Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.21
      1 /*	$NetBSD: npf_conn.c,v 1.21 2016/12/10 22:09:49 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014-2015 Mindaugas Rasiukevicius <rmind at netbsd org>
      5  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This material is based upon work partially supported by The
      9  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * NPF connection tracking for stateful filtering and translation.
     35  *
     36  * Overview
     37  *
     38  *	Connection direction is identified by the direction of its first
     39  *	packet.  Packets can be incoming or outgoing with respect to an
     40  *	interface.  To describe the packet in the context of connection
     41  *	direction we will use the terms "forwards stream" and "backwards
     42  *	stream".  All connections have two keys and thus two entries:
     43  *
     44  *		npf_conn_t::c_forw_entry for the forwards stream and
     45  *		npf_conn_t::c_back_entry for the backwards stream.
     46  *
     47  *	The keys are formed from the 5-tuple (source/destination address,
     48  *	source/destination port and the protocol).  Additional matching
     49  *	is performed for the interface (a common behaviour is equivalent
     50  *	to the 6-tuple lookup including the interface ID).  Note that the
     51  *	key may be formed using translated values in a case of NAT.
     52  *
     53  *	Connections can serve two purposes: for the implicit passing or
     54  *	to accommodate the dynamic NAT.  Connections for the former purpose
     55  *	are created by the rules with "stateful" attribute and are used for
     56  *	stateful filtering.  Such connections indicate that the packet of
     57  *	the backwards stream should be passed without inspection of the
     58  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     59  *	with a connection.  Such connections are created by the NAT policies
     60  *	and they have a relationship with NAT translation structure via
     61  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     62  *	which is a common case.
     63  *
     64  * Connection life-cycle
     65  *
     66  *	Connections are established when a packet matches said rule or
     67  *	NAT policy.  Both keys of the established connection are inserted
     68  *	into the connection database.  A garbage collection thread
     69  *	periodically scans all connections and depending on connection
     70  *	properties (e.g. last activity time, protocol) removes connection
     71  *	entries and expires the actual connections.
     72  *
     73  *	Each connection has a reference count.  The reference is acquired
     74  *	on lookup and should be released by the caller.  It guarantees that
     75  *	the connection will not be destroyed, although it may be expired.
     76  *
     77  * Synchronisation
     78  *
     79  *	Connection database is accessed in a lock-less manner by the main
     80  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     81  *	are always called from a software interrupt, the database is
     82  *	protected using passive serialisation.  The main place which can
     83  *	destroy a connection is npf_conn_worker().  The database itself
     84  *	can be replaced and destroyed in npf_conn_reload().
     85  *
     86  * ALG support
     87  *
     88  *	Application-level gateways (ALGs) can override generic connection
     89  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     90  *	performing their own lookup using different key.  Recursive call
     91  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     92  *	npf_conn_lookup() function for this purpose.
     93  *
     94  * Lock order
     95  *
     96  *	npf_config_lock ->
     97  *		conn_lock ->
     98  *			npf_conn_t::c_lock
     99  */
    100 
    101 #include <sys/cdefs.h>
    102 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.21 2016/12/10 22:09:49 christos Exp $");
    103 
    104 #include <sys/param.h>
    105 #include <sys/types.h>
    106 
    107 #include <netinet/in.h>
    108 #include <netinet/tcp.h>
    109 
    110 #include <sys/atomic.h>
    111 #include <sys/condvar.h>
    112 #include <sys/kmem.h>
    113 #include <sys/kthread.h>
    114 #include <sys/mutex.h>
    115 #include <net/pfil.h>
    116 #include <sys/pool.h>
    117 #include <sys/queue.h>
    118 #include <sys/systm.h>
    119 
    120 #define __NPF_CONN_PRIVATE
    121 #include "npf_conn.h"
    122 #include "npf_impl.h"
    123 
    124 /*
    125  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    126  */
    127 CTASSERT(PFIL_ALL == (0x001 | 0x002));
    128 #define	CONN_ACTIVE	0x004	/* visible on inspection */
    129 #define	CONN_PASS	0x008	/* perform implicit passing */
    130 #define	CONN_EXPIRE	0x010	/* explicitly expire */
    131 #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    132 
    133 /*
    134  * Connection tracking state: disabled (off) or enabled (on).
    135  */
    136 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    137 static volatile int	conn_tracking	__cacheline_aligned;
    138 
    139 /* Connection tracking database, connection cache and the lock. */
    140 static npf_conndb_t *	conn_db		__read_mostly;
    141 static pool_cache_t	conn_cache	__read_mostly;
    142 static kmutex_t		conn_lock	__cacheline_aligned;
    143 
    144 static void	npf_conn_worker(void);
    145 static void	npf_conn_destroy(npf_conn_t *);
    146 
    147 /*
    148  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    149  */
    150 
    151 void
    152 npf_conn_sysinit(void)
    153 {
    154 	conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
    155 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
    156 	mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
    157 	conn_tracking = CONN_TRACKING_OFF;
    158 	conn_db = npf_conndb_create();
    159 
    160 	npf_worker_register(npf_conn_worker);
    161 }
    162 
    163 void
    164 npf_conn_sysfini(void)
    165 {
    166 	/* Note: the caller should have flushed the connections. */
    167 	KASSERT(conn_tracking == CONN_TRACKING_OFF);
    168 	npf_worker_unregister(npf_conn_worker);
    169 
    170 	npf_conndb_destroy(conn_db);
    171 	pool_cache_destroy(conn_cache);
    172 	mutex_destroy(&conn_lock);
    173 }
    174 
    175 /*
    176  * npf_conn_load: perform the load by flushing the current connection
    177  * database and replacing it with the new one or just destroying.
    178  *
    179  * => The caller must disable the connection tracking and ensure that
    180  *    there are no connection database lookups or references in-flight.
    181  */
    182 void
    183 npf_conn_load(npf_conndb_t *ndb, bool track)
    184 {
    185 	npf_conndb_t *odb = NULL;
    186 
    187 	KASSERT(npf_config_locked_p());
    188 
    189 	/*
    190 	 * The connection database is in the quiescent state.
    191 	 * Prevent G/C thread from running and install a new database.
    192 	 */
    193 	mutex_enter(&conn_lock);
    194 	if (ndb) {
    195 		KASSERT(conn_tracking == CONN_TRACKING_OFF);
    196 		odb = conn_db;
    197 		conn_db = ndb;
    198 		membar_sync();
    199 	}
    200 	if (track) {
    201 		/* After this point lookups start flying in. */
    202 		conn_tracking = CONN_TRACKING_ON;
    203 	}
    204 	mutex_exit(&conn_lock);
    205 
    206 	if (odb) {
    207 		/*
    208 		 * Flush all, no sync since the caller did it for us.
    209 		 * Also, release the pool cache memory.
    210 		 */
    211 		npf_conn_gc(odb, true, false);
    212 		npf_conndb_destroy(odb);
    213 		pool_cache_invalidate(conn_cache);
    214 	}
    215 }
    216 
    217 /*
    218  * npf_conn_tracking: enable/disable connection tracking.
    219  */
    220 void
    221 npf_conn_tracking(bool track)
    222 {
    223 	KASSERT(npf_config_locked_p());
    224 	conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
    225 }
    226 
    227 static inline bool
    228 npf_conn_trackable_p(const npf_cache_t *npc)
    229 {
    230 	/*
    231 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    232 	 * not cached - protocol is not supported or packet is invalid.
    233 	 */
    234 	if (conn_tracking != CONN_TRACKING_ON) {
    235 		return false;
    236 	}
    237 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    238 		return false;
    239 	}
    240 	return true;
    241 }
    242 
    243 static uint32_t
    244 connkey_setkey(npf_connkey_t *key, uint16_t proto, const void *ipv,
    245     const uint16_t *id, uint16_t alen, bool forw)
    246 {
    247 	uint32_t isrc, idst, *k = key->ck_key;
    248 	const npf_addr_t * const *ips = ipv;
    249 	if (__predict_true(forw)) {
    250 		isrc = NPF_SRC, idst = NPF_DST;
    251 	} else {
    252 		isrc = NPF_DST, idst = NPF_SRC;
    253 	}
    254 
    255 	/*
    256 	 * Construct a key formed out of 32-bit integers.  The key layout:
    257 	 *
    258 	 * Field: | proto  |  alen  | src-id | dst-id | src-addr | dst-addr |
    259 	 *        +--------+--------+--------+--------+----------+----------+
    260 	 * Bits:  |   16   |   16   |   16   |   16   |  32-128  |  32-128  |
    261 	 *
    262 	 * The source and destination are inverted if they key is for the
    263 	 * backwards stream (forw == false).  The address length depends
    264 	 * on the 'alen' field; it is a length in bytes, either 4 or 16.
    265 	 */
    266 
    267 	k[0] = ((uint32_t)proto << 16) | (alen & 0xffff);
    268 	k[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    269 
    270 	if (__predict_true(alen == sizeof(in_addr_t))) {
    271 		k[2] = ips[isrc]->s6_addr32[0];
    272 		k[3] = ips[idst]->s6_addr32[0];
    273 		return 4 * sizeof(uint32_t);
    274 	} else {
    275 		const u_int nwords = alen >> 2;
    276 		memcpy(&k[2], ips[isrc], alen);
    277 		memcpy(&k[2 + nwords], ips[idst], alen);
    278 		return (2 + (nwords * 2)) * sizeof(uint32_t);
    279 	}
    280 }
    281 
    282 static void
    283 connkey_getkey(const npf_connkey_t *key, uint16_t *proto, npf_addr_t *ips,
    284     uint16_t *id, uint16_t *alen)
    285 {
    286 	const uint32_t *k = key->ck_key;
    287 
    288 	*proto = k[0] >> 16;
    289 	*alen = k[0] & 0xffff;
    290 	id[NPF_SRC] = k[1] >> 16;
    291 	id[NPF_DST] = k[1] & 0xffff;
    292 
    293 	switch (*alen) {
    294 	case sizeof(struct in6_addr):
    295 	case sizeof(struct in_addr):
    296 		memcpy(&ips[NPF_SRC], &k[2], *alen);
    297 		memcpy(&ips[NPF_DST], &k[2 + ((unsigned)*alen >> 2)], *alen);
    298 		return;
    299 	default:
    300 		KASSERT(0);
    301 	}
    302 }
    303 
    304 /*
    305  * npf_conn_conkey: construct a key for the connection lookup.
    306  *
    307  * => Returns the key length in bytes or zero on failure.
    308  */
    309 unsigned
    310 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
    311 {
    312 	const uint16_t alen = npc->npc_alen;
    313 	const struct tcphdr *th;
    314 	const struct udphdr *uh;
    315 	uint16_t id[2];
    316 
    317 	switch (npc->npc_proto) {
    318 	case IPPROTO_TCP:
    319 		KASSERT(npf_iscached(npc, NPC_TCP));
    320 		th = npc->npc_l4.tcp;
    321 		id[NPF_SRC] = th->th_sport;
    322 		id[NPF_DST] = th->th_dport;
    323 		break;
    324 	case IPPROTO_UDP:
    325 		KASSERT(npf_iscached(npc, NPC_UDP));
    326 		uh = npc->npc_l4.udp;
    327 		id[NPF_SRC] = uh->uh_sport;
    328 		id[NPF_DST] = uh->uh_dport;
    329 		break;
    330 	case IPPROTO_ICMP:
    331 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    332 			const struct icmp *ic = npc->npc_l4.icmp;
    333 			id[NPF_SRC] = ic->icmp_id;
    334 			id[NPF_DST] = ic->icmp_id;
    335 			break;
    336 		}
    337 		return 0;
    338 	case IPPROTO_ICMPV6:
    339 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    340 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    341 			id[NPF_SRC] = ic6->icmp6_id;
    342 			id[NPF_DST] = ic6->icmp6_id;
    343 			break;
    344 		}
    345 		return 0;
    346 	default:
    347 		/* Unsupported protocol. */
    348 		return 0;
    349 	}
    350 
    351 	return connkey_setkey(key, npc->npc_proto, npc->npc_ips, id, alen,
    352 	    forw);
    353 }
    354 
    355 static __inline void
    356 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
    357 {
    358 	const u_int alen = key->ck_key[0] & 0xffff;
    359 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
    360 
    361 	KASSERT(alen > 0);
    362 	memcpy(addr, naddr, alen);
    363 }
    364 
    365 static __inline void
    366 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
    367 {
    368 	const uint32_t oid = key->ck_key[1];
    369 	const u_int shift = 16 * !di;
    370 	const uint32_t mask = 0xffff0000 >> shift;
    371 
    372 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
    373 }
    374 
    375 /*
    376  * npf_conn_ok: check if the connection is active, and has the right direction.
    377  */
    378 static bool
    379 npf_conn_ok(npf_conn_t *con, const int di, bool forw)
    380 {
    381 	uint32_t flags = con->c_flags;
    382 
    383 	/* Check if connection is active and not expired. */
    384 	bool ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    385 	if (__predict_false(!ok)) {
    386 		return false;
    387 	}
    388 
    389 	/* Check if the direction is consistent */
    390 	bool pforw = (flags & PFIL_ALL) == di;
    391 	if (__predict_false(forw != pforw)) {
    392 		return false;
    393 	}
    394 	return true;
    395 }
    396 
    397 /*
    398  * npf_conn_lookup: lookup if there is an established connection.
    399  *
    400  * => If found, we will hold a reference for the caller.
    401  */
    402 npf_conn_t *
    403 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
    404 {
    405 	const nbuf_t *nbuf = npc->npc_nbuf;
    406 	npf_conn_t *con;
    407 	npf_connkey_t key;
    408 	u_int cifid;
    409 
    410 	/* Construct a key and lookup for a connection in the store. */
    411 	if (!npf_conn_conkey(npc, &key, true)) {
    412 		return NULL;
    413 	}
    414 	con = npf_conndb_lookup(conn_db, &key, forw);
    415 	if (con == NULL) {
    416 		return NULL;
    417 	}
    418 	KASSERT(npc->npc_proto == con->c_proto);
    419 
    420 	/* Check if connection is active and not expired. */
    421 	if (!npf_conn_ok(con, di, *forw)) {
    422 		atomic_dec_uint(&con->c_refcnt);
    423 		return NULL;
    424 	}
    425 
    426 	/*
    427 	 * Match the interface and the direction of the connection entry
    428 	 * and the packet.
    429 	 */
    430 	cifid = con->c_ifid;
    431 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
    432 		atomic_dec_uint(&con->c_refcnt);
    433 		return NULL;
    434 	}
    435 
    436 	/* Update the last activity time. */
    437 	getnanouptime(&con->c_atime);
    438 	return con;
    439 }
    440 
    441 /*
    442  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    443  *
    444  * => If found, we will hold a reference for the caller.
    445  */
    446 npf_conn_t *
    447 npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
    448 {
    449 	nbuf_t *nbuf = npc->npc_nbuf;
    450 	npf_conn_t *con;
    451 	bool forw, ok;
    452 
    453 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    454 	if (!npf_conn_trackable_p(npc)) {
    455 		return NULL;
    456 	}
    457 
    458 	/* Query ALG which may lookup connection for us. */
    459 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    460 		/* Note: reference is held. */
    461 		return con;
    462 	}
    463 	if (nbuf_head_mbuf(nbuf) == NULL) {
    464 		*error = ENOMEM;
    465 		return NULL;
    466 	}
    467 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    468 
    469 	/* Main lookup of the connection. */
    470 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
    471 		return NULL;
    472 	}
    473 
    474 	/* Inspect the protocol data and handle state changes. */
    475 	mutex_enter(&con->c_lock);
    476 	ok = npf_state_inspect(npc, &con->c_state, forw);
    477 	mutex_exit(&con->c_lock);
    478 
    479 	/* If invalid state: let the rules deal with it. */
    480 	if (__predict_false(!ok)) {
    481 		npf_conn_release(con);
    482 		npf_stats_inc(NPF_STAT_INVALID_STATE);
    483 		return NULL;
    484 	}
    485 
    486 	/*
    487 	 * If this is multi-end state, then specially tag the packet
    488 	 * so it will be just passed-through on other interfaces.
    489 	 */
    490 	if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
    491 		npf_conn_release(con);
    492 		*error = ENOMEM;
    493 		return NULL;
    494 	}
    495 	return con;
    496 }
    497 
    498 /*
    499  * npf_conn_establish: create a new connection, insert into the global list.
    500  *
    501  * => Connection is created with the reference held for the caller.
    502  * => Connection will be activated on the first reference release.
    503  */
    504 npf_conn_t *
    505 npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
    506 {
    507 	const nbuf_t *nbuf = npc->npc_nbuf;
    508 	npf_conn_t *con;
    509 	int error = 0;
    510 
    511 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    512 
    513 	if (!npf_conn_trackable_p(npc)) {
    514 		return NULL;
    515 	}
    516 
    517 	/* Allocate and initialise the new connection. */
    518 	con = pool_cache_get(conn_cache, PR_NOWAIT);
    519 	if (__predict_false(!con)) {
    520 		return NULL;
    521 	}
    522 	NPF_PRINTF(("NPF: create conn %p\n", con));
    523 	npf_stats_inc(NPF_STAT_CONN_CREATE);
    524 
    525 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    526 	con->c_flags = (di & PFIL_ALL);
    527 	con->c_refcnt = 0;
    528 	con->c_rproc = NULL;
    529 	con->c_nat = NULL;
    530 
    531 	/* Initialize the protocol state. */
    532 	if (!npf_state_init(npc, &con->c_state)) {
    533 		npf_conn_destroy(con);
    534 		return NULL;
    535 	}
    536 
    537 	KASSERT(npf_iscached(npc, NPC_IP46));
    538 	npf_connkey_t *fw = &con->c_forw_entry;
    539 	npf_connkey_t *bk = &con->c_back_entry;
    540 
    541 	/*
    542 	 * Construct "forwards" and "backwards" keys.  Also, set the
    543 	 * interface ID for this connection (unless it is global).
    544 	 */
    545 	if (!npf_conn_conkey(npc, fw, true) ||
    546 	    !npf_conn_conkey(npc, bk, false)) {
    547 		npf_conn_destroy(con);
    548 		return NULL;
    549 	}
    550 	fw->ck_backptr = bk->ck_backptr = con;
    551 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
    552 	con->c_proto = npc->npc_proto;
    553 
    554 	/*
    555 	 * Set last activity time for a new connection and acquire
    556 	 * a reference for the caller before we make it visible.
    557 	 */
    558 	getnanouptime(&con->c_atime);
    559 	con->c_refcnt = 1;
    560 
    561 	/*
    562 	 * Insert both keys (entries representing directions) of the
    563 	 * connection.  At this point it becomes visible, but we activate
    564 	 * the connection later.
    565 	 */
    566 	mutex_enter(&con->c_lock);
    567 	if (!npf_conndb_insert(conn_db, fw, con)) {
    568 		error = EISCONN;
    569 		goto err;
    570 	}
    571 	if (!npf_conndb_insert(conn_db, bk, con)) {
    572 		npf_conn_t *ret __diagused;
    573 		ret = npf_conndb_remove(conn_db, fw);
    574 		KASSERT(ret == con);
    575 		error = EISCONN;
    576 		goto err;
    577 	}
    578 err:
    579 	/*
    580 	 * If we have hit the duplicate: mark the connection as expired
    581 	 * and let the G/C thread to take care of it.  We cannot do it
    582 	 * here since there might be references acquired already.
    583 	 */
    584 	if (error) {
    585 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    586 		atomic_dec_uint(&con->c_refcnt);
    587 		npf_stats_inc(NPF_STAT_RACE_CONN);
    588 	} else {
    589 		NPF_PRINTF(("NPF: establish conn %p\n", con));
    590 	}
    591 
    592 	/* Finally, insert into the connection list. */
    593 	npf_conndb_enqueue(conn_db, con);
    594 	mutex_exit(&con->c_lock);
    595 
    596 	return error ? NULL : con;
    597 }
    598 
    599 static void
    600 npf_conn_destroy(npf_conn_t *con)
    601 {
    602 	KASSERT(con->c_refcnt == 0);
    603 
    604 	if (con->c_nat) {
    605 		/* Release any NAT structures. */
    606 		npf_nat_destroy(con->c_nat);
    607 	}
    608 	if (con->c_rproc) {
    609 		/* Release the rule procedure. */
    610 		npf_rproc_release(con->c_rproc);
    611 	}
    612 
    613 	/* Destroy the state. */
    614 	npf_state_destroy(&con->c_state);
    615 	mutex_destroy(&con->c_lock);
    616 
    617 	/* Free the structure, increase the counter. */
    618 	pool_cache_put(conn_cache, con);
    619 	npf_stats_inc(NPF_STAT_CONN_DESTROY);
    620 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    621 }
    622 
    623 /*
    624  * npf_conn_setnat: associate NAT entry with the connection, update and
    625  * re-insert connection entry using the translation values.
    626  *
    627  * => The caller must be holding a reference.
    628  */
    629 int
    630 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    631     npf_nat_t *nt, u_int ntype)
    632 {
    633 	static const u_int nat_type_dimap[] = {
    634 		[NPF_NATOUT] = NPF_DST,
    635 		[NPF_NATIN] = NPF_SRC,
    636 	};
    637 	npf_connkey_t key, *bk;
    638 	npf_conn_t *ret __diagused;
    639 	npf_addr_t *taddr;
    640 	in_port_t tport;
    641 	u_int tidx;
    642 
    643 	KASSERT(con->c_refcnt > 0);
    644 
    645 	npf_nat_gettrans(nt, &taddr, &tport);
    646 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    647 	tidx = nat_type_dimap[ntype];
    648 
    649 	/* Construct a "backwards" key. */
    650 	if (!npf_conn_conkey(npc, &key, false)) {
    651 		return EINVAL;
    652 	}
    653 
    654 	/* Acquire the lock and check for the races. */
    655 	mutex_enter(&con->c_lock);
    656 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    657 		/* The connection got expired. */
    658 		mutex_exit(&con->c_lock);
    659 		return EINVAL;
    660 	}
    661 	KASSERT((con->c_flags & CONN_REMOVED) == 0);
    662 
    663 	if (__predict_false(con->c_nat != NULL)) {
    664 		/* Race with a duplicate packet. */
    665 		mutex_exit(&con->c_lock);
    666 		npf_stats_inc(NPF_STAT_RACE_NAT);
    667 		return EISCONN;
    668 	}
    669 
    670 	/* Remove the "backwards" entry. */
    671 	ret = npf_conndb_remove(conn_db, &con->c_back_entry);
    672 	KASSERT(ret == con);
    673 
    674 	/* Set the source/destination IDs to the translation values. */
    675 	bk = &con->c_back_entry;
    676 	connkey_set_addr(bk, taddr, tidx);
    677 	if (tport) {
    678 		connkey_set_id(bk, tport, tidx);
    679 	}
    680 
    681 	/* Finally, re-insert the "backwards" entry. */
    682 	if (!npf_conndb_insert(conn_db, bk, con)) {
    683 		/*
    684 		 * Race: we have hit the duplicate, remove the "forwards"
    685 		 * entry and expire our connection; it is no longer valid.
    686 		 */
    687 		ret = npf_conndb_remove(conn_db, &con->c_forw_entry);
    688 		KASSERT(ret == con);
    689 
    690 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    691 		mutex_exit(&con->c_lock);
    692 
    693 		npf_stats_inc(NPF_STAT_RACE_NAT);
    694 		return EISCONN;
    695 	}
    696 
    697 	/* Associate the NAT entry and release the lock. */
    698 	con->c_nat = nt;
    699 	mutex_exit(&con->c_lock);
    700 	return 0;
    701 }
    702 
    703 /*
    704  * npf_conn_expire: explicitly mark connection as expired.
    705  */
    706 void
    707 npf_conn_expire(npf_conn_t *con)
    708 {
    709 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    710 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    711 }
    712 
    713 /*
    714  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    715  */
    716 bool
    717 npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
    718 {
    719 	KASSERT(con->c_refcnt > 0);
    720 	if (__predict_true(con->c_flags & CONN_PASS)) {
    721 		*rp = con->c_rproc;
    722 		return true;
    723 	}
    724 	return false;
    725 }
    726 
    727 /*
    728  * npf_conn_setpass: mark connection as a "pass" one and associate the
    729  * rule procedure with it.
    730  */
    731 void
    732 npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
    733 {
    734 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    735 	KASSERT(con->c_refcnt > 0);
    736 	KASSERT(con->c_rproc == NULL);
    737 
    738 	/*
    739 	 * No need for atomic since the connection is not yet active.
    740 	 * If rproc is set, the caller transfers its reference to us,
    741 	 * which will be released on npf_conn_destroy().
    742 	 */
    743 	atomic_or_uint(&con->c_flags, CONN_PASS);
    744 	con->c_rproc = rp;
    745 }
    746 
    747 /*
    748  * npf_conn_release: release a reference, which might allow G/C thread
    749  * to destroy this connection.
    750  */
    751 void
    752 npf_conn_release(npf_conn_t *con)
    753 {
    754 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    755 		/* Activate: after this, connection is globally visible. */
    756 		atomic_or_uint(&con->c_flags, CONN_ACTIVE);
    757 	}
    758 	KASSERT(con->c_refcnt > 0);
    759 	atomic_dec_uint(&con->c_refcnt);
    760 }
    761 
    762 /*
    763  * npf_conn_getnat: return associated NAT data entry and indicate
    764  * whether it is a "forwards" or "backwards" stream.
    765  */
    766 npf_nat_t *
    767 npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
    768 {
    769 	KASSERT(con->c_refcnt > 0);
    770 	*forw = (con->c_flags & PFIL_ALL) == di;
    771 	return con->c_nat;
    772 }
    773 
    774 /*
    775  * npf_conn_expired: criterion to check if connection is expired.
    776  */
    777 static inline bool
    778 npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
    779 {
    780 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
    781 	struct timespec tsdiff;
    782 
    783 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    784 		/* Explicitly marked to be expired. */
    785 		return true;
    786 	}
    787 	timespecsub(tsnow, &con->c_atime, &tsdiff);
    788 	return tsdiff.tv_sec > etime;
    789 }
    790 
    791 /*
    792  * npf_conn_gc: garbage collect the expired connections.
    793  *
    794  * => Must run in a single-threaded manner.
    795  * => If it is a flush request, then destroy all connections.
    796  * => If 'sync' is true, then perform passive serialisation.
    797  */
    798 void
    799 npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
    800 {
    801 	npf_conn_t *con, *prev, *gclist = NULL;
    802 	struct timespec tsnow;
    803 
    804 	getnanouptime(&tsnow);
    805 
    806 	/*
    807 	 * Scan all connections and check them for expiration.
    808 	 */
    809 	prev = NULL;
    810 	con = npf_conndb_getlist(cd);
    811 	while (con) {
    812 		npf_conn_t *next = con->c_next;
    813 
    814 		/* Expired?  Flushing all? */
    815 		if (!npf_conn_expired(con, &tsnow) && !flush) {
    816 			prev = con;
    817 			con = next;
    818 			continue;
    819 		}
    820 
    821 		/* Remove both entries of the connection. */
    822 		mutex_enter(&con->c_lock);
    823 		if ((con->c_flags & CONN_REMOVED) == 0) {
    824 			npf_conn_t *ret __diagused;
    825 
    826 			ret = npf_conndb_remove(cd, &con->c_forw_entry);
    827 			KASSERT(ret == con);
    828 			ret = npf_conndb_remove(cd, &con->c_back_entry);
    829 			KASSERT(ret == con);
    830 		}
    831 
    832 		/* Flag the removal and expiration. */
    833 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    834 		mutex_exit(&con->c_lock);
    835 
    836 		/* Move to the G/C list. */
    837 		npf_conndb_dequeue(cd, con, prev);
    838 		con->c_next = gclist;
    839 		gclist = con;
    840 
    841 		/* Next.. */
    842 		con = next;
    843 	}
    844 	npf_conndb_settail(cd, prev);
    845 
    846 	/*
    847 	 * Ensure it is safe to destroy the connections.
    848 	 * Note: drop the conn_lock (see the lock order).
    849 	 */
    850 	if (sync) {
    851 		mutex_exit(&conn_lock);
    852 		if (gclist) {
    853 			npf_config_enter();
    854 			npf_config_sync();
    855 			npf_config_exit();
    856 		}
    857 	}
    858 
    859 	/*
    860 	 * Garbage collect all expired connections.
    861 	 * May need to wait for the references to drain.
    862 	 */
    863 	con = gclist;
    864 	while (con) {
    865 		npf_conn_t *next = con->c_next;
    866 
    867 		/*
    868 		 * Destroy only if removed and no references.
    869 		 * Otherwise, wait for a tiny moment.
    870 		 */
    871 		if (__predict_false(con->c_refcnt)) {
    872 			kpause("npfcongc", false, 1, NULL);
    873 			continue;
    874 		}
    875 		npf_conn_destroy(con);
    876 		con = next;
    877 	}
    878 }
    879 
    880 /*
    881  * npf_conn_worker: G/C to run from a worker thread.
    882  */
    883 static void
    884 npf_conn_worker(void)
    885 {
    886 	mutex_enter(&conn_lock);
    887 	/* Note: the conn_lock will be released (sync == true). */
    888 	npf_conn_gc(conn_db, false, true);
    889 }
    890 
    891 /*
    892  * npf_conndb_export: construct a list of connections prepared for saving.
    893  * Note: this is expected to be an expensive operation.
    894  */
    895 int
    896 npf_conndb_export(prop_array_t conlist)
    897 {
    898 	npf_conn_t *con, *prev;
    899 
    900 	/*
    901 	 * Note: acquire conn_lock to prevent from the database
    902 	 * destruction and G/C thread.
    903 	 */
    904 	mutex_enter(&conn_lock);
    905 	if (conn_tracking != CONN_TRACKING_ON) {
    906 		mutex_exit(&conn_lock);
    907 		return 0;
    908 	}
    909 	prev = NULL;
    910 	con = npf_conndb_getlist(conn_db);
    911 	while (con) {
    912 		npf_conn_t *next = con->c_next;
    913 		prop_dictionary_t cdict;
    914 
    915 		if ((cdict = npf_conn_export(con)) != NULL) {
    916 			prop_array_add(conlist, cdict);
    917 			prop_object_release(cdict);
    918 		}
    919 		prev = con;
    920 		con = next;
    921 	}
    922 	npf_conndb_settail(conn_db, prev);
    923 	mutex_exit(&conn_lock);
    924 	return 0;
    925 }
    926 
    927 static prop_dictionary_t
    928 npf_connkey_export(const npf_connkey_t *key)
    929 {
    930 	uint16_t id[2], alen, proto;
    931 	npf_addr_t ips[2];
    932 	prop_data_t d;
    933 	prop_dictionary_t kdict = prop_dictionary_create();
    934 
    935 	connkey_getkey(key, &proto, ips, id, &alen);
    936 
    937 	prop_dictionary_set_uint16(kdict, "proto", proto);
    938 
    939 	prop_dictionary_set_uint16(kdict, "sport", id[NPF_SRC]);
    940 	prop_dictionary_set_uint16(kdict, "dport", id[NPF_DST]);
    941 
    942 	d = prop_data_create_data(&ips[NPF_SRC], alen);
    943 	prop_dictionary_set_and_rel(kdict, "saddr", d);
    944 
    945 	d = prop_data_create_data(&ips[NPF_DST], alen);
    946 	prop_dictionary_set_and_rel(kdict, "daddr", d);
    947 
    948 	return kdict;
    949 }
    950 
    951 /*
    952  * npf_conn_export: serialise a single connection.
    953  */
    954 prop_dictionary_t
    955 npf_conn_export(const npf_conn_t *con)
    956 {
    957 	prop_dictionary_t cdict, kdict;
    958 	prop_data_t d;
    959 
    960 	if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
    961 		return NULL;
    962 	}
    963 	cdict = prop_dictionary_create();
    964 	prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
    965 	prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
    966 	if (con->c_ifid) {
    967 		const char *ifname = npf_ifmap_getname(con->c_ifid);
    968 		prop_dictionary_set_cstring(cdict, "ifname", ifname);
    969 	}
    970 
    971 	d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
    972 	prop_dictionary_set_and_rel(cdict, "state", d);
    973 
    974 	kdict = npf_connkey_export(&con->c_forw_entry);
    975 	prop_dictionary_set_and_rel(cdict, "forw-key", kdict);
    976 
    977 	kdict = npf_connkey_export(&con->c_back_entry);
    978 	prop_dictionary_set_and_rel(cdict, "back-key", kdict);
    979 
    980 	if (con->c_nat) {
    981 		npf_nat_export(cdict, con->c_nat);
    982 	}
    983 	return cdict;
    984 }
    985 
    986 static uint32_t
    987 npf_connkey_import(prop_dictionary_t kdict, npf_connkey_t *key)
    988 {
    989 	uint16_t proto;
    990 	prop_object_t sobj, dobj;
    991 	uint16_t id[2];
    992 	npf_addr_t const * ips[2];
    993 
    994 	if (!prop_dictionary_get_uint16(kdict, "proto", &proto))
    995 		return 0;
    996 
    997 	if (!prop_dictionary_get_uint16(kdict, "sport", &id[NPF_SRC]))
    998 		return 0;
    999 
   1000 	if (!prop_dictionary_get_uint16(kdict, "dport", &id[NPF_DST]))
   1001 		return 0;
   1002 
   1003 	sobj = prop_dictionary_get(kdict, "saddr");
   1004 	if ((ips[NPF_SRC] = prop_data_data_nocopy(sobj)) == NULL)
   1005 		return 0;
   1006 
   1007 	dobj = prop_dictionary_get(kdict, "daddr");
   1008 	if ((ips[NPF_DST] = prop_data_data_nocopy(dobj)) == NULL)
   1009 		return 0;
   1010 
   1011 	uint16_t alen = prop_data_size(sobj);
   1012 	if (alen != prop_data_size(dobj))
   1013 		return 0;
   1014 
   1015 	return connkey_setkey(key, proto, ips, id, alen, true);
   1016 }
   1017 
   1018 /*
   1019  * npf_conn_import: fully reconstruct a single connection from a
   1020  * directory and insert into the given database.
   1021  */
   1022 int
   1023 npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
   1024     npf_ruleset_t *natlist)
   1025 {
   1026 	npf_conn_t *con;
   1027 	npf_connkey_t *fw, *bk;
   1028 	prop_object_t obj;
   1029 	const char *ifname;
   1030 	const void *d;
   1031 
   1032 	/* Allocate a connection and initialise it (clear first). */
   1033 	con = pool_cache_get(conn_cache, PR_WAITOK);
   1034 	memset(con, 0, sizeof(npf_conn_t));
   1035 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   1036 	npf_stats_inc(NPF_STAT_CONN_CREATE);
   1037 
   1038 	prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
   1039 	prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
   1040 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
   1041 	getnanouptime(&con->c_atime);
   1042 
   1043 	if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) &&
   1044 	    (con->c_ifid = npf_ifmap_register(ifname)) == 0) {
   1045 		goto err;
   1046 	}
   1047 
   1048 	obj = prop_dictionary_get(cdict, "state");
   1049 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
   1050 	    prop_data_size(obj) != sizeof(npf_state_t)) {
   1051 		goto err;
   1052 	}
   1053 	memcpy(&con->c_state, d, sizeof(npf_state_t));
   1054 
   1055 	/* Reconstruct NAT association, if any. */
   1056 	if ((obj = prop_dictionary_get(cdict, "nat")) != NULL &&
   1057 	    (con->c_nat = npf_nat_import(obj, natlist, con)) == NULL) {
   1058 		goto err;
   1059 	}
   1060 
   1061 	/*
   1062 	 * Fetch and copy the keys for each direction.
   1063 	 */
   1064 	obj = prop_dictionary_get(cdict, "forw-key");
   1065 	fw = &con->c_forw_entry;
   1066 	if (obj == NULL || !npf_connkey_import(obj, fw)) {
   1067 		goto err;
   1068 	}
   1069 
   1070 	obj = prop_dictionary_get(cdict, "back-key");
   1071 	bk = &con->c_back_entry;
   1072 	if (obj == NULL || !npf_connkey_import(obj, bk)) {
   1073 		goto err;
   1074 	}
   1075 
   1076 	fw->ck_backptr = bk->ck_backptr = con;
   1077 
   1078 	/* Insert the entries and the connection itself. */
   1079 	if (!npf_conndb_insert(cd, fw, con)) {
   1080 		goto err;
   1081 	}
   1082 	if (!npf_conndb_insert(cd, bk, con)) {
   1083 		npf_conndb_remove(cd, fw);
   1084 		goto err;
   1085 	}
   1086 
   1087 	NPF_PRINTF(("NPF: imported conn %p\n", con));
   1088 	npf_conndb_enqueue(cd, con);
   1089 	return 0;
   1090 err:
   1091 	npf_conn_destroy(con);
   1092 	return EINVAL;
   1093 }
   1094 
   1095 int
   1096 npf_conn_find(prop_dictionary_t idict, prop_dictionary_t *odict)
   1097 {
   1098 	npf_connkey_t key;
   1099 	npf_conn_t *con;
   1100 	uint16_t dir;
   1101 	bool forw;
   1102 	prop_dictionary_t kdict;
   1103 
   1104 	if ((kdict = prop_dictionary_get(idict, "key")) == NULL)
   1105 		return EINVAL;
   1106 
   1107 	if (!npf_connkey_import(kdict, &key))
   1108 		return EINVAL;
   1109 
   1110 	if (!prop_dictionary_get_uint16(idict, "direction", &dir))
   1111 		return EINVAL;
   1112 
   1113 	con = npf_conndb_lookup(conn_db, &key, &forw);
   1114 	if (con == NULL) {
   1115 		return ESRCH;
   1116 	}
   1117 
   1118 	if (!npf_conn_ok(con, dir, true)) {
   1119 		atomic_dec_uint(&con->c_refcnt);
   1120 		return ESRCH;
   1121 	}
   1122 
   1123 	*odict = npf_conn_export(con);
   1124 	if (*odict == NULL) {
   1125 		atomic_dec_uint(&con->c_refcnt);
   1126 		return ENOSPC;
   1127 	}
   1128 	atomic_dec_uint(&con->c_refcnt);
   1129 
   1130 	return 0;
   1131 }
   1132 
   1133 #if defined(DDB) || defined(_NPF_TESTING)
   1134 
   1135 void
   1136 npf_conn_print(const npf_conn_t *con)
   1137 {
   1138 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
   1139 	const uint32_t *fkey = con->c_forw_entry.ck_key;
   1140 	const uint32_t *bkey = con->c_back_entry.ck_key;
   1141 	const u_int proto = con->c_proto;
   1142 	struct timespec tsnow, tsdiff;
   1143 	const void *src, *dst;
   1144 	int etime;
   1145 
   1146 	getnanouptime(&tsnow);
   1147 	timespecsub(&tsnow, &con->c_atime, &tsdiff);
   1148 	etime = npf_state_etime(&con->c_state, proto);
   1149 
   1150 	printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
   1151 	    con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
   1152 
   1153 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
   1154 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
   1155 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
   1156 
   1157 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
   1158 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
   1159 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
   1160 
   1161 	npf_state_dump(&con->c_state);
   1162 	if (con->c_nat) {
   1163 		npf_nat_dump(con->c_nat);
   1164 	}
   1165 }
   1166 
   1167 #endif
   1168