Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.2
      1 /*	$NetBSD: npf_conn.c,v 1.2 2014/07/19 20:59:01 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
      5  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This material is based upon work partially supported by The
      9  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * NPF connection tracking for stateful filtering and translation.
     35  *
     36  * Overview
     37  *
     38  *	Connection direction is identified by the direction of its first
     39  *	packet.  Packets can be incoming or outgoing with respect to an
     40  *	interface.  To describe the packet in the context of connection
     41  *	direction we will use the terms "forwards stream" and "backwards
     42  *	stream".  All connections have two keys and thus two entries:
     43  *
     44  *		npf_conn_t::c_forw_entry for the forwards stream and
     45  *		npf_conn_t::c_back_entry for the backwards stream.
     46  *
     47  *	The keys are formed from the 5-tuple (source/destination address,
     48  *	source/destination port and the protocol).  Additional matching
     49  *	is performed for the interface (a common behaviour is equivalent
     50  *	to the 6-tuple lookup including the interface ID).  Note that the
     51  *	key may be formed using translated values in a case of NAT.
     52  *
     53  *	Connections can serve two purposes: for the implicit passing or
     54  *	to accommodate the dynamic NAT.  Connections for the former purpose
     55  *	are created by the rules with "stateful" attribute and are used for
     56  *	stateful filtering.  Such connections indicate that the packet of
     57  *	the backwards stream should be passed without inspection of the
     58  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     59  *	with a connection.  Such connections are created by the NAT policies
     60  *	and they have a relationship with NAT translation structure via
     61  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     62  *	which is a common case.
     63  *
     64  * Connection life-cycle
     65  *
     66  *	Connections are established when a packet matches said rule or
     67  *	NAT policy.  Both keys of the established connection are inserted
     68  *	into the connection database.  A garbage collection thread
     69  *	periodically scans all connections and depending on connection
     70  *	properties (e.g. last activity time, protocol) removes connection
     71  *	entries and expires the actual connections.
     72  *
     73  *	Each connection has a reference count.  The reference is acquired
     74  *	on lookup and should be released by the caller.  It guarantees that
     75  *	the connection will not be destroyed, although it may be expired.
     76  *
     77  * Synchronisation
     78  *
     79  *	Connection database is accessed in a lock-less manner by the main
     80  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     81  *	are always called from a software interrupt, the database is
     82  *	protected using passive serialisation.  The main place which can
     83  *	destroy a connection is npf_conn_worker().  The database itself
     84  *	can be replaced and destroyed in npf_conn_reload().
     85  *
     86  * ALG support
     87  *
     88  *	Application-level gateways (ALGs) can override generic connection
     89  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     90  *	performing their own lookup using different key.  Recursive call
     91  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     92  *	npf_conn_lookup() function for this purpose.
     93  *
     94  * Lock order
     95  *
     96  *	conn_lock ->
     97  *		[ npf_config_lock -> ]
     98  *			npf_hashbucket_t::cd_lock ->
     99  *				npf_conn_t::c_lock
    100  */
    101 
    102 #include <sys/cdefs.h>
    103 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.2 2014/07/19 20:59:01 rmind Exp $");
    104 
    105 #include <sys/param.h>
    106 #include <sys/types.h>
    107 
    108 #include <netinet/in.h>
    109 #include <netinet/tcp.h>
    110 
    111 #include <sys/atomic.h>
    112 #include <sys/condvar.h>
    113 #include <sys/kmem.h>
    114 #include <sys/kthread.h>
    115 #include <sys/mutex.h>
    116 #include <net/pfil.h>
    117 #include <sys/pool.h>
    118 #include <sys/queue.h>
    119 #include <sys/systm.h>
    120 
    121 #define __NPF_CONN_PRIVATE
    122 #include "npf_conn.h"
    123 #include "npf_impl.h"
    124 
    125 /*
    126  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    127  */
    128 CTASSERT(PFIL_ALL == (0x001 | 0x002));
    129 #define	CONN_ACTIVE	0x004	/* visible on inspection */
    130 #define	CONN_PASS	0x008	/* perform implicit passing */
    131 #define	CONN_EXPIRE	0x010	/* explicitly expire */
    132 #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    133 
    134 /*
    135  * Connection tracking state: disabled (off), enabled (on) or flush request.
    136  */
    137 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON, CONN_TRACKING_FLUSH };
    138 static volatile int	conn_tracking	__cacheline_aligned;
    139 
    140 /* Connection tracking database, connection cache and the lock. */
    141 static npf_conndb_t *	conn_db		__read_mostly;
    142 static pool_cache_t	conn_cache	__read_mostly;
    143 static kmutex_t		conn_lock	__cacheline_aligned;
    144 static kcondvar_t	conn_cv		__cacheline_aligned;
    145 
    146 static void	npf_conn_worker(void);
    147 static void	npf_conn_destroy(npf_conn_t *);
    148 
    149 /*
    150  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    151  *
    152  * Connection database is initialised when connection tracking gets
    153  * enabled via npf_conn_tracking() interface.
    154  */
    155 
    156 void
    157 npf_conn_sysinit(void)
    158 {
    159 	conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
    160 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
    161 	mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
    162 	cv_init(&conn_cv, "npfconcv");
    163 	conn_tracking = CONN_TRACKING_OFF;
    164 	conn_db = NULL;
    165 
    166 	npf_worker_register(npf_conn_worker);
    167 }
    168 
    169 void
    170 npf_conn_sysfini(void)
    171 {
    172 	/* Disable tracking, flush all connections. */
    173 	npf_conn_tracking(false);
    174 	npf_worker_unregister(npf_conn_worker);
    175 
    176 	KASSERT(conn_tracking == CONN_TRACKING_OFF);
    177 	KASSERT(conn_db == NULL);
    178 	pool_cache_destroy(conn_cache);
    179 	mutex_destroy(&conn_lock);
    180 	cv_destroy(&conn_cv);
    181 }
    182 
    183 /*
    184  * npf_conn_reload: perform the reload by flushing the current connection
    185  * database and replacing with the new one or just destroying.
    186  *
    187  * Key routine synchronising with all other readers and writers.
    188  */
    189 static void
    190 npf_conn_reload(npf_conndb_t *ndb, int tracking)
    191 {
    192 	npf_conndb_t *odb;
    193 
    194 	/* Must synchronise with G/C thread and connection saving/restoring. */
    195 	mutex_enter(&conn_lock);
    196 	while (conn_tracking == CONN_TRACKING_FLUSH) {
    197 		cv_wait(&conn_cv, &conn_lock);
    198 	}
    199 
    200 	/*
    201 	 * Set the flush status.  It disables connection inspection as well
    202 	 * as creation.  There may be some operations in-flight, drain them.
    203 	 */
    204 	npf_config_enter();
    205 	conn_tracking = CONN_TRACKING_FLUSH;
    206 	npf_config_sync();
    207 	npf_config_exit();
    208 
    209 	/* Notify the worker to G/C all connections. */
    210 	npf_worker_signal();
    211 	while (conn_tracking == CONN_TRACKING_FLUSH) {
    212 		cv_wait(&conn_cv, &conn_lock);
    213 	}
    214 
    215 	/* Install the new database, make it visible. */
    216 	odb = atomic_swap_ptr(&conn_db, ndb);
    217 	membar_sync();
    218 	conn_tracking = tracking;
    219 
    220 	/* Done.  Destroy the old database, if any. */
    221 	mutex_exit(&conn_lock);
    222 	if (odb) {
    223 		npf_conndb_destroy(odb);
    224 	}
    225 }
    226 
    227 /*
    228  * npf_conn_tracking: enable/disable connection tracking.
    229  */
    230 void
    231 npf_conn_tracking(bool track)
    232 {
    233 	if (conn_tracking == CONN_TRACKING_OFF && track) {
    234 		/* Disabled -> Enable. */
    235 		npf_conndb_t *cd = npf_conndb_create();
    236 		npf_conn_reload(cd, CONN_TRACKING_ON);
    237 		return;
    238 	}
    239 	if (conn_tracking == CONN_TRACKING_ON && !track) {
    240 		/* Enabled -> Disable. */
    241 		npf_conn_reload(NULL, CONN_TRACKING_OFF);
    242 		pool_cache_invalidate(conn_cache);
    243 		return;
    244 	}
    245 }
    246 
    247 static bool
    248 npf_conn_trackable_p(const npf_cache_t *npc)
    249 {
    250 	/*
    251 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    252 	 * not cached - protocol is not supported or packet is invalid.
    253 	 */
    254 	if (conn_tracking != CONN_TRACKING_ON) {
    255 		return false;
    256 	}
    257 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    258 		return false;
    259 	}
    260 	return true;
    261 }
    262 
    263 /*
    264  * npf_conn_conkey: construct a key for the connection lookup.
    265  */
    266 bool
    267 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
    268 {
    269 	const u_int alen = npc->npc_alen;
    270 	const struct tcphdr *th;
    271 	const struct udphdr *uh;
    272 	u_int keylen, isrc, idst;
    273 	uint16_t id[2];
    274 
    275 	switch (npc->npc_proto) {
    276 	case IPPROTO_TCP:
    277 		KASSERT(npf_iscached(npc, NPC_TCP));
    278 		th = npc->npc_l4.tcp;
    279 		id[NPF_SRC] = th->th_sport;
    280 		id[NPF_DST] = th->th_dport;
    281 		break;
    282 	case IPPROTO_UDP:
    283 		KASSERT(npf_iscached(npc, NPC_UDP));
    284 		uh = npc->npc_l4.udp;
    285 		id[NPF_SRC] = uh->uh_sport;
    286 		id[NPF_DST] = uh->uh_dport;
    287 		break;
    288 	case IPPROTO_ICMP:
    289 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    290 			const struct icmp *ic = npc->npc_l4.icmp;
    291 			id[NPF_SRC] = ic->icmp_id;
    292 			id[NPF_DST] = ic->icmp_id;
    293 			break;
    294 		}
    295 		return false;
    296 	case IPPROTO_ICMPV6:
    297 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    298 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    299 			id[NPF_SRC] = ic6->icmp6_id;
    300 			id[NPF_DST] = ic6->icmp6_id;
    301 			break;
    302 		}
    303 		return false;
    304 	default:
    305 		/* Unsupported protocol. */
    306 		return false;
    307 	}
    308 
    309 	/*
    310 	 * Finally, construct a key formed out of 32-bit integers.
    311 	 */
    312 	if (__predict_true(forw)) {
    313 		isrc = NPF_SRC, idst = NPF_DST;
    314 	} else {
    315 		isrc = NPF_DST, idst = NPF_SRC;
    316 	}
    317 
    318 	key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff);
    319 	key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    320 
    321 	if (__predict_true(alen == sizeof(in_addr_t))) {
    322 		key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0];
    323 		key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0];
    324 		keylen = 4 * sizeof(uint32_t);
    325 	} else {
    326 		const u_int nwords = alen >> 2;
    327 		memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen);
    328 		memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen);
    329 		keylen = (2 + (nwords * 2)) * sizeof(uint32_t);
    330 	}
    331 	(void)keylen;
    332 	return true;
    333 }
    334 
    335 static __always_inline void
    336 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
    337 {
    338 	const u_int alen = key->ck_key[0] & 0xffff;
    339 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
    340 
    341 	KASSERT(alen > 0);
    342 	memcpy(addr, naddr, alen);
    343 }
    344 
    345 static __always_inline void
    346 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
    347 {
    348 	const uint32_t oid = key->ck_key[1];
    349 	const u_int shift = 16 * !di;
    350 	const uint32_t mask = 0xffff0000 >> shift;
    351 
    352 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
    353 }
    354 
    355 /*
    356  * npf_conn_lookup: lookup if there is an established connection.
    357  *
    358  * => If found, we will hold a reference for the caller.
    359  */
    360 npf_conn_t *
    361 npf_conn_lookup(const npf_cache_t *npc, const nbuf_t *nbuf,
    362     const int di, bool *forw)
    363 {
    364 	npf_conn_t *con;
    365 	npf_connkey_t key;
    366 	u_int flags, cifid;
    367 	bool ok, pforw;
    368 
    369 	/* Construct a key and lookup for a connection in the store. */
    370 	if (!npf_conn_conkey(npc, &key, true)) {
    371 		return NULL;
    372 	}
    373 	con = npf_conndb_lookup(conn_db, &key, forw);
    374 	if (con == NULL) {
    375 		return NULL;
    376 	}
    377 	KASSERT(npc->npc_proto == con->c_proto);
    378 
    379 	/* Check if connection is active and not expired. */
    380 	flags = con->c_flags;
    381 	ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    382 
    383 	if (__predict_false(!ok)) {
    384 		atomic_dec_uint(&con->c_refcnt);
    385 		return NULL;
    386 	}
    387 
    388 	/*
    389 	 * Match the interface and the direction of the connection entry
    390 	 * and the packet.
    391 	 */
    392 	cifid = con->c_ifid;
    393 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
    394 		atomic_dec_uint(&con->c_refcnt);
    395 		return NULL;
    396 	}
    397 	pforw = (flags & PFIL_ALL) == di;
    398 	if (__predict_false(*forw != pforw)) {
    399 		atomic_dec_uint(&con->c_refcnt);
    400 		return NULL;
    401 	}
    402 
    403 	/* Update the last activity time. */
    404 	getnanouptime(&con->c_atime);
    405 	return con;
    406 }
    407 
    408 /*
    409  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    410  *
    411  * => If found, we will hold a reference for the caller.
    412  */
    413 npf_conn_t *
    414 npf_conn_inspect(npf_cache_t *npc, nbuf_t *nbuf, const int di, int *error)
    415 {
    416 	npf_conn_t *con;
    417 	bool forw, ok;
    418 
    419 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    420 	if (!npf_conn_trackable_p(npc)) {
    421 		return NULL;
    422 	}
    423 
    424 	/* Query ALG which may lookup connection for us. */
    425 	if ((con = npf_alg_conn(npc, nbuf, di)) != NULL) {
    426 		/* Note: reference is held. */
    427 		return con;
    428 	}
    429 	if (nbuf_head_mbuf(nbuf) == NULL) {
    430 		*error = ENOMEM;
    431 		return NULL;
    432 	}
    433 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    434 
    435 	/* Main lookup of the connection. */
    436 	if ((con = npf_conn_lookup(npc, nbuf, di, &forw)) == NULL) {
    437 		return NULL;
    438 	}
    439 
    440 	/* Inspect the protocol data and handle state changes. */
    441 	mutex_enter(&con->c_lock);
    442 	ok = npf_state_inspect(npc, nbuf, &con->c_state, forw);
    443 	mutex_exit(&con->c_lock);
    444 
    445 	if (__predict_false(!ok)) {
    446 		/* Invalid: let the rules deal with it. */
    447 		npf_conn_release(con);
    448 		npf_stats_inc(NPF_STAT_INVALID_STATE);
    449 		con = NULL;
    450 	}
    451 	return con;
    452 }
    453 
    454 /*
    455  * npf_conn_establish: create a new connection, insert into the global list.
    456  *
    457  * => Connection is created with the reference held for the caller.
    458  * => Connection will be activated on the first reference release.
    459  */
    460 npf_conn_t *
    461 npf_conn_establish(npf_cache_t *npc, nbuf_t *nbuf, int di, bool per_if)
    462 {
    463 	npf_conn_t *con;
    464 
    465 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    466 
    467 	if (!npf_conn_trackable_p(npc)) {
    468 		return NULL;
    469 	}
    470 
    471 	/* Allocate and initialise the new connection. */
    472 	con = pool_cache_get(conn_cache, PR_NOWAIT);
    473 	if (__predict_false(!con)) {
    474 		return NULL;
    475 	}
    476 	NPF_PRINTF(("NPF: create conn %p\n", con));
    477 	npf_stats_inc(NPF_STAT_SESSION_CREATE);
    478 
    479 	/* Reference count and flags (indicate direction). */
    480 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    481 	con->c_flags = (di & PFIL_ALL);
    482 	con->c_refcnt = 1;
    483 	con->c_rproc = NULL;
    484 	con->c_nat = NULL;
    485 
    486 	/* Initialize protocol state. */
    487 	if (!npf_state_init(npc, nbuf, &con->c_state)) {
    488 		goto err;
    489 	}
    490 
    491 	KASSERT(npf_iscached(npc, NPC_IP46));
    492 	npf_connkey_t *fw = &con->c_forw_entry;
    493 	npf_connkey_t *bk = &con->c_back_entry;
    494 
    495 	/*
    496 	 * Construct "forwards" and "backwards" keys.  Also, set the
    497 	 * interface ID for this connection (unless it is global).
    498 	 */
    499 	if (!npf_conn_conkey(npc, fw, true)) {
    500 		goto err;
    501 	}
    502 	if (!npf_conn_conkey(npc, bk, false)) {
    503 		goto err;
    504 	}
    505 	fw->ck_backptr = bk->ck_backptr = con;
    506 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
    507 	con->c_proto = npc->npc_proto;
    508 
    509 	/* Set last activity time for a new connection. */
    510 	getnanouptime(&con->c_atime);
    511 
    512 	/*
    513 	 * Insert both keys (entries representing directions) of the
    514 	 * connection.  At this point, it becomes visible.
    515 	 */
    516 	if (!npf_conndb_insert(conn_db, fw, con)) {
    517 		goto err;
    518 	}
    519 	if (!npf_conndb_insert(conn_db, bk, con)) {
    520 		/* We have hit the duplicate. */
    521 		npf_conndb_remove(conn_db, fw);
    522 		npf_stats_inc(NPF_STAT_RACE_SESSION);
    523 		goto err;
    524 	}
    525 
    526 	/* Finally, insert into the connection list. */
    527 	NPF_PRINTF(("NPF: establish conn %p\n", con));
    528 	npf_conndb_enqueue(conn_db, con);
    529 	return con;
    530 err:
    531 	npf_conn_destroy(con);
    532 	return NULL;
    533 }
    534 
    535 static void
    536 npf_conn_destroy(npf_conn_t *con)
    537 {
    538 	if (con->c_nat) {
    539 		/* Release any NAT structures. */
    540 		npf_nat_destroy(con->c_nat);
    541 	}
    542 	if (con->c_rproc) {
    543 		/* Release the rule procedure. */
    544 		npf_rproc_release(con->c_rproc);
    545 	}
    546 
    547 	/* Destroy the state. */
    548 	npf_state_destroy(&con->c_state);
    549 	mutex_destroy(&con->c_lock);
    550 
    551 	/* Free the structure, increase the counter. */
    552 	pool_cache_put(conn_cache, con);
    553 	npf_stats_inc(NPF_STAT_SESSION_DESTROY);
    554 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    555 }
    556 
    557 /*
    558  * npf_conn_setnat: associate NAT entry with the connection, update and
    559  * re-insert connection entry using the translation values.
    560  */
    561 int
    562 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    563     npf_nat_t *nt, u_int ntype)
    564 {
    565 	static const u_int nat_type_dimap[] = {
    566 		[NPF_NATOUT] = NPF_DST,
    567 		[NPF_NATIN] = NPF_SRC,
    568 	};
    569 	npf_connkey_t key, *bk;
    570 	npf_conn_t *ret __diagused;
    571 	npf_addr_t *taddr;
    572 	in_port_t tport;
    573 	u_int tidx;
    574 
    575 	KASSERT(con->c_refcnt > 0);
    576 
    577 	npf_nat_gettrans(nt, &taddr, &tport);
    578 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    579 	tidx = nat_type_dimap[ntype];
    580 
    581 	/* Construct a "backwards" key. */
    582 	if (!npf_conn_conkey(npc, &key, false)) {
    583 		return EINVAL;
    584 	}
    585 
    586 	/* Acquire the lock and check for the races. */
    587 	mutex_enter(&con->c_lock);
    588 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    589 		/* The connection got expired. */
    590 		mutex_exit(&con->c_lock);
    591 		return EINVAL;
    592 	}
    593 	if (__predict_false(con->c_nat != NULL)) {
    594 		/* Race with a duplicate packet. */
    595 		mutex_exit(&con->c_lock);
    596 		npf_stats_inc(NPF_STAT_RACE_NAT);
    597 		return EISCONN;
    598 	}
    599 
    600 	/* Remove the "backwards" entry. */
    601 	ret = npf_conndb_remove(conn_db, &key);
    602 	KASSERT(ret == con);
    603 
    604 	/* Set the source/destination IDs to the translation values. */
    605 	bk = &con->c_back_entry;
    606 	connkey_set_addr(bk, taddr, tidx);
    607 	if (tport) {
    608 		connkey_set_id(bk, tport, tidx);
    609 	}
    610 
    611 	/* Finally, re-insert the "backwards" entry. */
    612 	if (!npf_conndb_insert(conn_db, bk, con)) {
    613 		/*
    614 		 * Race: we have hit the duplicate, remove the "forwards"
    615 		 * entry and expire our connection; it is no longer valid.
    616 		 */
    617 		(void)npf_conndb_remove(conn_db, &con->c_forw_entry);
    618 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    619 		mutex_exit(&con->c_lock);
    620 
    621 		npf_stats_inc(NPF_STAT_RACE_NAT);
    622 		return EISCONN;
    623 	}
    624 
    625 	/* Associate the NAT entry and release the lock. */
    626 	con->c_nat = nt;
    627 	mutex_exit(&con->c_lock);
    628 	return 0;
    629 }
    630 
    631 /*
    632  * npf_conn_expire: explicitly mark connection as expired.
    633  */
    634 void
    635 npf_conn_expire(npf_conn_t *con)
    636 {
    637 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    638 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    639 }
    640 
    641 /*
    642  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    643  */
    644 bool
    645 npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
    646 {
    647 	KASSERT(con->c_refcnt > 0);
    648 	if (__predict_true(con->c_flags & CONN_PASS)) {
    649 		*rp = con->c_rproc;
    650 		return true;
    651 	}
    652 	return false;
    653 }
    654 
    655 /*
    656  * npf_conn_setpass: mark connection as a "pass" one and associate the
    657  * rule procedure with it.
    658  */
    659 void
    660 npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
    661 {
    662 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    663 	KASSERT(con->c_refcnt > 0);
    664 	KASSERT(con->c_rproc == NULL);
    665 
    666 	/*
    667 	 * No need for atomic since the connection is not yet active.
    668 	 * If rproc is set, the caller transfers its reference to us,
    669 	 * which will be released on npf_conn_destroy().
    670 	 */
    671 	con->c_flags |= CONN_PASS;
    672 	con->c_rproc = rp;
    673 }
    674 
    675 /*
    676  * npf_conn_release: release a reference, which might allow G/C thread
    677  * to destroy this connection.
    678  */
    679 void
    680 npf_conn_release(npf_conn_t *con)
    681 {
    682 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    683 		/* Activate: after this, connection is globally visible. */
    684 		con->c_flags |= CONN_ACTIVE;
    685 	}
    686 	KASSERT(con->c_refcnt > 0);
    687 	atomic_dec_uint(&con->c_refcnt);
    688 }
    689 
    690 /*
    691  * npf_conn_retnat: return associated NAT data entry and indicate
    692  * whether it is a "forwards" or "backwards" stream.
    693  */
    694 npf_nat_t *
    695 npf_conn_retnat(npf_conn_t *con, const int di, bool *forw)
    696 {
    697 	KASSERT(con->c_refcnt > 0);
    698 	*forw = (con->c_flags & PFIL_ALL) == di;
    699 	return con->c_nat;
    700 }
    701 
    702 /*
    703  * npf_conn_expired: criterion to check if connection is expired.
    704  */
    705 static inline bool
    706 npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
    707 {
    708 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
    709 	struct timespec tsdiff;
    710 
    711 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    712 		/* Explicitly marked to be expired. */
    713 		return true;
    714 	}
    715 	timespecsub(tsnow, &con->c_atime, &tsdiff);
    716 	return tsdiff.tv_sec > etime;
    717 }
    718 
    719 /*
    720  * npf_conn_worker: G/C to run from a worker thread.
    721  */
    722 static void
    723 npf_conn_worker(void)
    724 {
    725 	npf_conn_t *con, *prev, *gclist = NULL;
    726 	npf_conndb_t *cd;
    727 	struct timespec tsnow;
    728 	bool flushall;
    729 
    730 	mutex_enter(&conn_lock);
    731 	if ((cd = conn_db) == NULL) {
    732 		goto done;
    733 	}
    734 	flushall = (conn_tracking != CONN_TRACKING_ON);
    735 	getnanouptime(&tsnow);
    736 
    737 	/*
    738 	 * Scan all connections and check them for expiration.
    739 	 */
    740 	prev = NULL;
    741 	con = npf_conndb_getlist(cd);
    742 	while (con) {
    743 		npf_conn_t *next = con->c_next;
    744 
    745 		/* Expired?  Flushing all? */
    746 		if (!npf_conn_expired(con, &tsnow) && !flushall) {
    747 			prev = con;
    748 			con = next;
    749 			continue;
    750 		}
    751 
    752 		/* Remove both entries of the connection. */
    753 		mutex_enter(&con->c_lock);
    754 		if ((con->c_flags & CONN_REMOVED) == 0) {
    755 			npf_conn_t *ret __diagused;
    756 
    757 			ret = npf_conndb_remove(cd, &con->c_forw_entry);
    758 			KASSERT(ret == con);
    759 			ret = npf_conndb_remove(cd, &con->c_back_entry);
    760 			KASSERT(ret == con);
    761 		}
    762 
    763 		/* Flag the removal and expiration. */
    764 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    765 		mutex_exit(&con->c_lock);
    766 
    767 		/* Move to the G/C list. */
    768 		npf_conndb_dequeue(cd, con, prev);
    769 		con->c_next = gclist;
    770 		gclist = con;
    771 
    772 		/* Next.. */
    773 		con = next;
    774 	}
    775 	npf_conndb_settail(cd, prev);
    776 done:
    777 	/* Ensure we it is safe to destroy the connections. */
    778 	if (gclist) {
    779 		npf_config_enter();
    780 		npf_config_sync();
    781 		npf_config_exit();
    782 	}
    783 
    784 	/*
    785 	 * Garbage collect all expired connections.
    786 	 * May need to wait for the references to drain.
    787 	 */
    788 	con = gclist;
    789 	while (con) {
    790 		npf_conn_t *next = con->c_next;
    791 
    792 		/*
    793 		 * Destroy only if removed and no references.
    794 		 * Otherwise, wait for a tiny moment.
    795 		 */
    796 		if (__predict_false(con->c_refcnt)) {
    797 			kpause("npfcongc", false, 1, NULL);
    798 			continue;
    799 		}
    800 		npf_conn_destroy(con);
    801 		con = next;
    802 	}
    803 
    804 	if (conn_tracking == CONN_TRACKING_FLUSH) {
    805 		/* Flush was requested - indicate we are done. */
    806 		conn_tracking = CONN_TRACKING_OFF;
    807 		cv_broadcast(&conn_cv);
    808 	}
    809 	mutex_exit(&conn_lock);
    810 }
    811 
    812 void
    813 npf_conn_load(npf_conndb_t *cd)
    814 {
    815 	KASSERT(cd != NULL);
    816 	npf_conn_reload(cd, CONN_TRACKING_ON);
    817 }
    818 
    819 /*
    820  * npf_conn_save: construct a list of connections prepared for saving.
    821  * Note: this is expected to be an expensive operation.
    822  */
    823 int
    824 npf_conn_save(prop_array_t conlist, prop_array_t nplist)
    825 {
    826 	npf_conn_t *con, *prev;
    827 	int error;
    828 
    829 	/*
    830 	 * Note: acquire conn_lock to prevent from the database
    831 	 * destruction and G/C thread.
    832 	 */
    833 	mutex_enter(&conn_lock);
    834 	if (!conn_db || conn_tracking != CONN_TRACKING_ON) {
    835 		mutex_exit(&conn_lock);
    836 		return 0;
    837 	}
    838 	prev = NULL;
    839 	con = npf_conndb_getlist(conn_db);
    840 	while (con) {
    841 		npf_conn_t *next = con->c_next;
    842 		prop_data_t d;
    843 
    844 		if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE)
    845 			goto skip;
    846 
    847 		prop_dictionary_t cdict = prop_dictionary_create();
    848 		prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
    849 		prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
    850 		/* FIXME: interface-id */
    851 
    852 		d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
    853 		prop_dictionary_set_and_rel(cdict, "state", d);
    854 
    855 		const uint32_t *fkey = con->c_forw_entry.ck_key;
    856 		d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
    857 		prop_dictionary_set_and_rel(cdict, "forw-key", d);
    858 
    859 		const uint32_t *bkey = con->c_back_entry.ck_key;
    860 		d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
    861 		prop_dictionary_set_and_rel(cdict, "back-key", d);
    862 
    863 		CTASSERT(sizeof(uintptr_t) <= sizeof(uint64_t));
    864 		prop_dictionary_set_uint64(cdict, "id-ptr", (uintptr_t)con);
    865 
    866 		if (con->c_nat) {
    867 			npf_nat_save(cdict, nplist, con->c_nat);
    868 		}
    869 		prop_array_add(conlist, cdict);
    870 		prop_object_release(cdict);
    871 skip:
    872 		prev = con;
    873 		con = next;
    874 	}
    875 	npf_conndb_settail(conn_db, prev);
    876 	mutex_exit(&conn_lock);
    877 
    878 	return error;
    879 }
    880 
    881 /*
    882  * npf_conn_restore: fully reconstruct a single connection from a directory
    883  * and insert into the given database.
    884  */
    885 int
    886 npf_conn_restore(npf_conndb_t *cd, prop_dictionary_t cdict)
    887 {
    888 	npf_conn_t *con;
    889 	npf_connkey_t *fw, *bk;
    890 	prop_object_t obj;
    891 	const void *d;
    892 
    893 	/* Allocate a connection and initialise it (clear first). */
    894 	con = pool_cache_get(conn_cache, PR_WAITOK);
    895 	memset(con, 0, sizeof(npf_conn_t));
    896 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    897 
    898 	prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
    899 	prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
    900 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
    901 	getnanouptime(&con->c_atime);
    902 
    903 	obj = prop_dictionary_get(cdict, "state");
    904 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    905 	    prop_data_size(obj) != sizeof(npf_state_t)) {
    906 		goto err;
    907 	}
    908 	memcpy(&con->c_state, d, sizeof(npf_state_t));
    909 
    910 	/* Reconstruct NAT association, if any, or return NULL. */
    911 	con->c_nat = npf_nat_restore(cdict, con);
    912 
    913 	/*
    914 	 * Fetch and copy the keys for each direction.
    915 	 */
    916 	obj = prop_dictionary_get(cdict, "forw-key");
    917 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    918 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    919 		goto err;
    920 	}
    921 	fw = &con->c_forw_entry;
    922 	memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
    923 
    924 	obj = prop_dictionary_get(cdict, "back-key");
    925 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    926 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    927 		goto err;
    928 	}
    929 	bk = &con->c_back_entry;
    930 	memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
    931 
    932 	fw->ck_backptr = bk->ck_backptr = con;
    933 
    934 	/* Insert the entries and the connection itself. */
    935 	if (!npf_conndb_insert(cd, fw, con)) {
    936 		goto err;
    937 	}
    938 	if (!npf_conndb_insert(cd, bk, con)) {
    939 		npf_conndb_remove(cd, fw);
    940 		goto err;
    941 	}
    942 	npf_conndb_enqueue(cd, con);
    943 	return 0;
    944 err:
    945 	npf_conn_destroy(con);
    946 	return EINVAL;
    947 }
    948 
    949 #if defined(DDB) || defined(_NPF_TESTING)
    950 
    951 void
    952 npf_conn_print(const npf_conn_t *con)
    953 {
    954 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
    955 	const uint32_t *fkey = con->c_forw_entry.ck_key;
    956 	const uint32_t *bkey = con->c_back_entry.ck_key;
    957 	const u_int proto = con->c_proto;
    958 	struct timespec tsnow, tsdiff;
    959 	const void *src, *dst;
    960 	int etime;
    961 
    962 	getnanouptime(&tsnow);
    963 	timespecsub(&tsnow, &con->c_atime, &tsdiff);
    964 	etime = npf_state_etime(&con->c_state, proto);
    965 
    966 	printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
    967 	    con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
    968 
    969 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
    970 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
    971 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
    972 
    973 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
    974 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
    975 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
    976 
    977 	npf_state_dump(&con->c_state);
    978 	if (con->c_nat) {
    979 		npf_nat_dump(con->c_nat);
    980 	}
    981 }
    982 
    983 #endif
    984