Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.26
      1 /*-
      2  * Copyright (c) 2014-2018 Mindaugas Rasiukevicius <rmind at netbsd org>
      3  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This material is based upon work partially supported by The
      7  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 /*
     32  * NPF connection tracking for stateful filtering and translation.
     33  *
     34  * Overview
     35  *
     36  *	Packets can be incoming or outgoing with respect to an interface.
     37  *	Connection direction is identified by the direction of its first
     38  *	packet.  The meaning of incoming/outgoing packet in the context of
     39  *	connection direction can be confusing.  Therefore, we will use the
     40  *	terms "forwards stream" and "backwards stream", where packets in
     41  *	the forwards stream mean the packets travelling in the direction
     42  *	as the connection direction.
     43  *
     44  *	All connections have two keys and thus two entries:
     45  *
     46  *		npf_conn_t::c_forw_entry for the forwards stream and
     47  *		npf_conn_t::c_back_entry for the backwards stream.
     48  *
     49  *	The keys are formed from the 5-tuple (source/destination address,
     50  *	source/destination port and the protocol).  Additional matching
     51  *	is performed for the interface (a common behaviour is equivalent
     52  *	to the 6-tuple lookup including the interface ID).  Note that the
     53  *	key may be formed using translated values in a case of NAT.
     54  *
     55  *	Connections can serve two purposes: for the implicit passing or
     56  *	to accommodate the dynamic NAT.  Connections for the former purpose
     57  *	are created by the rules with "stateful" attribute and are used for
     58  *	stateful filtering.  Such connections indicate that the packet of
     59  *	the backwards stream should be passed without inspection of the
     60  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     61  *	with a connection.  Such connections are created by the NAT policies
     62  *	and they have a relationship with NAT translation structure via
     63  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     64  *	which is a common case.
     65  *
     66  * Connection life-cycle
     67  *
     68  *	Connections are established when a packet matches said rule or
     69  *	NAT policy.  Both keys of the established connection are inserted
     70  *	into the connection database.  A garbage collection thread
     71  *	periodically scans all connections and depending on connection
     72  *	properties (e.g. last activity time, protocol) removes connection
     73  *	entries and expires the actual connections.
     74  *
     75  *	Each connection has a reference count.  The reference is acquired
     76  *	on lookup and should be released by the caller.  It guarantees that
     77  *	the connection will not be destroyed, although it may be expired.
     78  *
     79  * Synchronisation
     80  *
     81  *	Connection database is accessed in a lock-less manner by the main
     82  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     83  *	are always called from a software interrupt, the database is
     84  *	protected using passive serialisation.  The main place which can
     85  *	destroy a connection is npf_conn_worker().  The database itself
     86  *	can be replaced and destroyed in npf_conn_reload().
     87  *
     88  * ALG support
     89  *
     90  *	Application-level gateways (ALGs) can override generic connection
     91  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     92  *	performing their own lookup using different key.  Recursive call
     93  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     94  *	npf_conn_lookup() function for this purpose.
     95  *
     96  * Lock order
     97  *
     98  *	npf_config_lock ->
     99  *		conn_lock ->
    100  *			npf_conn_t::c_lock
    101  */
    102 
    103 #ifdef _KERNEL
    104 #include <sys/cdefs.h>
    105 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.26 2019/01/19 21:19:31 rmind Exp $");
    106 
    107 #include <sys/param.h>
    108 #include <sys/types.h>
    109 
    110 #include <netinet/in.h>
    111 #include <netinet/tcp.h>
    112 
    113 #include <sys/atomic.h>
    114 #include <sys/condvar.h>
    115 #include <sys/kmem.h>
    116 #include <sys/kthread.h>
    117 #include <sys/mutex.h>
    118 #include <net/pfil.h>
    119 #include <sys/pool.h>
    120 #include <sys/queue.h>
    121 #include <sys/systm.h>
    122 #endif
    123 
    124 #define __NPF_CONN_PRIVATE
    125 #include "npf_conn.h"
    126 #include "npf_impl.h"
    127 
    128 /*
    129  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    130  */
    131 CTASSERT(PFIL_ALL == (0x001 | 0x002));
    132 #define	CONN_ACTIVE	0x004	/* visible on inspection */
    133 #define	CONN_PASS	0x008	/* perform implicit passing */
    134 #define	CONN_EXPIRE	0x010	/* explicitly expire */
    135 #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    136 
    137 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    138 
    139 static nvlist_t *npf_conn_export(npf_t *, const npf_conn_t *);
    140 
    141 /*
    142  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    143  */
    144 
    145 void
    146 npf_conn_init(npf_t *npf, int flags)
    147 {
    148 	npf->conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
    149 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
    150 	mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
    151 	npf->conn_tracking = CONN_TRACKING_OFF;
    152 	npf->conn_db = npf_conndb_create();
    153 
    154 	if ((flags & NPF_NO_GC) == 0) {
    155 		npf_worker_register(npf, npf_conn_worker);
    156 	}
    157 }
    158 
    159 void
    160 npf_conn_fini(npf_t *npf)
    161 {
    162 	/* Note: the caller should have flushed the connections. */
    163 	KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
    164 	npf_worker_unregister(npf, npf_conn_worker);
    165 
    166 	npf_conndb_destroy(npf->conn_db);
    167 	pool_cache_destroy(npf->conn_cache);
    168 	mutex_destroy(&npf->conn_lock);
    169 }
    170 
    171 /*
    172  * npf_conn_load: perform the load by flushing the current connection
    173  * database and replacing it with the new one or just destroying.
    174  *
    175  * => The caller must disable the connection tracking and ensure that
    176  *    there are no connection database lookups or references in-flight.
    177  */
    178 void
    179 npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
    180 {
    181 	npf_conndb_t *odb = NULL;
    182 
    183 	KASSERT(npf_config_locked_p(npf));
    184 
    185 	/*
    186 	 * The connection database is in the quiescent state.
    187 	 * Prevent G/C thread from running and install a new database.
    188 	 */
    189 	mutex_enter(&npf->conn_lock);
    190 	if (ndb) {
    191 		KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
    192 		odb = npf->conn_db;
    193 		npf->conn_db = ndb;
    194 		membar_sync();
    195 	}
    196 	if (track) {
    197 		/* After this point lookups start flying in. */
    198 		npf->conn_tracking = CONN_TRACKING_ON;
    199 	}
    200 	mutex_exit(&npf->conn_lock);
    201 
    202 	if (odb) {
    203 		/*
    204 		 * Flush all, no sync since the caller did it for us.
    205 		 * Also, release the pool cache memory.
    206 		 */
    207 		npf_conndb_gc(npf, odb, true, false);
    208 		npf_conndb_destroy(odb);
    209 		pool_cache_invalidate(npf->conn_cache);
    210 	}
    211 }
    212 
    213 /*
    214  * npf_conn_tracking: enable/disable connection tracking.
    215  */
    216 void
    217 npf_conn_tracking(npf_t *npf, bool track)
    218 {
    219 	KASSERT(npf_config_locked_p(npf));
    220 	npf->conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
    221 }
    222 
    223 static inline bool
    224 npf_conn_trackable_p(const npf_cache_t *npc)
    225 {
    226 	const npf_t *npf = npc->npc_ctx;
    227 
    228 	/*
    229 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    230 	 * not cached - protocol is not supported or packet is invalid.
    231 	 */
    232 	if (npf->conn_tracking != CONN_TRACKING_ON) {
    233 		return false;
    234 	}
    235 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    236 		return false;
    237 	}
    238 	return true;
    239 }
    240 
    241 static uint32_t
    242 connkey_setkey(npf_connkey_t *key, uint16_t proto, const void *ipv,
    243     const uint16_t *id, unsigned alen, bool forw)
    244 {
    245 	uint32_t isrc, idst, *k = key->ck_key;
    246 	const npf_addr_t * const *ips = ipv;
    247 
    248 	if (__predict_true(forw)) {
    249 		isrc = NPF_SRC, idst = NPF_DST;
    250 	} else {
    251 		isrc = NPF_DST, idst = NPF_SRC;
    252 	}
    253 
    254 	/*
    255 	 * Construct a key formed out of 32-bit integers.  The key layout:
    256 	 *
    257 	 * Field: | proto  |  alen  | src-id | dst-id | src-addr | dst-addr |
    258 	 *        +--------+--------+--------+--------+----------+----------+
    259 	 * Bits:  |   16   |   16   |   16   |   16   |  32-128  |  32-128  |
    260 	 *
    261 	 * The source and destination are inverted if they key is for the
    262 	 * backwards stream (forw == false).  The address length depends
    263 	 * on the 'alen' field; it is a length in bytes, either 4 or 16.
    264 	 */
    265 
    266 	k[0] = ((uint32_t)proto << 16) | (alen & 0xffff);
    267 	k[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    268 
    269 	if (__predict_true(alen == sizeof(in_addr_t))) {
    270 		k[2] = ips[isrc]->word32[0];
    271 		k[3] = ips[idst]->word32[0];
    272 		return 4 * sizeof(uint32_t);
    273 	} else {
    274 		const u_int nwords = alen >> 2;
    275 		memcpy(&k[2], ips[isrc], alen);
    276 		memcpy(&k[2 + nwords], ips[idst], alen);
    277 		return (2 + (nwords * 2)) * sizeof(uint32_t);
    278 	}
    279 }
    280 
    281 static void
    282 connkey_getkey(const npf_connkey_t *key, uint16_t *proto, npf_addr_t *ips,
    283     uint16_t *id, uint16_t *alen)
    284 {
    285 	const uint32_t *k = key->ck_key;
    286 
    287 	*proto = k[0] >> 16;
    288 	*alen = k[0] & 0xffff;
    289 	id[NPF_SRC] = k[1] >> 16;
    290 	id[NPF_DST] = k[1] & 0xffff;
    291 
    292 	switch (*alen) {
    293 	case sizeof(struct in6_addr):
    294 	case sizeof(struct in_addr):
    295 		memcpy(&ips[NPF_SRC], &k[2], *alen);
    296 		memcpy(&ips[NPF_DST], &k[2 + ((unsigned)*alen >> 2)], *alen);
    297 		return;
    298 	default:
    299 		KASSERT(0);
    300 	}
    301 }
    302 
    303 /*
    304  * npf_conn_conkey: construct a key for the connection lookup.
    305  *
    306  * => Returns the key length in bytes or zero on failure.
    307  */
    308 unsigned
    309 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
    310 {
    311 	const u_int proto = npc->npc_proto;
    312 	const u_int alen = npc->npc_alen;
    313 	const struct tcphdr *th;
    314 	const struct udphdr *uh;
    315 	uint16_t id[2];
    316 
    317 	switch (proto) {
    318 	case IPPROTO_TCP:
    319 		KASSERT(npf_iscached(npc, NPC_TCP));
    320 		th = npc->npc_l4.tcp;
    321 		id[NPF_SRC] = th->th_sport;
    322 		id[NPF_DST] = th->th_dport;
    323 		break;
    324 	case IPPROTO_UDP:
    325 		KASSERT(npf_iscached(npc, NPC_UDP));
    326 		uh = npc->npc_l4.udp;
    327 		id[NPF_SRC] = uh->uh_sport;
    328 		id[NPF_DST] = uh->uh_dport;
    329 		break;
    330 	case IPPROTO_ICMP:
    331 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    332 			const struct icmp *ic = npc->npc_l4.icmp;
    333 			id[NPF_SRC] = ic->icmp_id;
    334 			id[NPF_DST] = ic->icmp_id;
    335 			break;
    336 		}
    337 		return 0;
    338 	case IPPROTO_ICMPV6:
    339 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    340 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    341 			id[NPF_SRC] = ic6->icmp6_id;
    342 			id[NPF_DST] = ic6->icmp6_id;
    343 			break;
    344 		}
    345 		return 0;
    346 	default:
    347 		/* Unsupported protocol. */
    348 		return 0;
    349 	}
    350 	return connkey_setkey(key, proto, npc->npc_ips, id, alen, forw);
    351 }
    352 
    353 static __inline void
    354 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
    355 {
    356 	const u_int alen = key->ck_key[0] & 0xffff;
    357 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
    358 
    359 	KASSERT(alen > 0);
    360 	memcpy(addr, naddr, alen);
    361 }
    362 
    363 static __inline void
    364 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
    365 {
    366 	const uint32_t oid = key->ck_key[1];
    367 	const u_int shift = 16 * !di;
    368 	const uint32_t mask = 0xffff0000 >> shift;
    369 
    370 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
    371 }
    372 
    373 static inline void
    374 conn_update_atime(npf_conn_t *con)
    375 {
    376 	struct timespec tsnow;
    377 
    378 	getnanouptime(&tsnow);
    379 	con->c_atime = tsnow.tv_sec;
    380 }
    381 
    382 /*
    383  * npf_conn_ok: check if the connection is active and has the right direction.
    384  */
    385 static bool
    386 npf_conn_ok(const npf_conn_t *con, const int di, bool forw)
    387 {
    388 	const uint32_t flags = con->c_flags;
    389 
    390 	/* Check if connection is active and not expired. */
    391 	bool ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    392 	if (__predict_false(!ok)) {
    393 		return false;
    394 	}
    395 
    396 	/* Check if the direction is consistent */
    397 	bool pforw = (flags & PFIL_ALL) == (unsigned)di;
    398 	if (__predict_false(forw != pforw)) {
    399 		return false;
    400 	}
    401 	return true;
    402 }
    403 
    404 /*
    405  * npf_conn_lookup: lookup if there is an established connection.
    406  *
    407  * => If found, we will hold a reference for the caller.
    408  */
    409 npf_conn_t *
    410 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
    411 {
    412 	npf_t *npf = npc->npc_ctx;
    413 	const nbuf_t *nbuf = npc->npc_nbuf;
    414 	npf_conn_t *con;
    415 	npf_connkey_t key;
    416 	u_int cifid;
    417 
    418 	/* Construct a key and lookup for a connection in the store. */
    419 	if (!npf_conn_conkey(npc, &key, true)) {
    420 		return NULL;
    421 	}
    422 	con = npf_conndb_lookup(npf->conn_db, &key, forw);
    423 	if (con == NULL) {
    424 		return NULL;
    425 	}
    426 	KASSERT(npc->npc_proto == con->c_proto);
    427 
    428 	/* Check if connection is active and not expired. */
    429 	if (!npf_conn_ok(con, di, *forw)) {
    430 		atomic_dec_uint(&con->c_refcnt);
    431 		return NULL;
    432 	}
    433 
    434 	/*
    435 	 * Match the interface and the direction of the connection entry
    436 	 * and the packet.
    437 	 */
    438 	cifid = con->c_ifid;
    439 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
    440 		atomic_dec_uint(&con->c_refcnt);
    441 		return NULL;
    442 	}
    443 
    444 	/* Update the last activity time. */
    445 	conn_update_atime(con);
    446 	return con;
    447 }
    448 
    449 /*
    450  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    451  *
    452  * => If found, we will hold a reference for the caller.
    453  */
    454 npf_conn_t *
    455 npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
    456 {
    457 	nbuf_t *nbuf = npc->npc_nbuf;
    458 	npf_conn_t *con;
    459 	bool forw, ok;
    460 
    461 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    462 	if (!npf_conn_trackable_p(npc)) {
    463 		return NULL;
    464 	}
    465 
    466 	/* Query ALG which may lookup connection for us. */
    467 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    468 		/* Note: reference is held. */
    469 		return con;
    470 	}
    471 	if (nbuf_head_mbuf(nbuf) == NULL) {
    472 		*error = ENOMEM;
    473 		return NULL;
    474 	}
    475 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    476 
    477 	/* Main lookup of the connection. */
    478 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
    479 		return NULL;
    480 	}
    481 
    482 	/* Inspect the protocol data and handle state changes. */
    483 	mutex_enter(&con->c_lock);
    484 	ok = npf_state_inspect(npc, &con->c_state, forw);
    485 	mutex_exit(&con->c_lock);
    486 
    487 	/* If invalid state: let the rules deal with it. */
    488 	if (__predict_false(!ok)) {
    489 		npf_conn_release(con);
    490 		npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
    491 		return NULL;
    492 	}
    493 
    494 	/*
    495 	 * If this is multi-end state, then specially tag the packet
    496 	 * so it will be just passed-through on other interfaces.
    497 	 */
    498 	if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
    499 		npf_conn_release(con);
    500 		*error = ENOMEM;
    501 		return NULL;
    502 	}
    503 	return con;
    504 }
    505 
    506 /*
    507  * npf_conn_establish: create a new connection, insert into the global list.
    508  *
    509  * => Connection is created with the reference held for the caller.
    510  * => Connection will be activated on the first reference release.
    511  */
    512 npf_conn_t *
    513 npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
    514 {
    515 	npf_t *npf = npc->npc_ctx;
    516 	const nbuf_t *nbuf = npc->npc_nbuf;
    517 	npf_conn_t *con;
    518 	int error = 0;
    519 
    520 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    521 
    522 	if (!npf_conn_trackable_p(npc)) {
    523 		return NULL;
    524 	}
    525 
    526 	/* Allocate and initialise the new connection. */
    527 	con = pool_cache_get(npf->conn_cache, PR_NOWAIT);
    528 	if (__predict_false(!con)) {
    529 		npf_worker_signal(npf);
    530 		return NULL;
    531 	}
    532 	NPF_PRINTF(("NPF: create conn %p\n", con));
    533 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    534 
    535 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    536 	con->c_flags = (di & PFIL_ALL);
    537 	con->c_refcnt = 0;
    538 	con->c_rproc = NULL;
    539 	con->c_nat = NULL;
    540 
    541 	/* Initialize the protocol state. */
    542 	if (!npf_state_init(npc, &con->c_state)) {
    543 		npf_conn_destroy(npf, con);
    544 		return NULL;
    545 	}
    546 
    547 	KASSERT(npf_iscached(npc, NPC_IP46));
    548 	npf_connkey_t *fw = &con->c_forw_entry;
    549 	npf_connkey_t *bk = &con->c_back_entry;
    550 
    551 	/*
    552 	 * Construct "forwards" and "backwards" keys.  Also, set the
    553 	 * interface ID for this connection (unless it is global).
    554 	 */
    555 	if (!npf_conn_conkey(npc, fw, true) ||
    556 	    !npf_conn_conkey(npc, bk, false)) {
    557 		npf_conn_destroy(npf, con);
    558 		return NULL;
    559 	}
    560 	fw->ck_backptr = bk->ck_backptr = con;
    561 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
    562 	con->c_proto = npc->npc_proto;
    563 
    564 	/*
    565 	 * Set last activity time for a new connection and acquire
    566 	 * a reference for the caller before we make it visible.
    567 	 */
    568 	conn_update_atime(con);
    569 	con->c_refcnt = 1;
    570 
    571 	/*
    572 	 * Insert both keys (entries representing directions) of the
    573 	 * connection.  At this point it becomes visible, but we activate
    574 	 * the connection later.
    575 	 */
    576 	mutex_enter(&con->c_lock);
    577 	if (!npf_conndb_insert(npf->conn_db, fw)) {
    578 		error = EISCONN;
    579 		goto err;
    580 	}
    581 	if (!npf_conndb_insert(npf->conn_db, bk)) {
    582 		npf_conn_t *ret __diagused;
    583 		ret = npf_conndb_remove(npf->conn_db, fw);
    584 		KASSERT(ret == con);
    585 		error = EISCONN;
    586 		goto err;
    587 	}
    588 err:
    589 	/*
    590 	 * If we have hit the duplicate: mark the connection as expired
    591 	 * and let the G/C thread to take care of it.  We cannot do it
    592 	 * here since there might be references acquired already.
    593 	 */
    594 	if (error) {
    595 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    596 		atomic_dec_uint(&con->c_refcnt);
    597 		npf_stats_inc(npf, NPF_STAT_RACE_CONN);
    598 	} else {
    599 		NPF_PRINTF(("NPF: establish conn %p\n", con));
    600 	}
    601 
    602 	/* Finally, insert into the connection list. */
    603 	npf_conndb_enqueue(npf->conn_db, con);
    604 	mutex_exit(&con->c_lock);
    605 
    606 	return error ? NULL : con;
    607 }
    608 
    609 void
    610 npf_conn_destroy(npf_t *npf, npf_conn_t *con)
    611 {
    612 	KASSERT(con->c_refcnt == 0);
    613 
    614 	if (con->c_nat) {
    615 		/* Release any NAT structures. */
    616 		npf_nat_destroy(con->c_nat);
    617 	}
    618 	if (con->c_rproc) {
    619 		/* Release the rule procedure. */
    620 		npf_rproc_release(con->c_rproc);
    621 	}
    622 
    623 	/* Destroy the state. */
    624 	npf_state_destroy(&con->c_state);
    625 	mutex_destroy(&con->c_lock);
    626 
    627 	/* Free the structure, increase the counter. */
    628 	pool_cache_put(npf->conn_cache, con);
    629 	npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
    630 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    631 }
    632 
    633 /*
    634  * npf_conn_setnat: associate NAT entry with the connection, update and
    635  * re-insert connection entry using the translation values.
    636  *
    637  * => The caller must be holding a reference.
    638  */
    639 int
    640 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    641     npf_nat_t *nt, u_int ntype)
    642 {
    643 	static const u_int nat_type_dimap[] = {
    644 		[NPF_NATOUT] = NPF_DST,
    645 		[NPF_NATIN] = NPF_SRC,
    646 	};
    647 	npf_t *npf = npc->npc_ctx;
    648 	npf_connkey_t key, *bk;
    649 	npf_conn_t *ret __diagused;
    650 	npf_addr_t *taddr;
    651 	in_port_t tport;
    652 	u_int tidx;
    653 
    654 	KASSERT(con->c_refcnt > 0);
    655 
    656 	npf_nat_gettrans(nt, &taddr, &tport);
    657 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    658 	tidx = nat_type_dimap[ntype];
    659 
    660 	/* Construct a "backwards" key. */
    661 	if (!npf_conn_conkey(npc, &key, false)) {
    662 		return EINVAL;
    663 	}
    664 
    665 	/* Acquire the lock and check for the races. */
    666 	mutex_enter(&con->c_lock);
    667 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    668 		/* The connection got expired. */
    669 		mutex_exit(&con->c_lock);
    670 		return EINVAL;
    671 	}
    672 	KASSERT((con->c_flags & CONN_REMOVED) == 0);
    673 
    674 	if (__predict_false(con->c_nat != NULL)) {
    675 		/* Race with a duplicate packet. */
    676 		mutex_exit(&con->c_lock);
    677 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    678 		return EISCONN;
    679 	}
    680 
    681 	/* Remove the "backwards" entry. */
    682 	ret = npf_conndb_remove(npf->conn_db, &con->c_back_entry);
    683 	KASSERT(ret == con);
    684 
    685 	/* Set the source/destination IDs to the translation values. */
    686 	bk = &con->c_back_entry;
    687 	connkey_set_addr(bk, taddr, tidx);
    688 	if (tport) {
    689 		connkey_set_id(bk, tport, tidx);
    690 	}
    691 
    692 	/* Finally, re-insert the "backwards" entry. */
    693 	if (!npf_conndb_insert(npf->conn_db, bk)) {
    694 		/*
    695 		 * Race: we have hit the duplicate, remove the "forwards"
    696 		 * entry and expire our connection; it is no longer valid.
    697 		 */
    698 		ret = npf_conndb_remove(npf->conn_db, &con->c_forw_entry);
    699 		KASSERT(ret == con);
    700 
    701 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    702 		mutex_exit(&con->c_lock);
    703 
    704 		npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
    705 		return EISCONN;
    706 	}
    707 
    708 	/* Associate the NAT entry and release the lock. */
    709 	con->c_nat = nt;
    710 	mutex_exit(&con->c_lock);
    711 	return 0;
    712 }
    713 
    714 /*
    715  * npf_conn_expire: explicitly mark connection as expired.
    716  */
    717 void
    718 npf_conn_expire(npf_conn_t *con)
    719 {
    720 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    721 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    722 }
    723 
    724 /*
    725  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    726  */
    727 bool
    728 npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
    729 {
    730 	KASSERT(con->c_refcnt > 0);
    731 	if (__predict_true(con->c_flags & CONN_PASS)) {
    732 		mi->mi_rid = con->c_rid;
    733 		mi->mi_retfl = con->c_retfl;
    734 		*rp = con->c_rproc;
    735 		return true;
    736 	}
    737 	return false;
    738 }
    739 
    740 /*
    741  * npf_conn_setpass: mark connection as a "pass" one and associate the
    742  * rule procedure with it.
    743  */
    744 void
    745 npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
    746 {
    747 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    748 	KASSERT(con->c_refcnt > 0);
    749 	KASSERT(con->c_rproc == NULL);
    750 
    751 	/*
    752 	 * No need for atomic since the connection is not yet active.
    753 	 * If rproc is set, the caller transfers its reference to us,
    754 	 * which will be released on npf_conn_destroy().
    755 	 */
    756 	atomic_or_uint(&con->c_flags, CONN_PASS);
    757 	con->c_rproc = rp;
    758 	if (rp) {
    759 		con->c_rid = mi->mi_rid;
    760 		con->c_retfl = mi->mi_retfl;
    761 	}
    762 }
    763 
    764 /*
    765  * npf_conn_release: release a reference, which might allow G/C thread
    766  * to destroy this connection.
    767  */
    768 void
    769 npf_conn_release(npf_conn_t *con)
    770 {
    771 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    772 		/* Activate: after this, connection is globally visible. */
    773 		atomic_or_uint(&con->c_flags, CONN_ACTIVE);
    774 	}
    775 	KASSERT(con->c_refcnt > 0);
    776 	atomic_dec_uint(&con->c_refcnt);
    777 }
    778 
    779 /*
    780  * npf_conn_getnat: return associated NAT data entry and indicate
    781  * whether it is a "forwards" or "backwards" stream.
    782  */
    783 npf_nat_t *
    784 npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
    785 {
    786 	KASSERT(con->c_refcnt > 0);
    787 	*forw = (con->c_flags & PFIL_ALL) == (u_int)di;
    788 	return con->c_nat;
    789 }
    790 
    791 /*
    792  * npf_conn_expired: criterion to check if connection is expired.
    793  */
    794 bool
    795 npf_conn_expired(const npf_conn_t *con, uint64_t tsnow)
    796 {
    797 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
    798 	int elapsed;
    799 
    800 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    801 		/* Explicitly marked to be expired. */
    802 		return true;
    803 	}
    804 
    805 	/*
    806 	 * Note: another thread may update 'atime' and it might
    807 	 * become greater than 'now'.
    808 	 */
    809 	elapsed = (int64_t)tsnow - con->c_atime;
    810 	return elapsed > etime;
    811 }
    812 
    813 /*
    814  * npf_conn_remove: unlink the connection and mark as expired.
    815  */
    816 void
    817 npf_conn_remove(npf_conndb_t *cd, npf_conn_t *con)
    818 {
    819 	/* Remove both entries of the connection. */
    820 	mutex_enter(&con->c_lock);
    821 	if ((con->c_flags & CONN_REMOVED) == 0) {
    822 		npf_conn_t *ret __diagused;
    823 
    824 		ret = npf_conndb_remove(cd, &con->c_forw_entry);
    825 		KASSERT(ret == con);
    826 		ret = npf_conndb_remove(cd, &con->c_back_entry);
    827 		KASSERT(ret == con);
    828 	}
    829 
    830 	/* Flag the removal and expiration. */
    831 	atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    832 	mutex_exit(&con->c_lock);
    833 }
    834 
    835 /*
    836  * npf_conn_worker: G/C to run from a worker thread.
    837  */
    838 void
    839 npf_conn_worker(npf_t *npf)
    840 {
    841 	npf_conndb_gc(npf, npf->conn_db, false, true);
    842 }
    843 
    844 /*
    845  * npf_conndb_export: construct a list of connections prepared for saving.
    846  * Note: this is expected to be an expensive operation.
    847  */
    848 int
    849 npf_conndb_export(npf_t *npf, nvlist_t *npf_dict)
    850 {
    851 	npf_conn_t *head, *con;
    852 
    853 	/*
    854 	 * Note: acquire conn_lock to prevent from the database
    855 	 * destruction and G/C thread.
    856 	 */
    857 	mutex_enter(&npf->conn_lock);
    858 	if (npf->conn_tracking != CONN_TRACKING_ON) {
    859 		mutex_exit(&npf->conn_lock);
    860 		return 0;
    861 	}
    862 	head = npf_conndb_getlist(npf->conn_db);
    863 	con = head;
    864 	while (con) {
    865 		nvlist_t *cdict;
    866 
    867 		if ((cdict = npf_conn_export(npf, con)) != NULL) {
    868 			nvlist_append_nvlist_array(npf_dict, "conn-list", cdict);
    869 			nvlist_destroy(cdict);
    870 		}
    871 		if ((con = npf_conndb_getnext(npf->conn_db, con)) == head) {
    872 			break;
    873 		}
    874 	}
    875 	mutex_exit(&npf->conn_lock);
    876 	return 0;
    877 }
    878 
    879 static nvlist_t *
    880 npf_connkey_export(const npf_connkey_t *key)
    881 {
    882 	uint16_t id[2], alen, proto;
    883 	npf_addr_t ips[2];
    884 	nvlist_t *kdict;
    885 
    886 	kdict = nvlist_create(0);
    887 	connkey_getkey(key, &proto, ips, id, &alen);
    888 	nvlist_add_number(kdict, "proto", proto);
    889 	nvlist_add_number(kdict, "sport", id[NPF_SRC]);
    890 	nvlist_add_number(kdict, "dport", id[NPF_DST]);
    891 	nvlist_add_binary(kdict, "saddr", &ips[NPF_SRC], alen);
    892 	nvlist_add_binary(kdict, "daddr", &ips[NPF_DST], alen);
    893 	return kdict;
    894 }
    895 
    896 /*
    897  * npf_conn_export: serialise a single connection.
    898  */
    899 static nvlist_t *
    900 npf_conn_export(npf_t *npf, const npf_conn_t *con)
    901 {
    902 	nvlist_t *cdict, *kdict;
    903 
    904 	if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
    905 		return NULL;
    906 	}
    907 	cdict = nvlist_create(0);
    908 	nvlist_add_number(cdict, "flags", con->c_flags);
    909 	nvlist_add_number(cdict, "proto", con->c_proto);
    910 	if (con->c_ifid) {
    911 		const char *ifname = npf_ifmap_getname(npf, con->c_ifid);
    912 		nvlist_add_string(cdict, "ifname", ifname);
    913 	}
    914 	nvlist_add_binary(cdict, "state", &con->c_state, sizeof(npf_state_t));
    915 
    916 	kdict = npf_connkey_export(&con->c_forw_entry);
    917 	nvlist_move_nvlist(cdict, "forw-key", kdict);
    918 
    919 	kdict = npf_connkey_export(&con->c_back_entry);
    920 	nvlist_move_nvlist(cdict, "back-key", kdict);
    921 
    922 	if (con->c_nat) {
    923 		npf_nat_export(cdict, con->c_nat);
    924 	}
    925 	return cdict;
    926 }
    927 
    928 static uint32_t
    929 npf_connkey_import(const nvlist_t *kdict, npf_connkey_t *key)
    930 {
    931 	npf_addr_t const * ips[2];
    932 	uint16_t proto, id[2];
    933 	size_t alen1, alen2;
    934 
    935 	proto = dnvlist_get_number(kdict, "proto", 0);
    936 	id[NPF_SRC] = dnvlist_get_number(kdict, "sport", 0);
    937 	id[NPF_DST] = dnvlist_get_number(kdict, "dport", 0);
    938 	ips[NPF_SRC] = dnvlist_get_binary(kdict, "saddr", &alen1, NULL, 0);
    939 	ips[NPF_DST] = dnvlist_get_binary(kdict, "daddr", &alen2, NULL, 0);
    940 	if (__predict_false(alen1 == 0 || alen1 != alen2)) {
    941 		return 0;
    942 	}
    943 	return connkey_setkey(key, proto, ips, id, alen1, true);
    944 }
    945 
    946 /*
    947  * npf_conn_import: fully reconstruct a single connection from a
    948  * nvlist and insert into the given database.
    949  */
    950 int
    951 npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
    952     npf_ruleset_t *natlist)
    953 {
    954 	npf_conn_t *con;
    955 	npf_connkey_t *fw, *bk;
    956 	const nvlist_t *nat, *conkey;
    957 	const char *ifname;
    958 	const void *state;
    959 	size_t len;
    960 
    961 	/* Allocate a connection and initialise it (clear first). */
    962 	con = pool_cache_get(npf->conn_cache, PR_WAITOK);
    963 	memset(con, 0, sizeof(npf_conn_t));
    964 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    965 	npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
    966 
    967 	con->c_proto = dnvlist_get_number(cdict, "proto", 0);
    968 	con->c_flags = dnvlist_get_number(cdict, "flags", 0);
    969 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
    970 	conn_update_atime(con);
    971 
    972 	ifname = dnvlist_get_string(cdict, "ifname", NULL);
    973 	if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
    974 		goto err;
    975 	}
    976 
    977 	state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
    978 	if (!state || len != sizeof(npf_state_t)) {
    979 		goto err;
    980 	}
    981 	memcpy(&con->c_state, state, sizeof(npf_state_t));
    982 
    983 	/* Reconstruct NAT association, if any. */
    984 	if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
    985 	    (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
    986 		goto err;
    987 	}
    988 
    989 	/*
    990 	 * Fetch and copy the keys for each direction.
    991 	 */
    992 	conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
    993 	fw = &con->c_forw_entry;
    994 	if (conkey == NULL || !npf_connkey_import(conkey, fw)) {
    995 		goto err;
    996 	}
    997 	conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
    998 	bk = &con->c_back_entry;
    999 	if (conkey == NULL || !npf_connkey_import(conkey, bk)) {
   1000 		goto err;
   1001 	}
   1002 	fw->ck_backptr = bk->ck_backptr = con;
   1003 
   1004 	/* Insert the entries and the connection itself. */
   1005 	if (!npf_conndb_insert(cd, fw)) {
   1006 		goto err;
   1007 	}
   1008 	if (!npf_conndb_insert(cd, bk)) {
   1009 		npf_conndb_remove(cd, fw);
   1010 		goto err;
   1011 	}
   1012 
   1013 	NPF_PRINTF(("NPF: imported conn %p\n", con));
   1014 	npf_conndb_enqueue(cd, con);
   1015 	return 0;
   1016 err:
   1017 	npf_conn_destroy(npf, con);
   1018 	return EINVAL;
   1019 }
   1020 
   1021 int
   1022 npf_conn_find(npf_t *npf, const nvlist_t *idict, nvlist_t **odict)
   1023 {
   1024 	const nvlist_t *kdict;
   1025 	npf_connkey_t key;
   1026 	npf_conn_t *con;
   1027 	uint16_t dir;
   1028 	bool forw;
   1029 
   1030 	kdict = dnvlist_get_nvlist(idict, "key", NULL);
   1031 	if (!kdict || !npf_connkey_import(kdict, &key)) {
   1032 		return EINVAL;
   1033 	}
   1034 	dir = dnvlist_get_number(idict, "direction", 0);
   1035 	con = npf_conndb_lookup(npf->conn_db, &key, &forw);
   1036 	if (con == NULL) {
   1037 		return ESRCH;
   1038 	}
   1039 	if (!npf_conn_ok(con, dir, true)) {
   1040 		atomic_dec_uint(&con->c_refcnt);
   1041 		return ESRCH;
   1042 	}
   1043 	*odict = npf_conn_export(npf, con);
   1044 	atomic_dec_uint(&con->c_refcnt);
   1045 	return *odict ? 0 : ENOSPC;
   1046 }
   1047 
   1048 #if defined(DDB) || defined(_NPF_TESTING)
   1049 
   1050 void
   1051 npf_conn_print(const npf_conn_t *con)
   1052 {
   1053 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
   1054 	const uint32_t *fkey = con->c_forw_entry.ck_key;
   1055 	const uint32_t *bkey = con->c_back_entry.ck_key;
   1056 	const u_int proto = con->c_proto;
   1057 	struct timespec tspnow;
   1058 	const void *src, *dst;
   1059 	int etime;
   1060 
   1061 	getnanouptime(&tspnow);
   1062 	etime = npf_state_etime(&con->c_state, proto);
   1063 
   1064 	printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
   1065 	    proto, con->c_flags, (long)(tspnow.tv_sec - con->c_atime), etime);
   1066 
   1067 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
   1068 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
   1069 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
   1070 
   1071 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
   1072 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
   1073 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
   1074 
   1075 	npf_state_dump(&con->c_state);
   1076 	if (con->c_nat) {
   1077 		npf_nat_dump(con->c_nat);
   1078 	}
   1079 }
   1080 
   1081 #endif
   1082