.
     52  *
     53  *	Connections can serve two purposes: for the implicit passing or
     54  *	to accommodate the dynamic NAT.  Connections for the former purpose
     55  *	are created by the rules with "stateful" attribute and are used for
     56  *	stateful filtering.  Such connections indicate that the packet of
     57  *	the backwards stream should be passed without inspection of the
     58  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     59  *	with a connection.  Such connections are created by the NAT policies
     60  *	and they have a relationship with NAT translation structure via
     61  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     62  *	which is a common case.
     63  *
     64  * Connection life-cycle
     65  *
     66  *	Connections are established when a packet matches said rule or
     67  *	NAT policy.  Both keys of the established connection are inserted
     68  *	into the connection database.  A garbage collection thread
     69  *	periodically scans all connections and depending on connection
     70  *	properties (e.g. last activity time, protocol) removes connection
     71  *	entries and expires the actual connections.
     72  *
     73  *	Each connection has a reference count.  The reference is acquired
     74  *	on lookup and should be released by the caller.  It guarantees that
     75  *	the connection will not be destroyed, although it may be expired.
     76  *
     77  * Synchronisation
     78  *
     79  *	Connection database is accessed in a lock-less manner by the main
     80  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     81  *	are always called from a software interrupt, the database is
     82  *	protected using passive serialisation.  The main place which can
     83  *	destroy a connection is npf_conn_worker().  The database itself
     84  *	can be replaced and destroyed in npf_conn_reload().
     85  *
     86  * ALG support
     87  *
     88  *	Application-level gateways (ALGs) can override generic connection
     89  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     90  *	performing their own lookup using different key.  Recursive call
     91  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     92  *	npf_conn_lookup() function for this purpose.
     93  *
     94  * Lock order
     95  *
     96  *	npf_config_lock ->
     97  *		conn_lock ->
     98  *			npf_conn_t::c_lock
     99  */
    100 
    101 #include <sys/cdefs.h>
    102 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.15 2015/02/01 22:41:22 rmind Exp $");
    103 
    104 #include <sys/param.h>
    105 #include <sys/types.h>
    106 
    107 #include <netinet/in.h>
    108 #include <netinet/tcp.h>
    109 
    110 #include <sys/atomic.h>
    111 #include <sys/condvar.h>
    112 #include <sys/kmem.h>
    113 #include <sys/kthread.h>
    114 #include <sys/mutex.h>
    115 #include <net/pfil.h>
    116 #include <sys/pool.h>
    117 #include <sys/queue.h>
    118 #include <sys/systm.h>
    119 
    120 #define __NPF_CONN_PRIVATE
    121 #include "npf_conn.h"
    122 #include "npf_impl.h"
    123 
    124 /*
    125  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    126  */
    127 CTASSERT(PFIL_ALL == (0x001 | 0x002));
    128 #define	CONN_ACTIVE	0x004	/* visible on inspection */
    129 #define	CONN_PASS	0x008	/* perform implicit passing */
    130 #define	CONN_EXPIRE	0x010	/* explicitly expire */
    131 #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    132 
    133 /*
    134  * Connection tracking state: disabled (off) or enabled (on).
    135  */
    136 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    137 static volatile int	conn_tracking	__cacheline_aligned;
    138 
    139 /* Connection tracking database, connection cache and the lock. */
    140 static npf_conndb_t *	conn_db		__read_mostly;
    141 static pool_cache_t	conn_cache	__read_mostly;
    142 static kmutex_t		conn_lock	__cacheline_aligned;
    143 
    144 static void	npf_conn_worker(void);
    145 static void	npf_conn_destroy(npf_conn_t *);
    146 
    147 /*
    148  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    149  */
    150 
    151 void
    152 npf_conn_sysinit(void)
    153 {
    154 	conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
    155 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
    156 	mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
    157 	conn_tracking = CONN_TRACKING_OFF;
    158 	conn_db = npf_conndb_create();
    159 
    160 	npf_worker_register(npf_conn_worker);
    161 }
    162 
    163 void
    164 npf_conn_sysfini(void)
    165 {
    166 	/* Note: the caller should have flushed the connections. */
    167 	KASSERT(conn_tracking == CONN_TRACKING_OFF);
    168 	npf_worker_unregister(npf_conn_worker);
    169 
    170 	npf_conndb_destroy(conn_db);
    171 	pool_cache_destroy(conn_cache);
    172 	mutex_destroy(&conn_lock);
    173 }
    174 
    175 /*
    176  * npf_conn_load: perform the load by flushing the current connection
    177  * database and replacing it with the new one or just destroying.
    178  *
    179  * => The caller must disable the connection tracking and ensure that
    180  *    there are no connection database lookups or references in-flight.
    181  */
    182 void
    183 npf_conn_load(npf_conndb_t *ndb, bool track)
    184 {
    185 	npf_conndb_t *odb = NULL;
    186 
    187 	KASSERT(npf_config_locked_p());
    188 
    189 	/*
    190 	 * The connection database is in the quiescent state.
    191 	 * Prevent G/C thread from running and install a new database.
    192 	 */
    193 	mutex_enter(&conn_lock);
    194 	if (ndb) {
    195 		KASSERT(conn_tracking == CONN_TRACKING_OFF);
    196 		odb = conn_db;
    197 		conn_db = ndb;
    198 		membar_sync();
    199 	}
    200 	if (track) {
    201 		/* After this point lookups start flying in. */
    202 		conn_tracking = CONN_TRACKING_ON;
    203 	}
    204 	mutex_exit(&conn_lock);
    205 
    206 	if (odb) {
    207 		/*
    208 		 * Flush all, no sync since the caller did it for us.
    209 		 * Also, release the pool cache memory.
    210 		 */
    211 		npf_conn_gc(odb, true, false);
    212 		npf_conndb_destroy(odb);
    213 		pool_cache_invalidate(conn_cache);
    214 	}
    215 }
    216 
    217 /*
    218  * npf_conn_tracking: enable/disable connection tracking.
    219  */
    220 void
    221 npf_conn_tracking(bool track)
    222 {
    223 	KASSERT(npf_config_locked_p());
    224 	conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
    225 }
    226 
    227 static inline bool
    228 npf_conn_trackable_p(const npf_cache_t *npc)
    229 {
    230 	/*
    231 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    232 	 * not cached - protocol is not supported or packet is invalid.
    233 	 */
    234 	if (conn_tracking != CONN_TRACKING_ON) {
    235 		return false;
    236 	}
    237 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    238 		return false;
    239 	}
    240 	return true;
    241 }
    242 
    243 /*
    244  * npf_conn_conkey: construct a key for the connection lookup.
    245  *
    246  * => Returns the key length in bytes or zero on failure.
    247  */
    248 unsigned
    249 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
    250 {
    251 	const u_int alen = npc->npc_alen;
    252 	const struct tcphdr *th;
    253 	const struct udphdr *uh;
    254 	u_int keylen, isrc, idst;
    255 	uint16_t id[2];
    256 
    257 	switch (npc->npc_proto) {
    258 	case IPPROTO_TCP:
    259 		KASSERT(npf_iscached(npc, NPC_TCP));
    260 		th = npc->npc_l4.tcp;
    261 		id[NPF_SRC] = th->th_sport;
    262 		id[NPF_DST] = th->th_dport;
    263 		break;
    264 	case IPPROTO_UDP:
    265 		KASSERT(npf_iscached(npc, NPC_UDP));
    266 		uh = npc->npc_l4.udp;
    267 		id[NPF_SRC] = uh->uh_sport;
    268 		id[NPF_DST] = uh->uh_dport;
    269 		break;
    270 	case IPPROTO_ICMP:
    271 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    272 			const struct icmp *ic = npc->npc_l4.icmp;
    273 			id[NPF_SRC] = ic->icmp_id;
    274 			id[NPF_DST] = ic->icmp_id;
    275 			break;
    276 		}
    277 		return 0;
    278 	case IPPROTO_ICMPV6:
    279 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    280 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    281 			id[NPF_SRC] = ic6->icmp6_id;
    282 			id[NPF_DST] = ic6->icmp6_id;
    283 			break;
    284 		}
    285 		return 0;
    286 	default:
    287 		/* Unsupported protocol. */
    288 		return 0;
    289 	}
    290 
    291 	if (__predict_true(forw)) {
    292 		isrc = NPF_SRC, idst = NPF_DST;
    293 	} else {
    294 		isrc = NPF_DST, idst = NPF_SRC;
    295 	}
    296 
    297 	/*
    298 	 * Construct a key formed out of 32-bit integers.  The key layout:
    299 	 *
    300 	 * Field: | proto  |  alen  | src-id | dst-id | src-addr | dst-addr |
    301 	 *        +--------+--------+--------+--------+----------+----------+
    302 	 * Bits:  |   16   |   16   |   16   |   16   |  32-128  |  32-128  |
    303 	 *
    304 	 * The source and destination are inverted if they key is for the
    305 	 * backwards stream (forw == false).  The address length depends
    306 	 * on the 'alen' field; it is a length in bytes, either 4 or 16.
    307 	 */
    308 
    309 	key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff);
    310 	key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    311 
    312 	if (__predict_true(alen == sizeof(in_addr_t))) {
    313 		key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0];
    314 		key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0];
    315 		keylen = 4 * sizeof(uint32_t);
    316 	} else {
    317 		const u_int nwords = alen >> 2;
    318 		memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen);
    319 		memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen);
    320 		keylen = (2 + (nwords * 2)) * sizeof(uint32_t);
    321 	}
    322 	return keylen;
    323 }
    324 
    325 static __inline void
    326 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
    327 {
    328 	const u_int alen = key->ck_key[0] & 0xffff;
    329 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
    330 
    331 	KASSERT(alen > 0);
    332 	memcpy(addr, naddr, alen);
    333 }
    334 
    335 static __inline void
    336 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
    337 {
    338 	const uint32_t oid = key->ck_key[1];
    339 	const u_int shift = 16 * !di;
    340 	const uint32_t mask = 0xffff0000 >> shift;
    341 
    342 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
    343 }
    344 
    345 /*
    346  * npf_conn_lookup: lookup if there is an established connection.
    347  *
    348  * => If found, we will hold a reference for the caller.
    349  */
    350 npf_conn_t *
    351 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
    352 {
    353 	const nbuf_t *nbuf = npc->npc_nbuf;
    354 	npf_conn_t *con;
    355 	npf_connkey_t key;
    356 	u_int flags, cifid;
    357 	bool ok, pforw;
    358 
    359 	/* Construct a key and lookup for a connection in the store. */
    360 	if (!npf_conn_conkey(npc, &key, true)) {
    361 		return NULL;
    362 	}
    363 	con = npf_conndb_lookup(conn_db, &key, forw);
    364 	if (con == NULL) {
    365 		return NULL;
    366 	}
    367 	KASSERT(npc->npc_proto == con->c_proto);
    368 
    369 	/* Check if connection is active and not expired. */
    370 	flags = con->c_flags;
    371 	ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    372 	if (__predict_false(!ok)) {
    373 		atomic_dec_uint(&con->c_refcnt);
    374 		return NULL;
    375 	}
    376 
    377 	/*
    378 	 * Match the interface and the direction of the connection entry
    379 	 * and the packet.
    380 	 */
    381 	cifid = con->c_ifid;
    382 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
    383 		atomic_dec_uint(&con->c_refcnt);
    384 		return NULL;
    385 	}
    386 	pforw = (flags & PFIL_ALL) == di;
    387 	if (__predict_false(*forw != pforw)) {
    388 		atomic_dec_uint(&con->c_refcnt);
    389 		return NULL;
    390 	}
    391 
    392 	/* Update the last activity time. */
    393 	getnanouptime(&con->c_atime);
    394 	return con;
    395 }
    396 
    397 /*
    398  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    399  *
    400  * => If found, we will hold a reference for the caller.
    401  */
    402 npf_conn_t *
    403 npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
    404 {
    405 	nbuf_t *nbuf = npc->npc_nbuf;
    406 	npf_conn_t *con;
    407 	bool forw, ok;
    408 
    409 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    410 	if (!npf_conn_trackable_p(npc)) {
    411 		return NULL;
    412 	}
    413 
    414 	/* Query ALG which may lookup connection for us. */
    415 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    416 		/* Note: reference is held. */
    417 		return con;
    418 	}
    419 	if (nbuf_head_mbuf(nbuf) == NULL) {
    420 		*error = ENOMEM;
    421 		return NULL;
    422 	}
    423 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    424 
    425 	/* Main lookup of the connection. */
    426 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
    427 		return NULL;
    428 	}
    429 
    430 	/* Inspect the protocol data and handle state changes. */
    431 	mutex_enter(&con->c_lock);
    432 	ok = npf_state_inspect(npc, &con->c_state, forw);
    433 	mutex_exit(&con->c_lock);
    434 
    435 	if (__predict_false(!ok)) {
    436 		/* Invalid: let the rules deal with it. */
    437 		npf_conn_release(con);
    438 		npf_stats_inc(NPF_STAT_INVALID_STATE);
    439 		con = NULL;
    440 	}
    441 	return con;
    442 }
    443 
    444 /*
    445  * npf_conn_establish: create a new connection, insert into the global list.
    446  *
    447  * => Connection is created with the reference held for the caller.
    448  * => Connection will be activated on the first reference release.
    449  */
    450 npf_conn_t *
    451 npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
    452 {
    453 	const nbuf_t *nbuf = npc->npc_nbuf;
    454 	npf_conn_t *con;
    455 	int error = 0;
    456 
    457 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    458 
    459 	if (!npf_conn_trackable_p(npc)) {
    460 		return NULL;
    461 	}
    462 
    463 	/* Allocate and initialise the new connection. */
    464 	con = pool_cache_get(conn_cache, PR_NOWAIT);
    465 	if (__predict_false(!con)) {
    466 		return NULL;
    467 	}
    468 	NPF_PRINTF(("NPF: create conn %p\n", con));
    469 	npf_stats_inc(NPF_STAT_CONN_CREATE);
    470 
    471 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    472 	con->c_flags = (di & PFIL_ALL);
    473 	con->c_refcnt = 0;
    474 	con->c_rproc = NULL;
    475 	con->c_nat = NULL;
    476 
    477 	/* Initialize the protocol state. */
    478 	if (!npf_state_init(npc, &con->c_state)) {
    479 		npf_conn_destroy(con);
    480 		return NULL;
    481 	}
    482 
    483 	KASSERT(npf_iscached(npc, NPC_IP46));
    484 	npf_connkey_t *fw = &con->c_forw_entry;
    485 	npf_connkey_t *bk = &con->c_back_entry;
    486 
    487 	/*
    488 	 * Construct "forwards" and "backwards" keys.  Also, set the
    489 	 * interface ID for this connection (unless it is global).
    490 	 */
    491 	if (!npf_conn_conkey(npc, fw, true) ||
    492 	    !npf_conn_conkey(npc, bk, false)) {
    493 		npf_conn_destroy(con);
    494 		return NULL;
    495 	}
    496 	fw->ck_backptr = bk->ck_backptr = con;
    497 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
    498 	con->c_proto = npc->npc_proto;
    499 
    500 	/*
    501 	 * Set last activity time for a new connection and acquire
    502 	 * a reference for the caller before we make it visible.
    503 	 */
    504 	getnanouptime(&con->c_atime);
    505 	con->c_refcnt = 1;
    506 
    507 	/*
    508 	 * Insert both keys (entries representing directions) of the
    509 	 * connection.  At this point it becomes visible, but we activate
    510 	 * the connection later.
    511 	 */
    512 	mutex_enter(&con->c_lock);
    513 	if (!npf_conndb_insert(conn_db, fw, con)) {
    514 		error = EISCONN;
    515 		goto err;
    516 	}
    517 	if (!npf_conndb_insert(conn_db, bk, con)) {
    518 		npf_conn_t *ret __diagused;
    519 		ret = npf_conndb_remove(conn_db, fw);
    520 		KASSERT(ret == con);
    521 		error = EISCONN;
    522 		goto err;
    523 	}
    524 err:
    525 	/*
    526 	 * If we have hit the duplicate: mark the connection as expired
    527 	 * and let the G/C thread to take care of it.  We cannot do it
    528 	 * here since there might be references acquired already.
    529 	 */
    530 	if (error) {
    531 		const u_int dflags = CONN_REMOVED | CONN_EXPIRE;
    532 		atomic_or_uint(&con->c_flags, dflags);
    533 		npf_stats_inc(NPF_STAT_RACE_CONN);
    534 	} else {
    535 		NPF_PRINTF(("NPF: establish conn %p\n", con));
    536 	}
    537 
    538 	/* Finally, insert into the connection list. */
    539 	npf_conndb_enqueue(conn_db, con);
    540 	mutex_exit(&con->c_lock);
    541 
    542 	return error ? NULL : con;
    543 }
    544 
    545 static void
    546 npf_conn_destroy(npf_conn_t *con)
    547 {
    548 	KASSERT(con->c_refcnt == 0);
    549 
    550 	if (con->c_nat) {
    551 		/* Release any NAT structures. */
    552 		npf_nat_destroy(con->c_nat);
    553 	}
    554 	if (con->c_rproc) {
    555 		/* Release the rule procedure. */
    556 		npf_rproc_release(con->c_rproc);
    557 	}
    558 
    559 	/* Destroy the state. */
    560 	npf_state_destroy(&con->c_state);
    561 	mutex_destroy(&con->c_lock);
    562 
    563 	/* Free the structure, increase the counter. */
    564 	pool_cache_put(conn_cache, con);
    565 	npf_stats_inc(NPF_STAT_CONN_DESTROY);
    566 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    567 }
    568 
    569 /*
    570  * npf_conn_setnat: associate NAT entry with the connection, update and
    571  * re-insert connection entry using the translation values.
    572  */
    573 int
    574 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    575     npf_nat_t *nt, u_int ntype)
    576 {
    577 	static const u_int nat_type_dimap[] = {
    578 		[NPF_NATOUT] = NPF_DST,
    579 		[NPF_NATIN] = NPF_SRC,
    580 	};
    581 	npf_connkey_t key, *bk;
    582 	npf_conn_t *ret __diagused;
    583 	npf_addr_t *taddr;
    584 	in_port_t tport;
    585 	u_int tidx;
    586 
    587 	KASSERT(con->c_refcnt > 0);
    588 
    589 	npf_nat_gettrans(nt, &taddr, &tport);
    590 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    591 	tidx = nat_type_dimap[ntype];
    592 
    593 	/* Construct a "backwards" key. */
    594 	if (!npf_conn_conkey(npc, &key, false)) {
    595 		return EINVAL;
    596 	}
    597 
    598 	/* Acquire the lock and check for the races. */
    599 	mutex_enter(&con->c_lock);
    600 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    601 		/* The connection got expired. */
    602 		mutex_exit(&con->c_lock);
    603 		return EINVAL;
    604 	}
    605 	KASSERT((con->c_flags & CONN_REMOVED) == 0);
    606 
    607 	if (__predict_false(con->c_nat != NULL)) {
    608 		/* Race with a duplicate packet. */
    609 		mutex_exit(&con->c_lock);
    610 		npf_stats_inc(NPF_STAT_RACE_NAT);
    611 		return EISCONN;
    612 	}
    613 
    614 	/* Remove the "backwards" entry. */
    615 	ret = npf_conndb_remove(conn_db, &con->c_back_entry);
    616 	KASSERT(ret == con);
    617 
    618 	/* Set the source/destination IDs to the translation values. */
    619 	bk = &con->c_back_entry;
    620 	connkey_set_addr(bk, taddr, tidx);
    621 	if (tport) {
    622 		connkey_set_id(bk, tport, tidx);
    623 	}
    624 
    625 	/* Finally, re-insert the "backwards" entry. */
    626 	if (!npf_conndb_insert(conn_db, bk, con)) {
    627 		/*
    628 		 * Race: we have hit the duplicate, remove the "forwards"
    629 		 * entry and expire our connection; it is no longer valid.
    630 		 */
    631 		ret = npf_conndb_remove(conn_db, &con->c_forw_entry);
    632 		KASSERT(ret == con);
    633 
    634 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    635 		mutex_exit(&con->c_lock);
    636 
    637 		npf_stats_inc(NPF_STAT_RACE_NAT);
    638 		return EISCONN;
    639 	}
    640 
    641 	/* Associate the NAT entry and release the lock. */
    642 	con->c_nat = nt;
    643 	mutex_exit(&con->c_lock);
    644 	return 0;
    645 }
    646 
    647 /*
    648  * npf_conn_expire: explicitly mark connection as expired.
    649  */
    650 void
    651 npf_conn_expire(npf_conn_t *con)
    652 {
    653 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    654 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    655 }
    656 
    657 /*
    658  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    659  */
    660 bool
    661 npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
    662 {
    663 	KASSERT(con->c_refcnt > 0);
    664 	if (__predict_true(con->c_flags & CONN_PASS)) {
    665 		*rp = con->c_rproc;
    666 		return true;
    667 	}
    668 	return false;
    669 }
    670 
    671 /*
    672  * npf_conn_setpass: mark connection as a "pass" one and associate the
    673  * rule procedure with it.
    674  */
    675 void
    676 npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
    677 {
    678 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    679 	KASSERT(con->c_refcnt > 0);
    680 	KASSERT(con->c_rproc == NULL);
    681 
    682 	/*
    683 	 * No need for atomic since the connection is not yet active.
    684 	 * If rproc is set, the caller transfers its reference to us,
    685 	 * which will be released on npf_conn_destroy().
    686 	 */
    687 	atomic_or_uint(&con->c_flags, CONN_PASS);
    688 	con->c_rproc = rp;
    689 }
    690 
    691 /*
    692  * npf_conn_release: release a reference, which might allow G/C thread
    693  * to destroy this connection.
    694  */
    695 void
    696 npf_conn_release(npf_conn_t *con)
    697 {
    698 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    699 		/* Activate: after this, connection is globally visible. */
    700 		atomic_or_uint(&con->c_flags, CONN_ACTIVE);
    701 	}
    702 	KASSERT(con->c_refcnt > 0);
    703 	atomic_dec_uint(&con->c_refcnt);
    704 }
    705 
    706 /*
    707  * npf_conn_getnat: return associated NAT data entry and indicate
    708  * whether it is a "forwards" or "backwards" stream.
    709  */
    710 npf_nat_t *
    711 npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
    712 {
    713 	KASSERT(con->c_refcnt > 0);
    714 	*forw = (con->c_flags & PFIL_ALL) == di;
    715 	return con->c_nat;
    716 }
    717 
    718 /*
    719  * npf_conn_expired: criterion to check if connection is expired.
    720  */
    721 static inline bool
    722 npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
    723 {
    724 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
    725 	struct timespec tsdiff;
    726 
    727 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    728 		/* Explicitly marked to be expired. */
    729 		return true;
    730 	}
    731 	timespecsub(tsnow, &con->c_atime, &tsdiff);
    732 	return tsdiff.tv_sec > etime;
    733 }
    734 
    735 /*
    736  * npf_conn_gc: garbage collect the expired connections.
    737  *
    738  * => Must run in a single-threaded manner.
    739  * => If it is a flush request, then destroy all connections.
    740  * => If 'sync' is true, then perform passive serialisation.
    741  */
    742 void
    743 npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
    744 {
    745 	npf_conn_t *con, *prev, *gclist = NULL;
    746 	struct timespec tsnow;
    747 
    748 	getnanouptime(&tsnow);
    749 
    750 	/*
    751 	 * Scan all connections and check them for expiration.
    752 	 */
    753 	prev = NULL;
    754 	con = npf_conndb_getlist(cd);
    755 	while (con) {
    756 		npf_conn_t *next = con->c_next;
    757 
    758 		/* Expired?  Flushing all? */
    759 		if (!npf_conn_expired(con, &tsnow) && !flush) {
    760 			prev = con;
    761 			con = next;
    762 			continue;
    763 		}
    764 
    765 		/* Remove both entries of the connection. */
    766 		mutex_enter(&con->c_lock);
    767 		if ((con->c_flags & CONN_REMOVED) == 0) {
    768 			npf_conn_t *ret __diagused;
    769 
    770 			ret = npf_conndb_remove(cd, &con->c_forw_entry);
    771 			KASSERT(ret == con);
    772 			ret = npf_conndb_remove(cd, &con->c_back_entry);
    773 			KASSERT(ret == con);
    774 		}
    775 
    776 		/* Flag the removal and expiration. */
    777 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    778 		mutex_exit(&con->c_lock);
    779 
    780 		/* Move to the G/C list. */
    781 		npf_conndb_dequeue(cd, con, prev);
    782 		con->c_next = gclist;
    783 		gclist = con;
    784 
    785 		/* Next.. */
    786 		con = next;
    787 	}
    788 	npf_conndb_settail(cd, prev);
    789 
    790 	/*
    791 	 * Ensure it is safe to destroy the connections.
    792 	 * Note: drop the conn_lock (see the lock order).
    793 	 */
    794 	if (sync) {
    795 		mutex_exit(&conn_lock);
    796 		if (gclist) {
    797 			npf_config_enter();
    798 			npf_config_sync();
    799 			npf_config_exit();
    800 		}
    801 	}
    802 
    803 	/*
    804 	 * Garbage collect all expired connections.
    805 	 * May need to wait for the references to drain.
    806 	 */
    807 	con = gclist;
    808 	while (con) {
    809 		npf_conn_t *next = con->c_next;
    810 
    811 		/*
    812 		 * Destroy only if removed and no references.
    813 		 * Otherwise, wait for a tiny moment.
    814 		 */
    815 		if (__predict_false(con->c_refcnt)) {
    816 			kpause("npfcongc", false, 1, NULL);
    817 			continue;
    818 		}
    819 		npf_conn_destroy(con);
    820 		con = next;
    821 	}
    822 }
    823 
    824 /*
    825  * npf_conn_worker: G/C to run from a worker thread.
    826  */
    827 static void
    828 npf_conn_worker(void)
    829 {
    830 	mutex_enter(&conn_lock);
    831 	/* Note: the conn_lock will be released (sync == true). */
    832 	npf_conn_gc(conn_db, false, true);
    833 }
    834 
    835 /*
    836  * npf_conndb_export: construct a list of connections prepared for saving.
    837  * Note: this is expected to be an expensive operation.
    838  */
    839 int
    840 npf_conndb_export(prop_array_t conlist)
    841 {
    842 	npf_conn_t *con, *prev;
    843 
    844 	/*
    845 	 * Note: acquire conn_lock to prevent from the database
    846 	 * destruction and G/C thread.
    847 	 */
    848 	mutex_enter(&conn_lock);
    849 	if (conn_tracking != CONN_TRACKING_ON) {
    850 		mutex_exit(&conn_lock);
    851 		return 0;
    852 	}
    853 	prev = NULL;
    854 	con = npf_conndb_getlist(conn_db);
    855 	while (con) {
    856 		npf_conn_t *next = con->c_next;
    857 		prop_dictionary_t cdict;
    858 
    859 		if ((cdict = npf_conn_export(con)) != NULL) {
    860 			prop_array_add(conlist, cdict);
    861 			prop_object_release(cdict);
    862 		}
    863 		prev = con;
    864 		con = next;
    865 	}
    866 	npf_conndb_settail(conn_db, prev);
    867 	mutex_exit(&conn_lock);
    868 	return 0;
    869 }
    870 
    871 /*
    872  * npf_conn_export: serialise a single connection.
    873  */
    874 prop_dictionary_t
    875 npf_conn_export(const npf_conn_t *con)
    876 {
    877 	prop_dictionary_t cdict;
    878 	prop_data_t d;
    879 
    880 	if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
    881 		return NULL;
    882 	}
    883 	cdict = prop_dictionary_create();
    884 	prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
    885 	prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
    886 	if (con->c_ifid) {
    887 		const char *ifname = npf_ifmap_getname(con->c_ifid);
    888 		prop_dictionary_set_cstring(cdict, "ifname", ifname);
    889 	}
    890 
    891 	d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
    892 	prop_dictionary_set_and_rel(cdict, "state", d);
    893 
    894 	const uint32_t *fkey = con->c_forw_entry.ck_key;
    895 	d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
    896 	prop_dictionary_set_and_rel(cdict, "forw-key", d);
    897 
    898 	const uint32_t *bkey = con->c_back_entry.ck_key;
    899 	d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
    900 	prop_dictionary_set_and_rel(cdict, "back-key", d);
    901 
    902 	if (con->c_nat) {
    903 		npf_nat_export(cdict, con->c_nat);
    904 	}
    905 	return cdict;
    906 }
    907 
    908 /*
    909  * npf_conn_import: fully reconstruct a single connection from a
    910  * directory and insert into the given database.
    911  */
    912 int
    913 npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
    914     npf_ruleset_t *natlist)
    915 {
    916 	npf_conn_t *con;
    917 	npf_connkey_t *fw, *bk;
    918 	prop_object_t obj;
    919 	const char *ifname;
    920 	const void *d;
    921 
    922 	/* Allocate a connection and initialise it (clear first). */
    923 	con = pool_cache_get(conn_cache, PR_WAITOK);
    924 	memset(con, 0, sizeof(npf_conn_t));
    925 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    926 	npf_stats_inc(NPF_STAT_CONN_CREATE);
    927 
    928 	prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
    929 	prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
    930 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
    931 	getnanouptime(&con->c_atime);
    932 
    933 	if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) &&
    934 	    (con->c_ifid = npf_ifmap_register(ifname)) == 0) {
    935 		goto err;
    936 	}
    937 
    938 	obj = prop_dictionary_get(cdict, "state");
    939 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    940 	    prop_data_size(obj) != sizeof(npf_state_t)) {
    941 		goto err;
    942 	}
    943 	memcpy(&con->c_state, d, sizeof(npf_state_t));
    944 
    945 	/* Reconstruct NAT association, if any. */
    946 	if ((obj = prop_dictionary_get(cdict, "nat")) != NULL &&
    947 	    (con->c_nat = npf_nat_import(obj, natlist, con)) == NULL) {
    948 		goto err;
    949 	}
    950 
    951 	/*
    952 	 * Fetch and copy the keys for each direction.
    953 	 */
    954 	obj = prop_dictionary_get(cdict, "forw-key");
    955 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    956 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    957 		goto err;
    958 	}
    959 	fw = &con->c_forw_entry;
    960 	memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
    961 
    962 	obj = prop_dictionary_get(cdict, "back-key");
    963 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    964 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    965 		goto err;
    966 	}
    967 	bk = &con->c_back_entry;
    968 	memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
    969 
    970 	fw->ck_backptr = bk->ck_backptr = con;
    971 
    972 	/* Insert the entries and the connection itself. */
    973 	if (!npf_conndb_insert(cd, fw, con)) {
    974 		goto err;
    975 	}
    976 	if (!npf_conndb_insert(cd, bk, con)) {
    977 		npf_conndb_remove(cd, fw);
    978 		goto err;
    979 	}
    980 
    981 	NPF_PRINTF(("NPF: imported conn %p\n", con));
    982 	npf_conndb_enqueue(cd, con);
    983 	return 0;
    984 err:
    985 	npf_conn_destroy(con);
    986 	return EINVAL;
    987 }
    988 
    989 #if defined(DDB) || defined(_NPF_TESTING)
    990 
    991 void
    992 npf_conn_print(const npf_conn_t *con)
    993 {
    994 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
    995 	const uint32_t *fkey = con->c_forw_entry.ck_key;
    996 	const uint32_t *bkey = con->c_back_entry.ck_key;
    997 	const u_int proto = con->c_proto;
    998 	struct timespec tsnow, tsdiff;
    999 	const void *src, *dst;
   1000 	int etime;
   1001 
   1002 	getnanouptime(&tsnow);
   1003 	timespecsub(&tsnow, &con->c_atime, &tsdiff);
   1004 	etime = npf_state_etime(&con->c_state, proto);
   1005 
   1006 	printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
   1007 	    con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
   1008 
   1009 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
   1010 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
   1011 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
   1012 
   1013 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
   1014 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
   1015 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
   1016 
   1017 	npf_state_dump(&con->c_state);
   1018 	if (con->c_nat) {
   1019 		npf_nat_dump(con->c_nat);
   1020 	}
   1021 }
   1022 
   1023 #endif
   1024