Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.24
      1 /*	$NetBSD: npf_conn.c,v 1.24 2017/12/10 00:07:36 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014-2015 Mindaugas Rasiukevicius <rmind at netbsd org>
      5  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This material is based upon work partially supported by The
      9  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * NPF connection tracking for stateful filtering and translation.
     35  *
     36  * Overview
     37  *
     38  *	Connection direction is identified by the direction of its first
     39  *	packet.  Packets can be incoming or outgoing with respect to an
     40  *	interface.  To describe the packet in the context of connection
     41  *	direction we will use the terms "forwards stream" and "backwards
     42  *	stream".  All connections have two keys and thus two entries:
     43  *
     44  *		npf_conn_t::c_forw_entry for the forwards stream and
     45  *		npf_conn_t::c_back_entry for the backwards stream.
     46  *
     47  *	The keys are formed from the 5-tuple (source/destination address,
     48  *	source/destination port and the protocol).  Additional matching
     49  *	is performed for the interface (a common behaviour is equivalent
     50  *	to the 6-tuple lookup including the interface ID).  Note that the
     51  *	key may be formed using translated values in a case of NAT.
     52  *
     53  *	Connections can serve two purposes: for the implicit passing or
     54  *	to accommodate the dynamic NAT.  Connections for the former purpose
     55  *	are created by the rules with "stateful" attribute and are used for
     56  *	stateful filtering.  Such connections indicate that the packet of
     57  *	the backwards stream should be passed without inspection of the
     58  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     59  *	with a connection.  Such connections are created by the NAT policies
     60  *	and they have a relationship with NAT translation structure via
     61  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     62  *	which is a common case.
     63  *
     64  * Connection life-cycle
     65  *
     66  *	Connections are established when a packet matches said rule or
     67  *	NAT policy.  Both keys of the established connection are inserted
     68  *	into the connection database.  A garbage collection thread
     69  *	periodically scans all connections and depending on connection
     70  *	properties (e.g. last activity time, protocol) removes connection
     71  *	entries and expires the actual connections.
     72  *
     73  *	Each connection has a reference count.  The reference is acquired
     74  *	on lookup and should be released by the caller.  It guarantees that
     75  *	the connection will not be destroyed, although it may be expired.
     76  *
     77  * Synchronisation
     78  *
     79  *	Connection database is accessed in a lock-less manner by the main
     80  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     81  *	are always called from a software interrupt, the database is
     82  *	protected using passive serialisation.  The main place which can
     83  *	destroy a connection is npf_conn_worker().  The database itself
     84  *	can be replaced and destroyed in npf_conn_reload().
     85  *
     86  * ALG support
     87  *
     88  *	Application-level gateways (ALGs) can override generic connection
     89  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     90  *	performing their own lookup using different key.  Recursive call
     91  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     92  *	npf_conn_lookup() function for this purpose.
     93  *
     94  * Lock order
     95  *
     96  *	npf_config_lock ->
     97  *		conn_lock ->
     98  *			npf_conn_t::c_lock
     99  */
    100 
    101 #ifdef _KERNEL
    102 #include <sys/cdefs.h>
    103 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.24 2017/12/10 00:07:36 rmind Exp $");
    104 
    105 #include <sys/param.h>
    106 #include <sys/types.h>
    107 
    108 #include <netinet/in.h>
    109 #include <netinet/tcp.h>
    110 
    111 #include <sys/atomic.h>
    112 #include <sys/condvar.h>
    113 #include <sys/kmem.h>
    114 #include <sys/kthread.h>
    115 #include <sys/mutex.h>
    116 #include <net/pfil.h>
    117 #include <sys/pool.h>
    118 #include <sys/queue.h>
    119 #include <sys/systm.h>
    120 #endif
    121 
    122 #define __NPF_CONN_PRIVATE
    123 #include "npf_conn.h"
    124 #include "npf_impl.h"
    125 
    126 /*
    127  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    128  */
    129 CTASSERT(PFIL_ALL == (0x001 | 0x002));
    130 #define	CONN_ACTIVE	0x004	/* visible on inspection */
    131 #define	CONN_PASS	0x008	/* perform implicit passing */
    132 #define	CONN_EXPIRE	0x010	/* explicitly expire */
    133 #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    134 
    135 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    136 
    137 static void	npf_conn_destroy(npf_t *, npf_conn_t *);
    138 
    139 /*
    140  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    141  */
    142 
    143 void
    144 npf_conn_init(npf_t *npf, int flags)
    145 {
    146 	npf->conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
    147 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
    148 	mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
    149 	npf->conn_tracking = CONN_TRACKING_OFF;
    150 	npf->conn_db = npf_conndb_create();
    151 
    152 	if ((flags & NPF_NO_GC) == 0) {
    153 		npf_worker_register(npf, npf_conn_worker);
    154 	}
    155 }
    156 
    157 void
    158 npf_conn_fini(npf_t *npf)
    159 {
    160 	/* Note: the caller should have flushed the connections. */
    161 	KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
    162 	npf_worker_unregister(npf, npf_conn_worker);
    163 
    164 	npf_conndb_destroy(npf->conn_db);
    165 	pool_cache_destroy(npf->conn_cache);
    166 	mutex_destroy(&npf->conn_lock);
    167 }
    168 
    169 /*
    170  * npf_conn_load: perform the load by flushing the current connection
    171  * database and replacing it with the new one or just destroying.
    172  *
    173  * => The caller must disable the connection tracking and ensure that
    174  *    there are no connection database lookups or references in-flight.
    175  */
    176 void
    177 npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
    178 {
    179 	npf_conndb_t *odb = NULL;
    180 
    181 	KASSERT(npf_config_locked_p(npf));
    182 
    183 	/*
    184 	 * The connection database is in the quiescent state.
    185 	 * Prevent G/C thread from running and install a new database.
    186 	 */
    187 	mutex_enter(&npf->conn_lock);
    188 	if (ndb) {
    189 		KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
    190 		odb = npf->conn_db;
    191 		npf->conn_db = ndb;
    192 		membar_sync();
    193 	}
    194 	if (track) {
    195 		/* After this point lookups start flying in. */
    196 		npf->conn_tracking = CONN_TRACKING_ON;
    197 	}
    198 	mutex_exit(&npf->conn_lock);
    199 
    200 	if (odb) {
    201 		/*
    202 		 * Flush all, no sync since the caller did it for us.
    203 		 * Also, release the pool cache memory.
    204 		 */
    205 		npf_conn_gc(npf, odb, true, false);
    206 		npf_conndb_destroy(odb);
    207 		pool_cache_invalidate(npf->conn_cache);
    208 	}
    209 }
    210 
    211 /*
    212  * npf_conn_tracking: enable/disable connection tracking.
    213  */
    214 void
    215 npf_conn_tracking(npf_t *npf, bool track)
    216 {
    217 	KASSERT(npf_config_locked_p(npf));
    218 	npf->conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
    219 }
    220 
    221 static inline bool
    222 npf_conn_trackable_p(const npf_cache_t *npc)
    223 {
    224 	const npf_t *npf = npc->npc_ctx;
    225 
    226 	/*
    227 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    228 	 * not cached - protocol is not supported or packet is invalid.
    229 	 */
    230 	if (npf->conn_tracking != CONN_TRACKING_ON) {
    231 		return false;
    232 	}
    233 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    234 		return false;
    235 	}
    236 	return true;
    237 }
    238 
    239 static uint32_t
    240 connkey_setkey(npf_connkey_t *key, uint16_t proto, const void *ipv,
    241     const uint16_t *id, unsigned alen, bool forw)
    242 {
    243 	uint32_t isrc, idst, *k = key->ck_key;
    244 	const npf_addr_t * const *ips = ipv;
    245 
    246 	if (__predict_true(forw)) {
    247 		isrc = NPF_SRC, idst = NPF_DST;
    248 	} else {
    249 		isrc = NPF_DST, idst = NPF_SRC;
    250 	}
    251 
    252 	/*
    253 	 * Construct a key formed out of 32-bit integers.  The key layout:
    254 	 *
    255 	 * Field: | proto  |  alen  | src-id | dst-id | src-addr | dst-addr |
    256 	 *        +--------+--------+--------+--------+----------+----------+
    257 	 * Bits:  |   16   |   16   |   16   |   16   |  32-128  |  32-128  |
    258 	 *
    259 	 * The source and destination are inverted if they key is for the
    260 	 * backwards stream (forw == false).  The address length depends
    261 	 * on the 'alen' field; it is a length in bytes, either 4 or 16.
    262 	 */
    263 
    264 	k[0] = ((uint32_t)proto << 16) | (alen & 0xffff);
    265 	k[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    266 
    267 	if (__predict_true(alen == sizeof(in_addr_t))) {
    268 		k[2] = ips[isrc]->word32[0];
    269 		k[3] = ips[idst]->word32[0];
    270 		return 4 * sizeof(uint32_t);
    271 	} else {
    272 		const u_int nwords = alen >> 2;
    273 		memcpy(&k[2], ips[isrc], alen);
    274 		memcpy(&k[2 + nwords], ips[idst], alen);
    275 		return (2 + (nwords * 2)) * sizeof(uint32_t);
    276 	}
    277 }
    278 
    279 static void
    280 connkey_getkey(const npf_connkey_t *key, uint16_t *proto, npf_addr_t *ips,
    281     uint16_t *id, uint16_t *alen)
    282 {
    283 	const uint32_t *k = key->ck_key;
    284 
    285 	*proto = k[0] >> 16;
    286 	*alen = k[0] & 0xffff;
    287 	id[NPF_SRC] = k[1] >> 16;
    288 	id[NPF_DST] = k[1] & 0xffff;
    289 
    290 	switch (*alen) {
    291 	case sizeof(struct in6_addr):
    292 	case sizeof(struct in_addr):
    293 		memcpy(&ips[NPF_SRC], &k[2], *alen);
    294 		memcpy(&ips[NPF_DST], &k[2 + ((unsigned)*alen >> 2)], *alen);
    295 		return;
    296 	default:
    297 		KASSERT(0);
    298 	}
    299 }
    300 
    301 /*
    302  * npf_conn_conkey: construct a key for the connection lookup.
    303  *
    304  * => Returns the key length in bytes or zero on failure.
    305  */
    306 unsigned
    307 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
    308 {
    309 	const u_int proto = npc->npc_proto;
    310 	const u_int alen = npc->npc_alen;
    311 	const struct tcphdr *th;
    312 	const struct udphdr *uh;
    313 	uint16_t id[2];
    314 
    315 	switch (proto) {
    316 	case IPPROTO_TCP:
    317 		KASSERT(npf_iscached(npc, NPC_TCP));
    318 		th = npc->npc_l4.tcp;
    319 		id[NPF_SRC] = th->th_sport;
    320 		id[NPF_DST] = th->th_dport;
    321 		break;
    322 	case IPPROTO_UDP:
    323 		KASSERT(npf_iscached(npc, NPC_UDP));
    324 		uh = npc->npc_l4.udp;
    325 		id[NPF_SRC] = uh->uh_sport;
    326 		id[NPF_DST] = uh->uh_dport;
    327 		break;
    328 	case IPPROTO_ICMP:
    329 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    330 			const struct icmp *ic = npc->npc_l4.icmp;
    331 			id[NPF_SRC] = ic->icmp_id;
    332 			id[NPF_DST] = ic->icmp_id;
    333 			break;
    334 		}
    335 		return 0;
    336 	case IPPROTO_ICMPV6:
    337 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    338 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    339 			id[NPF_SRC] = ic6->icmp6_id;
    340 			id[NPF_DST] = ic6->icmp6_id;
    341 			break;
    342 		}
    343 		return 0;
    344 	default:
    345 		/* Unsupported protocol. */
    346 		return 0;
    347 	}
    348 	return connkey_setkey(key, proto, npc->npc_ips, id, alen, forw);
    349 }
    350 
    351 static __inline void
    352 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
    353 {
    354 	const u_int alen = key->ck_key[0] & 0xffff;
    355 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
    356 
    357 	KASSERT(alen > 0);
    358 	memcpy(addr, naddr, alen);
    359 }
    360 
    361 static __inline void
    362 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
    363 {
    364 	const uint32_t oid = key->ck_key[1];
    365 	const u_int shift = 16 * !di;
    366 	const uint32_t mask = 0xffff0000 >> shift;
    367 
    368 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
    369 }
    370 
    371 static inline void
    372 conn_update_atime(npf_conn_t *con)
    373 {
    374 	struct timespec tsnow;
    375 
    376 	getnanouptime(&tsnow);
    377 	con->c_atime = tsnow.tv_sec;
    378 }
    379 
    380 /*
    381  * npf_conn_ok: check if the connection is active, and has the right direction.
    382  */
    383 static bool
    384 npf_conn_ok(const npf_conn_t *con, const int di, bool forw)
    385 {
    386 	const uint32_t flags = con->c_flags;
    387 
    388 	/* Check if connection is active and not expired. */
    389 	bool ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    390 	if (__predict_false(!ok)) {
    391 		return false;
    392 	}
    393 
    394 	/* Check if the direction is consistent */
    395 	bool pforw = (flags & PFIL_ALL) == (unsigned)di;
    396 	if (__predict_false(forw != pforw)) {
    397 		return false;
    398 	}
    399 	return true;
    400 }
    401 
    402 /*
    403  * npf_conn_lookup: lookup if there is an established connection.
    404  *
    405  * => If found, we will hold a reference for the caller.
    406  */
    407 npf_conn_t *
    408 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
    409 {
    410 	npf_t *npf = npc->npc_ctx;
    411 	const nbuf_t *nbuf = npc->npc_nbuf;
    412 	npf_conn_t *con;
    413 	npf_connkey_t key;
    414 	u_int cifid;
    415 
    416 	/* Construct a key and lookup for a connection in the store. */
    417 	if (!npf_conn_conkey(npc, &key, true)) {
    418 		return NULL;
    419 	}
    420 	con = npf_conndb_lookup(npf->conn_db, &key, forw);
    421 	if (con == NULL) {
    422 		return NULL;
    423 	}
    424 	KASSERT(npc->npc_proto == con->c_proto);
    425 
    426 	/* Check if connection is active and not expired. */
    427 	if (!npf_conn_ok(con, di, *forw)) {
    428 		atomic_dec_uint(&con->c_refcnt);
    429 		return NULL;
    430 	}
    431 
    432 	/*
    433 	 * Match the interface and the direction of the connection entry
    434 	 * and the packet.
    435 	 */
    436 	cifid = con->c_ifid;
    437 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
    438 		atomic_dec_uint(&con->c_refcnt);
    439 		return NULL;
    440 	}
    441 
    442 	/* Update the last activity time. */
    443 	conn_update_atime(con);
    444 	return con;
    445 }
    446 
    447 /*
    448  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    449  *
    450  * => If found, we will hold a reference for the caller.
    451  */
    452 npf_conn_t *
    453 npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
    454 {
    455 	nbuf_t *nbuf = npc->npc_nbuf;
    456 	npf_conn_t *con;
    457 	bool forw, ok;
    458 
    459 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    460 	if (!npf_conn_trackable_p(npc)) {
    461 		return NULL;
    462 	}
    463 
    464 	/* Query ALG which may lookup connection for us. */
    465 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    466 		/* Note: reference is held. */
    467 		return con;
    468 	}
    469 	if (nbuf_head_mbuf(nbuf) == NULL) {
    470 		*error = ENOMEM;
    471 		return NULL;
    472 	}
    473 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    474 
    475 	/* Main lookup of the connection. */
    476 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
    477 		return NULL;
    478 	}
    479 
    480 	/* Inspect the protocol data and handle state changes. */
    481 	mutex_enter(&con->c_lock);
    482 	ok = npf_state_inspect(npc, &con->c_state, forw);
    483 	mutex_exit(&con->c_lock);
    484 
    485 	/* If invalid state: let the rules deal with it. */
    486 	if (__predict_false(!ok)) {
    487 		npf_conn_release(con);
    488 		npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
    489 		return NULL;
    490 	}
    491 
    492 	/*
    493 	 * If this is multi-end state, then specially tag the packet
    494 	 * so it will be just passed-through on other interfaces.
    495 	 */
    496 	if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
    497 		npf_conn_release(con);
    498 		*error = ENOMEM;
    499 		return NULL;
    500 	}
    501 	return con;
    502 }
    503 
    504 /*
    505  * npf_conn_establish: create a new connection, insert into the global list.
    506  *
    507  * => Connection is created with the reference held for the caller.
    508  * => Connection will be activated on the first reference release.
    509  */
    510 npf_conn_t *
    511 npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
    512 {
    513 	npf_t *npf = npc->npc_ctx;
    514 	const nbuf_t *nbuf = npc->npc_nbuf;
    515 	npf_conn_t *con;
    516 	int error = 0;
    517 
    518 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    519 
    520 	if (!npf_conn_trackable_p(npc)) {
    521 		return NULL;
    522 	}
    523 
    524 	/* Allocate and initialise the new connection. */
    525 	con = pool_cache_get(npf->conn_cache, PR_NOWAIT);
    526 	if (__predict_false(!con)) {
    527 		npf_worker_signal(npf);
    528 		return NULL;
    529 	}
    530 	NPF_PRINTF(("NPF: create conn %p\n", con));
    531 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    532 
    533 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    534 	con->c_flags = (di & PFIL_ALL);
    535 	con->c_refcnt = 0;
    536 	con->c_rproc = NULL;
    537 	con->c_nat = NULL;
    538 
    539 	/* Initialize the protocol state. */
    540 	if (!npf_state_init(npc, &con->c_state)) {
    541 		npf_conn_destroy(npf, con);
    542 		return NULL;
    543 	}
    544 
    545 	KASSERT(npf_iscached(npc, NPC_IP46));
    546 	npf_connkey_t *fw = &con->c_forw_entry;
    547 	npf_connkey_t *bk = &con->c_back_entry;
    548 
    549 	/*
    550 	 * Construct "forwards" and "backwards" keys.  Also, set the
    551 	 * interface ID for this connection (unless it is global).
    552 	 */
    553 	if (!npf_conn_conkey(npc, fw, true) ||
    554 	    !npf_conn_conkey(npc, bk, false)) {
    555 		npf_conn_destroy(npf, con);
    556 		return NULL;
    557 	}
    558 	fw->ck_backptr = bk->ck_backptr = con;
    559 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
    560 	con->c_proto = npc->npc_proto;
    561 
    562 	/*
    563 	 * Set last activity time for a new connection and acquire
    564 	 * a reference for the caller before we make it visible.
    565 	 */
    566 	conn_update_atime(con);
    567 	con->c_refcnt = 1;
    568 
    569 	/*
    570 	 * Insert both keys (entries representing directions) of the
    571 	 * connection.  At this point it becomes visible, but we activate
    572 	 * the connection later.
    573 	 */
    574 	mutex_enter(&con->c_lock);
    575 	if (!npf_conndb_insert(npf->conn_db, fw, con)) {
    576 		error = EISCONN;
    577 		goto err;
    578 	}
    579 	if (!npf_conndb_insert(npf->conn_db, bk, con)) {
    580 		npf_conn_t *ret __diagused;
    581 		ret = npf_conndb_remove(npf->conn_db, fw);
    582 		KASSERT(ret == con);
    583 		error = EISCONN;
    584 		goto err;
    585 	}
    586 err:
    587 	/*
    588 	 * If we have hit the duplicate: mark the connection as expired
    589 	 * and let the G/C thread to take care of it.  We cannot do it
    590 	 * here since there might be references acquired already.
    591 	 */
    592 	if (error) {
    593 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    594 		atomic_dec_uint(&con->c_refcnt);
    595 		npf_stats_inc(npf, NPF_STAT_RACE_CONN);
    596 	} else {
    597 		NPF_PRINTF(("NPF: establish conn %p\n", con));
    598 	}
    599 
    600 	/* Finally, insert into the connection list. */
    601 	npf_conndb_enqueue(npf->conn_db, con);
    602 	mutex_exit(&con->c_lock);
    603 
    604 	return error ? NULL : con;
    605 }
    606 
    607 static void
    608 npf_conn_destroy(npf_t *npf, npf_conn_t *con)
    609 {
    610 	KASSERT(con->c_refcnt == 0);
    611 
    612 	if (con->c_nat) {
    613 		/* Release any NAT structures. */
    614 		npf_nat_destroy(con->c_nat);
    615 	}
    616 	if (con->c_rproc) {
    617 		/* Release the rule procedure. */
    618 		npf_rproc_release(con->c_rproc);
    619 	}
    620 
    621 	/* Destroy the state. */
    622 	npf_state_destroy(&con->c_state);
    623 	mutex_destroy(&con->c_lock);
    624 
    625 	/* Free the structure, increase the counter. */
    626 	pool_cache_put(npf->conn_cache, con);
    627 	npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
    628 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    629 }
    630 
    631 /*
    632  * npf_conn_setnat: associate NAT entry with the connection, update and
    633  * re-insert connection entry using the translation values.
    634  *
    635  * => The caller must be holding a reference.
    636  */
    637 int
    638 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    639     npf_nat_t *nt, u_int ntype)
    640 {
    641 	static const u_int nat_type_dimap[] = {
    642 		[NPF_NATOUT] = NPF_DST,
    643 		[NPF_NATIN] = NPF_SRC,
    644 	};
    645 	npf_t *npf = npc->npc_ctx;
    646 	npf_connkey_t key, *bk;
    647 	npf_conn_t *ret __diagused;
    648 	npf_addr_t *taddr;
    649 	in_port_t tport;
    650 	u_int tidx;
    651 
    652 	KASSERT(con->c_refcnt > 0);
    653 
    654 	npf_nat_gettrans(nt, &taddr, &tport);
    655 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    656 	tidx = nat_type_dimap[ntype];
    657 
    658 	/* Construct a "backwards" key. */
    659 	if (!npf_conn_conkey(npc, &key, false)) {
    660 		return EINVAL;
    661 	}
    662 
    663 	/* Acquire the lock and check for the races. */
    664 	mutex_enter(&con->c_lock);
    665 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    666 		/* The connection got expired. */
    667 		mutex_exit(&con->c_lock);
    668 		return EINVAL;
    669 	}
    670 	KASSERT((con->c_flags & CONN_REMOVED) == 0);
    671 
    672 	if (__predict_false(con->c_nat != NULL)) {
    673 		/* Race with a duplicate packet. */
    674 		mutex_exit(&con->c_lock);
    675 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    676 		return EISCONN;
    677 	}
    678 
    679 	/* Remove the "backwards" entry. */
    680 	ret = npf_conndb_remove(npf->conn_db, &con->c_back_entry);
    681 	KASSERT(ret == con);
    682 
    683 	/* Set the source/destination IDs to the translation values. */
    684 	bk = &con->c_back_entry;
    685 	connkey_set_addr(bk, taddr, tidx);
    686 	if (tport) {
    687 		connkey_set_id(bk, tport, tidx);
    688 	}
    689 
    690 	/* Finally, re-insert the "backwards" entry. */
    691 	if (!npf_conndb_insert(npf->conn_db, bk, con)) {
    692 		/*
    693 		 * Race: we have hit the duplicate, remove the "forwards"
    694 		 * entry and expire our connection; it is no longer valid.
    695 		 */
    696 		ret = npf_conndb_remove(npf->conn_db, &con->c_forw_entry);
    697 		KASSERT(ret == con);
    698 
    699 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    700 		mutex_exit(&con->c_lock);
    701 
    702 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    703 		return EISCONN;
    704 	}
    705 
    706 	/* Associate the NAT entry and release the lock. */
    707 	con->c_nat = nt;
    708 	mutex_exit(&con->c_lock);
    709 	return 0;
    710 }
    711 
    712 /*
    713  * npf_conn_expire: explicitly mark connection as expired.
    714  */
    715 void
    716 npf_conn_expire(npf_conn_t *con)
    717 {
    718 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    719 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    720 }
    721 
    722 /*
    723  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    724  */
    725 bool
    726 npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
    727 {
    728 	KASSERT(con->c_refcnt > 0);
    729 	if (__predict_true(con->c_flags & CONN_PASS)) {
    730 		mi->mi_rid = con->c_rid;
    731 		mi->mi_retfl = con->c_retfl;
    732 		*rp = con->c_rproc;
    733 		return true;
    734 	}
    735 	return false;
    736 }
    737 
    738 /*
    739  * npf_conn_setpass: mark connection as a "pass" one and associate the
    740  * rule procedure with it.
    741  */
    742 void
    743 npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
    744 {
    745 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    746 	KASSERT(con->c_refcnt > 0);
    747 	KASSERT(con->c_rproc == NULL);
    748 
    749 	/*
    750 	 * No need for atomic since the connection is not yet active.
    751 	 * If rproc is set, the caller transfers its reference to us,
    752 	 * which will be released on npf_conn_destroy().
    753 	 */
    754 	atomic_or_uint(&con->c_flags, CONN_PASS);
    755 	con->c_rproc = rp;
    756 	if (rp) {
    757 		con->c_rid = mi->mi_rid;
    758 		con->c_retfl = mi->mi_retfl;
    759 	}
    760 }
    761 
    762 /*
    763  * npf_conn_release: release a reference, which might allow G/C thread
    764  * to destroy this connection.
    765  */
    766 void
    767 npf_conn_release(npf_conn_t *con)
    768 {
    769 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    770 		/* Activate: after this, connection is globally visible. */
    771 		atomic_or_uint(&con->c_flags, CONN_ACTIVE);
    772 	}
    773 	KASSERT(con->c_refcnt > 0);
    774 	atomic_dec_uint(&con->c_refcnt);
    775 }
    776 
    777 /*
    778  * npf_conn_getnat: return associated NAT data entry and indicate
    779  * whether it is a "forwards" or "backwards" stream.
    780  */
    781 npf_nat_t *
    782 npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
    783 {
    784 	KASSERT(con->c_refcnt > 0);
    785 	*forw = (con->c_flags & PFIL_ALL) == (u_int)di;
    786 	return con->c_nat;
    787 }
    788 
    789 /*
    790  * npf_conn_expired: criterion to check if connection is expired.
    791  */
    792 static inline bool
    793 npf_conn_expired(const npf_conn_t *con, uint64_t tsnow)
    794 {
    795 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
    796 	int elapsed;
    797 
    798 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    799 		/* Explicitly marked to be expired. */
    800 		return true;
    801 	}
    802 
    803 	/*
    804 	 * Note: another thread may update 'atime' and it might
    805 	 * become greater than 'now'.
    806 	 */
    807 	elapsed = (int64_t)tsnow - con->c_atime;
    808 	return elapsed > etime;
    809 }
    810 
    811 /*
    812  * npf_conn_gc: garbage collect the expired connections.
    813  *
    814  * => Must run in a single-threaded manner.
    815  * => If it is a flush request, then destroy all connections.
    816  * => If 'sync' is true, then perform passive serialisation.
    817  */
    818 void
    819 npf_conn_gc(npf_t *npf, npf_conndb_t *cd, bool flush, bool sync)
    820 {
    821 	npf_conn_t *con, *prev, *gclist = NULL;
    822 	struct timespec tsnow;
    823 
    824 	getnanouptime(&tsnow);
    825 
    826 	/*
    827 	 * Scan all connections and check them for expiration.
    828 	 */
    829 	prev = NULL;
    830 	con = npf_conndb_getlist(cd);
    831 	while (con) {
    832 		npf_conn_t *next = con->c_next;
    833 
    834 		/* Expired?  Flushing all? */
    835 		if (!npf_conn_expired(con, tsnow.tv_sec) && !flush) {
    836 			prev = con;
    837 			con = next;
    838 			continue;
    839 		}
    840 
    841 		/* Remove both entries of the connection. */
    842 		mutex_enter(&con->c_lock);
    843 		if ((con->c_flags & CONN_REMOVED) == 0) {
    844 			npf_conn_t *ret __diagused;
    845 
    846 			ret = npf_conndb_remove(cd, &con->c_forw_entry);
    847 			KASSERT(ret == con);
    848 			ret = npf_conndb_remove(cd, &con->c_back_entry);
    849 			KASSERT(ret == con);
    850 		}
    851 
    852 		/* Flag the removal and expiration. */
    853 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    854 		mutex_exit(&con->c_lock);
    855 
    856 		/* Move to the G/C list. */
    857 		npf_conndb_dequeue(cd, con, prev);
    858 		con->c_next = gclist;
    859 		gclist = con;
    860 
    861 		/* Next.. */
    862 		con = next;
    863 	}
    864 	npf_conndb_settail(cd, prev);
    865 
    866 	/*
    867 	 * Ensure it is safe to destroy the connections.
    868 	 * Note: drop the conn_lock (see the lock order).
    869 	 */
    870 	if (sync) {
    871 		mutex_exit(&npf->conn_lock);
    872 		if (gclist) {
    873 			npf_config_enter(npf);
    874 			npf_config_sync(npf);
    875 			npf_config_exit(npf);
    876 		}
    877 	}
    878 
    879 	/*
    880 	 * Garbage collect all expired connections.
    881 	 * May need to wait for the references to drain.
    882 	 */
    883 	con = gclist;
    884 	while (con) {
    885 		npf_conn_t *next = con->c_next;
    886 
    887 		/*
    888 		 * Destroy only if removed and no references.
    889 		 * Otherwise, wait for a tiny moment.
    890 		 */
    891 		if (__predict_false(con->c_refcnt)) {
    892 			kpause("npfcongc", false, 1, NULL);
    893 			continue;
    894 		}
    895 		npf_conn_destroy(npf, con);
    896 		con = next;
    897 	}
    898 }
    899 
    900 /*
    901  * npf_conn_worker: G/C to run from a worker thread.
    902  */
    903 void
    904 npf_conn_worker(npf_t *npf)
    905 {
    906 	mutex_enter(&npf->conn_lock);
    907 	/* Note: the conn_lock will be released (sync == true). */
    908 	npf_conn_gc(npf, npf->conn_db, false, true);
    909 }
    910 
    911 /*
    912  * npf_conndb_export: construct a list of connections prepared for saving.
    913  * Note: this is expected to be an expensive operation.
    914  */
    915 int
    916 npf_conndb_export(npf_t *npf, prop_array_t conlist)
    917 {
    918 	npf_conn_t *con, *prev;
    919 
    920 	/*
    921 	 * Note: acquire conn_lock to prevent from the database
    922 	 * destruction and G/C thread.
    923 	 */
    924 	mutex_enter(&npf->conn_lock);
    925 	if (npf->conn_tracking != CONN_TRACKING_ON) {
    926 		mutex_exit(&npf->conn_lock);
    927 		return 0;
    928 	}
    929 	prev = NULL;
    930 	con = npf_conndb_getlist(npf->conn_db);
    931 	while (con) {
    932 		npf_conn_t *next = con->c_next;
    933 		prop_dictionary_t cdict;
    934 
    935 		if ((cdict = npf_conn_export(npf, con)) != NULL) {
    936 			prop_array_add(conlist, cdict);
    937 			prop_object_release(cdict);
    938 		}
    939 		prev = con;
    940 		con = next;
    941 	}
    942 	npf_conndb_settail(npf->conn_db, prev);
    943 	mutex_exit(&npf->conn_lock);
    944 	return 0;
    945 }
    946 
    947 static prop_dictionary_t
    948 npf_connkey_export(const npf_connkey_t *key)
    949 {
    950 	uint16_t id[2], alen, proto;
    951 	prop_dictionary_t kdict;
    952 	npf_addr_t ips[2];
    953 	prop_data_t d;
    954 
    955 	kdict = prop_dictionary_create();
    956 	connkey_getkey(key, &proto, ips, id, &alen);
    957 
    958 	prop_dictionary_set_uint16(kdict, "proto", proto);
    959 
    960 	prop_dictionary_set_uint16(kdict, "sport", id[NPF_SRC]);
    961 	prop_dictionary_set_uint16(kdict, "dport", id[NPF_DST]);
    962 
    963 	d = prop_data_create_data(&ips[NPF_SRC], alen);
    964 	prop_dictionary_set_and_rel(kdict, "saddr", d);
    965 
    966 	d = prop_data_create_data(&ips[NPF_DST], alen);
    967 	prop_dictionary_set_and_rel(kdict, "daddr", d);
    968 
    969 	return kdict;
    970 }
    971 
    972 /*
    973  * npf_conn_export: serialise a single connection.
    974  */
    975 prop_dictionary_t
    976 npf_conn_export(npf_t *npf, const npf_conn_t *con)
    977 {
    978 	prop_dictionary_t cdict, kdict;
    979 	prop_data_t d;
    980 
    981 	if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
    982 		return NULL;
    983 	}
    984 	cdict = prop_dictionary_create();
    985 	prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
    986 	prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
    987 	if (con->c_ifid) {
    988 		const char *ifname = npf_ifmap_getname(npf, con->c_ifid);
    989 		prop_dictionary_set_cstring(cdict, "ifname", ifname);
    990 	}
    991 
    992 	d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
    993 	prop_dictionary_set_and_rel(cdict, "state", d);
    994 
    995 	kdict = npf_connkey_export(&con->c_forw_entry);
    996 	prop_dictionary_set_and_rel(cdict, "forw-key", kdict);
    997 
    998 	kdict = npf_connkey_export(&con->c_back_entry);
    999 	prop_dictionary_set_and_rel(cdict, "back-key", kdict);
   1000 
   1001 	if (con->c_nat) {
   1002 		npf_nat_export(cdict, con->c_nat);
   1003 	}
   1004 	return cdict;
   1005 }
   1006 
   1007 static uint32_t
   1008 npf_connkey_import(prop_dictionary_t kdict, npf_connkey_t *key)
   1009 {
   1010 	prop_object_t sobj, dobj;
   1011 	npf_addr_t const * ips[2];
   1012 	uint16_t alen, proto, id[2];
   1013 
   1014 	if (!prop_dictionary_get_uint16(kdict, "proto", &proto))
   1015 		return 0;
   1016 
   1017 	if (!prop_dictionary_get_uint16(kdict, "sport", &id[NPF_SRC]))
   1018 		return 0;
   1019 
   1020 	if (!prop_dictionary_get_uint16(kdict, "dport", &id[NPF_DST]))
   1021 		return 0;
   1022 
   1023 	sobj = prop_dictionary_get(kdict, "saddr");
   1024 	if ((ips[NPF_SRC] = prop_data_data_nocopy(sobj)) == NULL)
   1025 		return 0;
   1026 
   1027 	dobj = prop_dictionary_get(kdict, "daddr");
   1028 	if ((ips[NPF_DST] = prop_data_data_nocopy(dobj)) == NULL)
   1029 		return 0;
   1030 
   1031 	alen = prop_data_size(sobj);
   1032 	if (alen != prop_data_size(dobj))
   1033 		return 0;
   1034 
   1035 	return connkey_setkey(key, proto, ips, id, alen, true);
   1036 }
   1037 
   1038 /*
   1039  * npf_conn_import: fully reconstruct a single connection from a
   1040  * directory and insert into the given database.
   1041  */
   1042 int
   1043 npf_conn_import(npf_t *npf, npf_conndb_t *cd, prop_dictionary_t cdict,
   1044     npf_ruleset_t *natlist)
   1045 {
   1046 	npf_conn_t *con;
   1047 	npf_connkey_t *fw, *bk;
   1048 	prop_object_t obj;
   1049 	const char *ifname;
   1050 	const void *d;
   1051 
   1052 	/* Allocate a connection and initialise it (clear first). */
   1053 	con = pool_cache_get(npf->conn_cache, PR_WAITOK);
   1054 	memset(con, 0, sizeof(npf_conn_t));
   1055 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
   1056 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
   1057 
   1058 	prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
   1059 	prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
   1060 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
   1061 	conn_update_atime(con);
   1062 
   1063 	if (prop_dictionary_get_cstring_nocopy(cdict, "ifname", &ifname) &&
   1064 	    (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
   1065 		goto err;
   1066 	}
   1067 
   1068 	obj = prop_dictionary_get(cdict, "state");
   1069 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
   1070 	    prop_data_size(obj) != sizeof(npf_state_t)) {
   1071 		goto err;
   1072 	}
   1073 	memcpy(&con->c_state, d, sizeof(npf_state_t));
   1074 
   1075 	/* Reconstruct NAT association, if any. */
   1076 	if ((obj = prop_dictionary_get(cdict, "nat")) != NULL &&
   1077 	    (con->c_nat = npf_nat_import(npf, obj, natlist, con)) == NULL) {
   1078 		goto err;
   1079 	}
   1080 
   1081 	/*
   1082 	 * Fetch and copy the keys for each direction.
   1083 	 */
   1084 	obj = prop_dictionary_get(cdict, "forw-key");
   1085 	fw = &con->c_forw_entry;
   1086 	if (obj == NULL || !npf_connkey_import(obj, fw)) {
   1087 		goto err;
   1088 	}
   1089 
   1090 	obj = prop_dictionary_get(cdict, "back-key");
   1091 	bk = &con->c_back_entry;
   1092 	if (obj == NULL || !npf_connkey_import(obj, bk)) {
   1093 		goto err;
   1094 	}
   1095 
   1096 	fw->ck_backptr = bk->ck_backptr = con;
   1097 
   1098 	/* Insert the entries and the connection itself. */
   1099 	if (!npf_conndb_insert(cd, fw, con)) {
   1100 		goto err;
   1101 	}
   1102 	if (!npf_conndb_insert(cd, bk, con)) {
   1103 		npf_conndb_remove(cd, fw);
   1104 		goto err;
   1105 	}
   1106 
   1107 	NPF_PRINTF(("NPF: imported conn %p\n", con));
   1108 	npf_conndb_enqueue(cd, con);
   1109 	return 0;
   1110 err:
   1111 	npf_conn_destroy(npf, con);
   1112 	return EINVAL;
   1113 }
   1114 
   1115 int
   1116 npf_conn_find(npf_t *npf, prop_dictionary_t idict, prop_dictionary_t *odict)
   1117 {
   1118 	prop_dictionary_t kdict;
   1119 	npf_connkey_t key;
   1120 	npf_conn_t *con;
   1121 	uint16_t dir;
   1122 	bool forw;
   1123 
   1124 	if ((kdict = prop_dictionary_get(idict, "key")) == NULL)
   1125 		return EINVAL;
   1126 
   1127 	if (!npf_connkey_import(kdict, &key))
   1128 		return EINVAL;
   1129 
   1130 	if (!prop_dictionary_get_uint16(idict, "direction", &dir))
   1131 		return EINVAL;
   1132 
   1133 	con = npf_conndb_lookup(npf->conn_db, &key, &forw);
   1134 	if (con == NULL) {
   1135 		return ESRCH;
   1136 	}
   1137 
   1138 	if (!npf_conn_ok(con, dir, true)) {
   1139 		atomic_dec_uint(&con->c_refcnt);
   1140 		return ESRCH;
   1141 	}
   1142 
   1143 	*odict = npf_conn_export(npf, con);
   1144 	if (*odict == NULL) {
   1145 		atomic_dec_uint(&con->c_refcnt);
   1146 		return ENOSPC;
   1147 	}
   1148 	atomic_dec_uint(&con->c_refcnt);
   1149 
   1150 	return 0;
   1151 }
   1152 
   1153 #if defined(DDB) || defined(_NPF_TESTING)
   1154 
   1155 void
   1156 npf_conn_print(const npf_conn_t *con)
   1157 {
   1158 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
   1159 	const uint32_t *fkey = con->c_forw_entry.ck_key;
   1160 	const uint32_t *bkey = con->c_back_entry.ck_key;
   1161 	const u_int proto = con->c_proto;
   1162 	struct timespec tspnow;
   1163 	const void *src, *dst;
   1164 	int etime;
   1165 
   1166 	getnanouptime(&tspnow);
   1167 	etime = npf_state_etime(&con->c_state, proto);
   1168 
   1169 	printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
   1170 	    proto, con->c_flags, (long)(tspnow.tv_sec - con->c_atime), etime);
   1171 
   1172 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
   1173 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
   1174 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
   1175 
   1176 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
   1177 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
   1178 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
   1179 
   1180 	npf_state_dump(&con->c_state);
   1181 	if (con->c_nat) {
   1182 		npf_nat_dump(con->c_nat);
   1183 	}
   1184 }
   1185 
   1186 #endif
   1187