npf_conn.c revision 1.18 1 /* $NetBSD: npf_conn.c,v 1.18 2016/12/10 05:41:10 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2014-2015 Mindaugas Rasiukevicius <rmind at netbsd org>
5 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This material is based upon work partially supported by The
9 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * NPF connection tracking for stateful filtering and translation.
35 *
36 * Overview
37 *
38 * Connection direction is identified by the direction of its first
39 * packet. Packets can be incoming or outgoing with respect to an
40 * interface. To describe the packet in the context of connection
41 * direction we will use the terms "forwards stream" and "backwards
42 * stream". All connections have two keys and thus two entries:
43 *
44 * npf_conn_t::c_forw_entry for the forwards stream and
45 * npf_conn_t::c_back_entry for the backwards stream.
46 *
47 * The keys are formed from the 5-tuple (source/destination address,
48 * source/destination port and the protocol). Additional matching
49 * is performed for the interface (a common behaviour is equivalent
50 * to the 6-tuple lookup including the interface ID). Note that the
51 * key may be formed using translated values in a case of NAT.
52 *
53 * Connections can serve two purposes: for the implicit passing or
54 * to accommodate the dynamic NAT. Connections for the former purpose
55 * are created by the rules with "stateful" attribute and are used for
56 * stateful filtering. Such connections indicate that the packet of
57 * the backwards stream should be passed without inspection of the
58 * ruleset. The other purpose is to associate a dynamic NAT mechanism
59 * with a connection. Such connections are created by the NAT policies
60 * and they have a relationship with NAT translation structure via
61 * npf_conn_t::c_nat. A single connection can serve both purposes,
62 * which is a common case.
63 *
64 * Connection life-cycle
65 *
66 * Connections are established when a packet matches said rule or
67 * NAT policy. Both keys of the established connection are inserted
68 * into the connection database. A garbage collection thread
69 * periodically scans all connections and depending on connection
70 * properties (e.g. last activity time, protocol) removes connection
71 * entries and expires the actual connections.
72 *
73 * Each connection has a reference count. The reference is acquired
74 * on lookup and should be released by the caller. It guarantees that
75 * the connection will not be destroyed, although it may be expired.
76 *
77 * Synchronisation
78 *
79 * Connection database is accessed in a lock-less manner by the main
80 * routines: npf_conn_inspect() and npf_conn_establish(). Since they
81 * are always called from a software interrupt, the database is
82 * protected using passive serialisation. The main place which can
83 * destroy a connection is npf_conn_worker(). The database itself
84 * can be replaced and destroyed in npf_conn_reload().
85 *
86 * ALG support
87 *
88 * Application-level gateways (ALGs) can override generic connection
89 * inspection (npf_alg_conn() call in npf_conn_inspect() function) by
90 * performing their own lookup using different key. Recursive call
91 * to npf_conn_inspect() is not allowed. The ALGs ought to use the
92 * npf_conn_lookup() function for this purpose.
93 *
94 * Lock order
95 *
96 * npf_config_lock ->
97 * conn_lock ->
98 * npf_conn_t::c_lock
99 */
100
101 #include <sys/cdefs.h>
102 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.18 2016/12/10 05:41:10 christos Exp $");
103
104 #include <sys/param.h>
105 #include <sys/types.h>
106
107 #include <netinet/in.h>
108 #include <netinet/tcp.h>
109
110 #include <sys/atomic.h>
111 #include <sys/condvar.h>
112 #include <sys/kmem.h>
113 #include <sys/kthread.h>
114 #include <sys/mutex.h>
115 #include <net/pfil.h>
116 #include <sys/pool.h>
117 #include <sys/queue.h>
118 #include <sys/systm.h>
119
120 #define __NPF_CONN_PRIVATE
121 #include "npf_conn.h"
122 #include "npf_impl.h"
123
124 /*
125 * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
126 */
127 CTASSERT(PFIL_ALL == (0x001 | 0x002));
128 #define CONN_ACTIVE 0x004 /* visible on inspection */
129 #define CONN_PASS 0x008 /* perform implicit passing */
130 #define CONN_EXPIRE 0x010 /* explicitly expire */
131 #define CONN_REMOVED 0x020 /* "forw/back" entries removed */
132
133 /*
134 * Connection tracking state: disabled (off) or enabled (on).
135 */
136 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
137 static volatile int conn_tracking __cacheline_aligned;
138
139 /* Connection tracking database, connection cache and the lock. */
140 static npf_conndb_t * conn_db __read_mostly;
141 static pool_cache_t conn_cache __read_mostly;
142 static kmutex_t conn_lock __cacheline_aligned;
143
144 static void npf_conn_worker(void);
145 static void npf_conn_destroy(npf_conn_t *);
146
147 /*
148 * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
149 */
150
151 void
152 npf_conn_sysinit(void)
153 {
154 conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
155 0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
156 mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
157 conn_tracking = CONN_TRACKING_OFF;
158 conn_db = npf_conndb_create();
159
160 npf_worker_register(npf_conn_worker);
161 }
162
163 void
164 npf_conn_sysfini(void)
165 {
166 /* Note: the caller should have flushed the connections. */
167 KASSERT(conn_tracking == CONN_TRACKING_OFF);
168 npf_worker_unregister(npf_conn_worker);
169
170 npf_conndb_destroy(conn_db);
171 pool_cache_destroy(conn_cache);
172 mutex_destroy(&conn_lock);
173 }
174
175 /*
176 * npf_conn_load: perform the load by flushing the current connection
177 * database and replacing it with the new one or just destroying.
178 *
179 * => The caller must disable the connection tracking and ensure that
180 * there are no connection database lookups or references in-flight.
181 */
182 void
183 npf_conn_load(npf_conndb_t *ndb, bool track)
184 {
185 npf_conndb_t *odb = NULL;
186
187 KASSERT(npf_config_locked_p());
188
189 /*
190 * The connection database is in the quiescent state.
191 * Prevent G/C thread from running and install a new database.
192 */
193 mutex_enter(&conn_lock);
194 if (ndb) {
195 KASSERT(conn_tracking == CONN_TRACKING_OFF);
196 odb = conn_db;
197 conn_db = ndb;
198 membar_sync();
199 }
200 if (track) {
201 /* After this point lookups start flying in. */
202 conn_tracking = CONN_TRACKING_ON;
203 }
204 mutex_exit(&conn_lock);
205
206 if (odb) {
207 /*
208 * Flush all, no sync since the caller did it for us.
209 * Also, release the pool cache memory.
210 */
211 npf_conn_gc(odb, true, false);
212 npf_conndb_destroy(odb);
213 pool_cache_invalidate(conn_cache);
214 }
215 }
216
217 /*
218 * npf_conn_tracking: enable/disable connection tracking.
219 */
220 void
221 npf_conn_tracking(bool track)
222 {
223 KASSERT(npf_config_locked_p());
224 conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
225 }
226
227 static inline bool
228 npf_conn_trackable_p(const npf_cache_t *npc)
229 {
230 /*
231 * Check if connection tracking is on. Also, if layer 3 and 4 are
232 * not cached - protocol is not supported or packet is invalid.
233 */
234 if (conn_tracking != CONN_TRACKING_ON) {
235 return false;
236 }
237 if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
238 return false;
239 }
240 return true;
241 }
242
243 static uint32_t
244 connkey_setkey(npf_connkey_t *key, uint32_t proto, const void *ipv,
245 uint16_t *id, size_t alen, bool forw)
246 {
247 uint32_t isrc, idst;
248 const npf_addr_t * const *ips = ipv;
249 if (__predict_true(forw)) {
250 isrc = NPF_SRC, idst = NPF_DST;
251 } else {
252 isrc = NPF_DST, idst = NPF_SRC;
253 }
254
255 /*
256 * Construct a key formed out of 32-bit integers. The key layout:
257 *
258 * Field: | proto | alen | src-id | dst-id | src-addr | dst-addr |
259 * +--------+--------+--------+--------+----------+----------+
260 * Bits: | 16 | 16 | 16 | 16 | 32-128 | 32-128 |
261 *
262 * The source and destination are inverted if they key is for the
263 * backwards stream (forw == false). The address length depends
264 * on the 'alen' field; it is a length in bytes, either 4 or 16.
265 */
266
267 key->ck_key[0] = ((uint32_t)proto << 16) | (alen & 0xffff);
268 key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
269
270 if (__predict_true(alen == sizeof(in_addr_t))) {
271 key->ck_key[2] = ips[isrc]->s6_addr32[0];
272 key->ck_key[3] = ips[idst]->s6_addr32[0];
273 return 4 * sizeof(uint32_t);
274 } else {
275 const u_int nwords = alen >> 2;
276 memcpy(&key->ck_key[2], ips[isrc], alen);
277 memcpy(&key->ck_key[2 + nwords], ips[idst], alen);
278 return (2 + (nwords * 2)) * sizeof(uint32_t);
279 }
280 }
281
282 /*
283 * npf_conn_conkey: construct a key for the connection lookup.
284 *
285 * => Returns the key length in bytes or zero on failure.
286 */
287 unsigned
288 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
289 {
290 const u_int alen = npc->npc_alen;
291 const struct tcphdr *th;
292 const struct udphdr *uh;
293 uint16_t id[2];
294
295 switch (npc->npc_proto) {
296 case IPPROTO_TCP:
297 KASSERT(npf_iscached(npc, NPC_TCP));
298 th = npc->npc_l4.tcp;
299 id[NPF_SRC] = th->th_sport;
300 id[NPF_DST] = th->th_dport;
301 break;
302 case IPPROTO_UDP:
303 KASSERT(npf_iscached(npc, NPC_UDP));
304 uh = npc->npc_l4.udp;
305 id[NPF_SRC] = uh->uh_sport;
306 id[NPF_DST] = uh->uh_dport;
307 break;
308 case IPPROTO_ICMP:
309 if (npf_iscached(npc, NPC_ICMP_ID)) {
310 const struct icmp *ic = npc->npc_l4.icmp;
311 id[NPF_SRC] = ic->icmp_id;
312 id[NPF_DST] = ic->icmp_id;
313 break;
314 }
315 return 0;
316 case IPPROTO_ICMPV6:
317 if (npf_iscached(npc, NPC_ICMP_ID)) {
318 const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
319 id[NPF_SRC] = ic6->icmp6_id;
320 id[NPF_DST] = ic6->icmp6_id;
321 break;
322 }
323 return 0;
324 default:
325 /* Unsupported protocol. */
326 return 0;
327 }
328
329 return connkey_setkey(key, npc->npc_proto, npc->npc_ips, id, alen,
330 forw);
331 }
332
333 static __inline void
334 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
335 {
336 const u_int alen = key->ck_key[0] & 0xffff;
337 uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
338
339 KASSERT(alen > 0);
340 memcpy(addr, naddr, alen);
341 }
342
343 static __inline void
344 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
345 {
346 const uint32_t oid = key->ck_key[1];
347 const u_int shift = 16 * !di;
348 const uint32_t mask = 0xffff0000 >> shift;
349
350 key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
351 }
352
353 /*
354 * npf_conn_ok: check if the connection is active, and has the right direction.
355 */
356 static bool
357 npf_conn_ok(npf_conn_t *con, const int di, bool forw)
358 {
359 uint32_t flags = con->c_flags;
360
361 /* Check if connection is active and not expired. */
362 bool ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
363 if (__predict_false(!ok)) {
364 return false;
365 }
366
367 /* Check if the direction is consistent */
368 bool pforw = (flags & PFIL_ALL) == di;
369 if (__predict_false(forw != pforw)) {
370 return false;
371 }
372 return true;
373 }
374
375 /*
376 * npf_conn_lookup: lookup if there is an established connection.
377 *
378 * => If found, we will hold a reference for the caller.
379 */
380 npf_conn_t *
381 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
382 {
383 const nbuf_t *nbuf = npc->npc_nbuf;
384 npf_conn_t *con;
385 npf_connkey_t key;
386 u_int cifid;
387
388 /* Construct a key and lookup for a connection in the store. */
389 if (!npf_conn_conkey(npc, &key, true)) {
390 return NULL;
391 }
392 con = npf_conndb_lookup(conn_db, &key, forw);
393 if (con == NULL) {
394 return NULL;
395 }
396 KASSERT(npc->npc_proto == con->c_proto);
397
398 /* Check if connection is active and not expired. */
399 if (!npf_conn_ok(con, di, *forw)) {
400 atomic_dec_uint(&con->c_refcnt);
401 return NULL;
402 }
403
404 /*
405 * Match the interface and the direction of the connection entry
406 * and the packet.
407 */
408 cifid = con->c_ifid;
409 if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
410 atomic_dec_uint(&con->c_refcnt);
411 return NULL;
412 }
413
414 /* Update the last activity time. */
415 getnanouptime(&con->c_atime);
416 return con;
417 }
418
419 /*
420 * npf_conn_inspect: lookup a connection and inspecting the protocol data.
421 *
422 * => If found, we will hold a reference for the caller.
423 */
424 npf_conn_t *
425 npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
426 {
427 nbuf_t *nbuf = npc->npc_nbuf;
428 npf_conn_t *con;
429 bool forw, ok;
430
431 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
432 if (!npf_conn_trackable_p(npc)) {
433 return NULL;
434 }
435
436 /* Query ALG which may lookup connection for us. */
437 if ((con = npf_alg_conn(npc, di)) != NULL) {
438 /* Note: reference is held. */
439 return con;
440 }
441 if (nbuf_head_mbuf(nbuf) == NULL) {
442 *error = ENOMEM;
443 return NULL;
444 }
445 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
446
447 /* Main lookup of the connection. */
448 if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
449 return NULL;
450 }
451
452 /* Inspect the protocol data and handle state changes. */
453 mutex_enter(&con->c_lock);
454 ok = npf_state_inspect(npc, &con->c_state, forw);
455 mutex_exit(&con->c_lock);
456
457 /* If invalid state: let the rules deal with it. */
458 if (__predict_false(!ok)) {
459 npf_conn_release(con);
460 npf_stats_inc(NPF_STAT_INVALID_STATE);
461 return NULL;
462 }
463
464 /*
465 * If this is multi-end state, then specially tag the packet
466 * so it will be just passed-through on other interfaces.
467 */
468 if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
469 npf_conn_release(con);
470 *error = ENOMEM;
471 return NULL;
472 }
473 return con;
474 }
475
476 /*
477 * npf_conn_establish: create a new connection, insert into the global list.
478 *
479 * => Connection is created with the reference held for the caller.
480 * => Connection will be activated on the first reference release.
481 */
482 npf_conn_t *
483 npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
484 {
485 const nbuf_t *nbuf = npc->npc_nbuf;
486 npf_conn_t *con;
487 int error = 0;
488
489 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
490
491 if (!npf_conn_trackable_p(npc)) {
492 return NULL;
493 }
494
495 /* Allocate and initialise the new connection. */
496 con = pool_cache_get(conn_cache, PR_NOWAIT);
497 if (__predict_false(!con)) {
498 return NULL;
499 }
500 NPF_PRINTF(("NPF: create conn %p\n", con));
501 npf_stats_inc(NPF_STAT_CONN_CREATE);
502
503 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
504 con->c_flags = (di & PFIL_ALL);
505 con->c_refcnt = 0;
506 con->c_rproc = NULL;
507 con->c_nat = NULL;
508
509 /* Initialize the protocol state. */
510 if (!npf_state_init(npc, &con->c_state)) {
511 npf_conn_destroy(con);
512 return NULL;
513 }
514
515 KASSERT(npf_iscached(npc, NPC_IP46));
516 npf_connkey_t *fw = &con->c_forw_entry;
517 npf_connkey_t *bk = &con->c_back_entry;
518
519 /*
520 * Construct "forwards" and "backwards" keys. Also, set the
521 * interface ID for this connection (unless it is global).
522 */
523 if (!npf_conn_conkey(npc, fw, true) ||
524 !npf_conn_conkey(npc, bk, false)) {
525 npf_conn_destroy(con);
526 return NULL;
527 }
528 fw->ck_backptr = bk->ck_backptr = con;
529 con->c_ifid = per_if ? nbuf->nb_ifid : 0;
530 con->c_proto = npc->npc_proto;
531
532 /*
533 * Set last activity time for a new connection and acquire
534 * a reference for the caller before we make it visible.
535 */
536 getnanouptime(&con->c_atime);
537 con->c_refcnt = 1;
538
539 /*
540 * Insert both keys (entries representing directions) of the
541 * connection. At this point it becomes visible, but we activate
542 * the connection later.
543 */
544 mutex_enter(&con->c_lock);
545 if (!npf_conndb_insert(conn_db, fw, con)) {
546 error = EISCONN;
547 goto err;
548 }
549 if (!npf_conndb_insert(conn_db, bk, con)) {
550 npf_conn_t *ret __diagused;
551 ret = npf_conndb_remove(conn_db, fw);
552 KASSERT(ret == con);
553 error = EISCONN;
554 goto err;
555 }
556 err:
557 /*
558 * If we have hit the duplicate: mark the connection as expired
559 * and let the G/C thread to take care of it. We cannot do it
560 * here since there might be references acquired already.
561 */
562 if (error) {
563 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
564 atomic_dec_uint(&con->c_refcnt);
565 npf_stats_inc(NPF_STAT_RACE_CONN);
566 } else {
567 NPF_PRINTF(("NPF: establish conn %p\n", con));
568 }
569
570 /* Finally, insert into the connection list. */
571 npf_conndb_enqueue(conn_db, con);
572 mutex_exit(&con->c_lock);
573
574 return error ? NULL : con;
575 }
576
577 static void
578 npf_conn_destroy(npf_conn_t *con)
579 {
580 KASSERT(con->c_refcnt == 0);
581
582 if (con->c_nat) {
583 /* Release any NAT structures. */
584 npf_nat_destroy(con->c_nat);
585 }
586 if (con->c_rproc) {
587 /* Release the rule procedure. */
588 npf_rproc_release(con->c_rproc);
589 }
590
591 /* Destroy the state. */
592 npf_state_destroy(&con->c_state);
593 mutex_destroy(&con->c_lock);
594
595 /* Free the structure, increase the counter. */
596 pool_cache_put(conn_cache, con);
597 npf_stats_inc(NPF_STAT_CONN_DESTROY);
598 NPF_PRINTF(("NPF: conn %p destroyed\n", con));
599 }
600
601 /*
602 * npf_conn_setnat: associate NAT entry with the connection, update and
603 * re-insert connection entry using the translation values.
604 *
605 * => The caller must be holding a reference.
606 */
607 int
608 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
609 npf_nat_t *nt, u_int ntype)
610 {
611 static const u_int nat_type_dimap[] = {
612 [NPF_NATOUT] = NPF_DST,
613 [NPF_NATIN] = NPF_SRC,
614 };
615 npf_connkey_t key, *bk;
616 npf_conn_t *ret __diagused;
617 npf_addr_t *taddr;
618 in_port_t tport;
619 u_int tidx;
620
621 KASSERT(con->c_refcnt > 0);
622
623 npf_nat_gettrans(nt, &taddr, &tport);
624 KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
625 tidx = nat_type_dimap[ntype];
626
627 /* Construct a "backwards" key. */
628 if (!npf_conn_conkey(npc, &key, false)) {
629 return EINVAL;
630 }
631
632 /* Acquire the lock and check for the races. */
633 mutex_enter(&con->c_lock);
634 if (__predict_false(con->c_flags & CONN_EXPIRE)) {
635 /* The connection got expired. */
636 mutex_exit(&con->c_lock);
637 return EINVAL;
638 }
639 KASSERT((con->c_flags & CONN_REMOVED) == 0);
640
641 if (__predict_false(con->c_nat != NULL)) {
642 /* Race with a duplicate packet. */
643 mutex_exit(&con->c_lock);
644 npf_stats_inc(NPF_STAT_RACE_NAT);
645 return EISCONN;
646 }
647
648 /* Remove the "backwards" entry. */
649 ret = npf_conndb_remove(conn_db, &con->c_back_entry);
650 KASSERT(ret == con);
651
652 /* Set the source/destination IDs to the translation values. */
653 bk = &con->c_back_entry;
654 connkey_set_addr(bk, taddr, tidx);
655 if (tport) {
656 connkey_set_id(bk, tport, tidx);
657 }
658
659 /* Finally, re-insert the "backwards" entry. */
660 if (!npf_conndb_insert(conn_db, bk, con)) {
661 /*
662 * Race: we have hit the duplicate, remove the "forwards"
663 * entry and expire our connection; it is no longer valid.
664 */
665 ret = npf_conndb_remove(conn_db, &con->c_forw_entry);
666 KASSERT(ret == con);
667
668 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
669 mutex_exit(&con->c_lock);
670
671 npf_stats_inc(NPF_STAT_RACE_NAT);
672 return EISCONN;
673 }
674
675 /* Associate the NAT entry and release the lock. */
676 con->c_nat = nt;
677 mutex_exit(&con->c_lock);
678 return 0;
679 }
680
681 /*
682 * npf_conn_expire: explicitly mark connection as expired.
683 */
684 void
685 npf_conn_expire(npf_conn_t *con)
686 {
687 /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
688 atomic_or_uint(&con->c_flags, CONN_EXPIRE);
689 }
690
691 /*
692 * npf_conn_pass: return true if connection is "pass" one, otherwise false.
693 */
694 bool
695 npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
696 {
697 KASSERT(con->c_refcnt > 0);
698 if (__predict_true(con->c_flags & CONN_PASS)) {
699 *rp = con->c_rproc;
700 return true;
701 }
702 return false;
703 }
704
705 /*
706 * npf_conn_setpass: mark connection as a "pass" one and associate the
707 * rule procedure with it.
708 */
709 void
710 npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
711 {
712 KASSERT((con->c_flags & CONN_ACTIVE) == 0);
713 KASSERT(con->c_refcnt > 0);
714 KASSERT(con->c_rproc == NULL);
715
716 /*
717 * No need for atomic since the connection is not yet active.
718 * If rproc is set, the caller transfers its reference to us,
719 * which will be released on npf_conn_destroy().
720 */
721 atomic_or_uint(&con->c_flags, CONN_PASS);
722 con->c_rproc = rp;
723 }
724
725 /*
726 * npf_conn_release: release a reference, which might allow G/C thread
727 * to destroy this connection.
728 */
729 void
730 npf_conn_release(npf_conn_t *con)
731 {
732 if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
733 /* Activate: after this, connection is globally visible. */
734 atomic_or_uint(&con->c_flags, CONN_ACTIVE);
735 }
736 KASSERT(con->c_refcnt > 0);
737 atomic_dec_uint(&con->c_refcnt);
738 }
739
740 /*
741 * npf_conn_getnat: return associated NAT data entry and indicate
742 * whether it is a "forwards" or "backwards" stream.
743 */
744 npf_nat_t *
745 npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
746 {
747 KASSERT(con->c_refcnt > 0);
748 *forw = (con->c_flags & PFIL_ALL) == di;
749 return con->c_nat;
750 }
751
752 /*
753 * npf_conn_expired: criterion to check if connection is expired.
754 */
755 static inline bool
756 npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
757 {
758 const int etime = npf_state_etime(&con->c_state, con->c_proto);
759 struct timespec tsdiff;
760
761 if (__predict_false(con->c_flags & CONN_EXPIRE)) {
762 /* Explicitly marked to be expired. */
763 return true;
764 }
765 timespecsub(tsnow, &con->c_atime, &tsdiff);
766 return tsdiff.tv_sec > etime;
767 }
768
769 /*
770 * npf_conn_gc: garbage collect the expired connections.
771 *
772 * => Must run in a single-threaded manner.
773 * => If it is a flush request, then destroy all connections.
774 * => If 'sync' is true, then perform passive serialisation.
775 */
776 void
777 npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
778 {
779 npf_conn_t *con, *prev, *gclist = NULL;
780 struct timespec tsnow;
781
782 getnanouptime(&tsnow);
783
784 /*
785 * Scan all connections and check them for expiration.
786 */
787 prev = NULL;
788 con = npf_conndb_getlist(cd);
789 while (con) {
790 npf_conn_t *next = con->c_next;
791
792 /* Expired? Flushing all? */
793 if (!npf_conn_expired(con, &tsnow) && !flush) {
794 prev = con;
795 con = next;
796 continue;
797 }
798
799 /* Remove both entries of the connection. */
800 mutex_enter(&con->c_lock);
801 if ((con->c_flags & CONN_REMOVED) == 0) {
802 npf_conn_t *ret __diagused;
803
804 ret = npf_conndb_remove(cd, &con->c_forw_entry);
805 KASSERT(ret == con);
806 ret = npf_conndb_remove(cd, &con->c_back_entry);
807 KASSERT(ret == con);
808 }
809
810 /* Flag the removal and expiration. */
811 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
812 mutex_exit(&con->c_lock);
813
814 /* Move to the G/C list. */
815 npf_conndb_dequeue(cd, con, prev);
816 con->c_next = gclist;
817 gclist = con;
818
819 /* Next.. */
820 con = next;
821 }
822 npf_conndb_settail(cd, prev);
823
824 /*
825 * Ensure it is safe to destroy the connections.
826 * Note: drop the conn_lock (see the lock order).
827 */
828 if (sync) {
829 mutex_exit(&conn_lock);
830 if (gclist) {
831 npf_config_enter();
832 npf_config_sync();
833 npf_config_exit();
834 }
835 }
836
837 /*
838 * Garbage collect all expired connections.
839 * May need to wait for the references to drain.
840 */
841 con = gclist;
842 while (con) {
843 npf_conn_t *next = con->c_next;
844
845 /*
846 * Destroy only if removed and no references.
847 * Otherwise, wait for a tiny moment.
848 */
849 if (__predict_false(con->c_refcnt)) {
850 kpause("npfcongc", false, 1, NULL);
851 continue;
852 }
853 npf_conn_destroy(con);
854 con = next;
855 }
856 }
857
858 /*
859 * npf_conn_worker: G/C to run from a worker thread.
860 */
861 static void
862 npf_conn_worker(void)
863 {
864 mutex_enter(&conn_lock);
865 /* Note: the conn_lock will be released (sync == true). */
866 npf_conn_gc(conn_db, false, true);
867 }
868
869 /*
870 * npf_conndb_export: construct a list of connections prepared for saving.
871 * Note: this is expected to be an expensive operation.
872 */
873 int
874 npf_conndb_export(prop_array_t conlist)
875 {
876 npf_conn_t *con, *prev;
877
878 /*
879 * Note: acquire conn_lock to prevent from the database
880 * destruction and G/C thread.
881 */
882 mutex_enter(&conn_lock);
883 if (conn_tracking != CONN_TRACKING_ON) {
884 mutex_exit(&conn_lock);
885 return 0;
886 }
887 prev = NULL;
888 con = npf_conndb_getlist(conn_db);
889 while (con) {
890 npf_conn_t *next = con->c_next;
891 prop_dictionary_t cdict;
892
893 if ((cdict = npf_conn_export(con)) != NULL) {
894 prop_array_add(conlist, cdict);
895 prop_object_release(cdict);
896 }
897 prev = con;
898 con = next;
899 }
900 npf_conndb_settail(conn_db, prev);
901 mutex_exit(&conn_lock);
902 return 0;
903 }
904
905 /*
906 * npf_conn_export: serialise a single connection.
907 */
908 prop_dictionary_t
909 npf_conn_export(const npf_conn_t *con)
910 {
911 prop_dictionary_t cdict;
912 prop_data_t d;
913
914 if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
915 return NULL;
916 }
917 cdict = prop_dictionary_create();
918 prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
919 prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
920 if (con->c_ifid) {
921 const char *ifname = npf_ifmap_getname(con->c_ifid);
922 prop_dictionary_set_cstring(cdict, "ifname", ifname);
923 }
924
925 d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
926 prop_dictionary_set_and_rel(cdict, "state", d);
927
928 const uint32_t *fkey = con->c_forw_entry.ck_key;
929 d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
930 prop_dictionary_set_and_rel(cdict, "forw-key", d);
931
932 const uint32_t *bkey = con->c_back_entry.ck_key;
933 d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
934 prop_dictionary_set_and_rel(cdict, "back-key", d);
935
936 if (con->c_nat) {
937 npf_nat_export(cdict, con->c_nat);
938 }
939 return cdict;
940 }
941
942 static uint32_t
943 npf_connkey_import(prop_dictionary_t idict, npf_connkey_t *key, uint16_t *dir)
944 {
945 uint16_t proto;
946 prop_object_t sobj, dobj;
947 uint16_t id[2];
948 npf_addr_t const * ips[2];
949
950 prop_dictionary_get_uint16(idict, "proto", &proto);
951 prop_dictionary_get_uint16(idict, "direction", dir);
952
953 prop_dictionary_get_uint16(idict, "sport", &id[NPF_SRC]);
954 prop_dictionary_get_uint16(idict, "dport", &id[NPF_DST]);
955
956 sobj = prop_dictionary_get(idict, "saddr");
957 if ((ips[NPF_SRC] = prop_data_data_nocopy(sobj)) == NULL)
958 return 0;
959
960 dobj = prop_dictionary_get(idict, "daddr");
961 if ((ips[NPF_DST] = prop_data_data_nocopy(dobj)) == NULL)
962 return 0;
963
964 size_t alen = prop_data_size(sobj);
965 if (alen != prop_data_size(dobj))
966 return 0;
967 *(const int *)ips[NPF_SRC], id[NPF_SRC],
968 *(const int *)ips[NPF_DST], id[NPF_DST], alen, proto, *dir);
969
970 return connkey_setkey(key, proto, ips, id, alen, true);
971 }
972
973 int
974 npf_conn_find(prop_dictionary_t idict, prop_dictionary_t *odict)
975 {
976 npf_connkey_t key;
977 npf_conn_t *con;
978 uint16_t dir;
979 bool forw;
980
981 if (!npf_connkey_import(idict, &key, &dir)) {
982 return EINVAL;
983 }
984
985 con = npf_conndb_lookup(conn_db, &key, &forw);
986 if (con == NULL) {
987 return ESRCH;
988 }
989
990 dir = dir == PFIL_IN ? PFIL_OUT : PFIL_IN;
991 if (!npf_conn_ok(con, dir, true)) {
992 atomic_dec_uint(&con->c_refcnt);
993 return ESRCH;
994 }
995
996 *odict = npf_conn_export(con);
997 if (*odict == NULL) {
998 atomic_dec_uint(&con->c_refcnt);
999 return ENOSPC;
1000 }
1001 atomic_dec_uint(&con->c_refcnt);
1002
1003 return 0;
1004 }
1005
1006 /*
1007 * npf_conn_import: fully reconstruct a single connection from a
1008 * directory and insert into the given database.
1009 */
1010 int
1011 npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
1012 npf_ruleset_t *natlist)
1013 {
1014 npf_conn_t *con;
1015 npf_connkey_t *fw, *bk;
1016 prop_object_t obj;
1017 const char *ifname;
1018 const void *d;
1019
1020 /* Allocate a connection and initialise it (clear first). */
1021 con = pool_cache_get(conn_cache, PR_WAITOK);
1022 memset(con, 0, sizeof(npf_conn_t));
1023 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
1024 npf_stats_inc(NPF_STAT_CONN_CREATE);
1025
1026 prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
1027 prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
1028 con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
1029 getnanouptime(&con->c_atime);
1030
1031 if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) &&
1032 (con->c_ifid = npf_ifmap_register(ifname)) == 0) {
1033 goto err;
1034 }
1035
1036 obj = prop_dictionary_get(cdict, "state");
1037 if ((d = prop_data_data_nocopy(obj)) == NULL ||
1038 prop_data_size(obj) != sizeof(npf_state_t)) {
1039 goto err;
1040 }
1041 memcpy(&con->c_state, d, sizeof(npf_state_t));
1042
1043 /* Reconstruct NAT association, if any. */
1044 if ((obj = prop_dictionary_get(cdict, "nat")) != NULL &&
1045 (con->c_nat = npf_nat_import(obj, natlist, con)) == NULL) {
1046 goto err;
1047 }
1048
1049 /*
1050 * Fetch and copy the keys for each direction.
1051 */
1052 obj = prop_dictionary_get(cdict, "forw-key");
1053 if ((d = prop_data_data_nocopy(obj)) == NULL ||
1054 prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
1055 goto err;
1056 }
1057 fw = &con->c_forw_entry;
1058 memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
1059
1060 obj = prop_dictionary_get(cdict, "back-key");
1061 if ((d = prop_data_data_nocopy(obj)) == NULL ||
1062 prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
1063 goto err;
1064 }
1065 bk = &con->c_back_entry;
1066 memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
1067
1068 fw->ck_backptr = bk->ck_backptr = con;
1069
1070 /* Insert the entries and the connection itself. */
1071 if (!npf_conndb_insert(cd, fw, con)) {
1072 goto err;
1073 }
1074 if (!npf_conndb_insert(cd, bk, con)) {
1075 npf_conndb_remove(cd, fw);
1076 goto err;
1077 }
1078
1079 NPF_PRINTF(("NPF: imported conn %p\n", con));
1080 npf_conndb_enqueue(cd, con);
1081 return 0;
1082 err:
1083 npf_conn_destroy(con);
1084 return EINVAL;
1085 }
1086
1087 #if defined(DDB) || defined(_NPF_TESTING)
1088
1089 void
1090 npf_conn_print(const npf_conn_t *con)
1091 {
1092 const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
1093 const uint32_t *fkey = con->c_forw_entry.ck_key;
1094 const uint32_t *bkey = con->c_back_entry.ck_key;
1095 const u_int proto = con->c_proto;
1096 struct timespec tsnow, tsdiff;
1097 const void *src, *dst;
1098 int etime;
1099
1100 getnanouptime(&tsnow);
1101 timespecsub(&tsnow, &con->c_atime, &tsdiff);
1102 etime = npf_state_etime(&con->c_state, proto);
1103
1104 printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
1105 con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
1106
1107 src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
1108 printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
1109 printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
1110
1111 src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
1112 printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
1113 printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
1114
1115 npf_state_dump(&con->c_state);
1116 if (con->c_nat) {
1117 npf_nat_dump(con->c_nat);
1118 }
1119 }
1120
1121 #endif
1122