npf_conn.c revision 1.27.2.2 1 /*-
2 * Copyright (c) 2014-2018 Mindaugas Rasiukevicius <rmind at netbsd org>
3 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This material is based upon work partially supported by The
7 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * NPF connection tracking for stateful filtering and translation.
33 *
34 * Overview
35 *
36 * Packets can be incoming or outgoing with respect to an interface.
37 * Connection direction is identified by the direction of its first
38 * packet. The meaning of incoming/outgoing packet in the context of
39 * connection direction can be confusing. Therefore, we will use the
40 * terms "forwards stream" and "backwards stream", where packets in
41 * the forwards stream mean the packets travelling in the direction
42 * as the connection direction.
43 *
44 * All connections have two keys and thus two entries:
45 *
46 * - npf_conn_getforwkey(con) -- for the forwards stream;
47 * - npf_conn_getbackkey(con, alen) -- for the backwards stream.
48 *
49 * Note: the keys are stored in npf_conn_t::c_keys[], which is used
50 * to allocate variable-length npf_conn_t structures based on whether
51 * the IPv4 or IPv6 addresses are used. See the npf_connkey.c source
52 * file for the description of the key layouts.
53 *
54 * The keys are formed from the 5-tuple (source/destination address,
55 * source/destination port and the protocol). Additional matching
56 * is performed for the interface (a common behaviour is equivalent
57 * to the 6-tuple lookup including the interface ID). Note that the
58 * key may be formed using translated values in a case of NAT.
59 *
60 * Connections can serve two purposes: for the implicit passing or
61 * to accommodate the dynamic NAT. Connections for the former purpose
62 * are created by the rules with "stateful" attribute and are used for
63 * stateful filtering. Such connections indicate that the packet of
64 * the backwards stream should be passed without inspection of the
65 * ruleset. The other purpose is to associate a dynamic NAT mechanism
66 * with a connection. Such connections are created by the NAT policies
67 * and they have a relationship with NAT translation structure via
68 * npf_conn_t::c_nat. A single connection can serve both purposes,
69 * which is a common case.
70 *
71 * Connection life-cycle
72 *
73 * Connections are established when a packet matches said rule or
74 * NAT policy. Both keys of the established connection are inserted
75 * into the connection database. A garbage collection thread
76 * periodically scans all connections and depending on connection
77 * properties (e.g. last activity time, protocol) removes connection
78 * entries and expires the actual connections.
79 *
80 * Each connection has a reference count. The reference is acquired
81 * on lookup and should be released by the caller. It guarantees that
82 * the connection will not be destroyed, although it may be expired.
83 *
84 * Synchronisation
85 *
86 * Connection database is accessed in a lock-less manner by the main
87 * routines: npf_conn_inspect() and npf_conn_establish(). Since they
88 * are always called from a software interrupt, the database is
89 * protected using passive serialisation. The main place which can
90 * destroy a connection is npf_conn_worker(). The database itself
91 * can be replaced and destroyed in npf_conn_reload().
92 *
93 * ALG support
94 *
95 * Application-level gateways (ALGs) can override generic connection
96 * inspection (npf_alg_conn() call in npf_conn_inspect() function) by
97 * performing their own lookup using different key. Recursive call
98 * to npf_conn_inspect() is not allowed. The ALGs ought to use the
99 * npf_conn_lookup() function for this purpose.
100 *
101 * Lock order
102 *
103 * npf_config_lock ->
104 * conn_lock ->
105 * npf_conn_t::c_lock
106 */
107
108 #ifdef _KERNEL
109 #include <sys/cdefs.h>
110 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.27.2.2 2019/10/04 08:06:35 martin Exp $");
111
112 #include <sys/param.h>
113 #include <sys/types.h>
114
115 #include <netinet/in.h>
116 #include <netinet/tcp.h>
117
118 #include <sys/atomic.h>
119 #include <sys/kmem.h>
120 #include <sys/mutex.h>
121 #include <net/pfil.h>
122 #include <sys/pool.h>
123 #include <sys/queue.h>
124 #include <sys/systm.h>
125 #endif
126
127 #define __NPF_CONN_PRIVATE
128 #include "npf_conn.h"
129 #include "npf_impl.h"
130
131 /* A helper to select the IPv4 or IPv6 connection cache. */
132 #define NPF_CONNCACHE(alen) (((alen) >> 4) & 0x1)
133
134 /*
135 * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
136 */
137 CTASSERT(PFIL_ALL == (0x001 | 0x002));
138 #define CONN_ACTIVE 0x004 /* visible on inspection */
139 #define CONN_PASS 0x008 /* perform implicit passing */
140 #define CONN_EXPIRE 0x010 /* explicitly expire */
141 #define CONN_REMOVED 0x020 /* "forw/back" entries removed */
142
143 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
144
145 static nvlist_t *npf_conn_export(npf_t *, npf_conn_t *);
146
147 /*
148 * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
149 */
150
151 void
152 npf_conn_init(npf_t *npf)
153 {
154 npf->conn_cache[0] = pool_cache_init(
155 offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V4WORDS * 2]),
156 0, 0, 0, "npfcn4pl", NULL, IPL_NET, NULL, NULL, NULL);
157 npf->conn_cache[1] = pool_cache_init(
158 offsetof(npf_conn_t, c_keys[NPF_CONNKEY_V6WORDS * 2]),
159 0, 0, 0, "npfcn6pl", NULL, IPL_NET, NULL, NULL, NULL);
160
161 mutex_init(&npf->conn_lock, MUTEX_DEFAULT, IPL_NONE);
162 npf->conn_tracking = CONN_TRACKING_OFF;
163 npf->conn_db = npf_conndb_create();
164 npf_conndb_sysinit(npf);
165 }
166
167 void
168 npf_conn_fini(npf_t *npf)
169 {
170 npf_conndb_sysfini(npf);
171
172 /* Note: the caller should have flushed the connections. */
173 KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
174 npf_worker_unregister(npf, npf_conn_worker);
175
176 npf_conndb_destroy(npf->conn_db);
177 pool_cache_destroy(npf->conn_cache[0]);
178 pool_cache_destroy(npf->conn_cache[1]);
179 mutex_destroy(&npf->conn_lock);
180 }
181
182 /*
183 * npf_conn_load: perform the load by flushing the current connection
184 * database and replacing it with the new one or just destroying.
185 *
186 * => The caller must disable the connection tracking and ensure that
187 * there are no connection database lookups or references in-flight.
188 */
189 void
190 npf_conn_load(npf_t *npf, npf_conndb_t *ndb, bool track)
191 {
192 npf_conndb_t *odb = NULL;
193
194 KASSERT(npf_config_locked_p(npf));
195
196 /*
197 * The connection database is in the quiescent state.
198 * Prevent G/C thread from running and install a new database.
199 */
200 mutex_enter(&npf->conn_lock);
201 if (ndb) {
202 KASSERT(npf->conn_tracking == CONN_TRACKING_OFF);
203 odb = npf->conn_db;
204 npf->conn_db = ndb;
205 membar_sync();
206 }
207 if (track) {
208 /* After this point lookups start flying in. */
209 npf->conn_tracking = CONN_TRACKING_ON;
210 }
211 mutex_exit(&npf->conn_lock);
212
213 if (odb) {
214 /*
215 * Flush all, no sync since the caller did it for us.
216 * Also, release the pool cache memory.
217 */
218 npf_conndb_gc(npf, odb, true, false);
219 npf_conndb_destroy(odb);
220 pool_cache_invalidate(npf->conn_cache[0]);
221 pool_cache_invalidate(npf->conn_cache[1]);
222 }
223 }
224
225 /*
226 * npf_conn_tracking: enable/disable connection tracking.
227 */
228 void
229 npf_conn_tracking(npf_t *npf, bool track)
230 {
231 KASSERT(npf_config_locked_p(npf));
232 npf->conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
233 }
234
235 static inline bool
236 npf_conn_trackable_p(const npf_cache_t *npc)
237 {
238 const npf_t *npf = npc->npc_ctx;
239
240 /*
241 * Check if connection tracking is on. Also, if layer 3 and 4 are
242 * not cached - protocol is not supported or packet is invalid.
243 */
244 if (npf->conn_tracking != CONN_TRACKING_ON) {
245 return false;
246 }
247 if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
248 return false;
249 }
250 return true;
251 }
252
253 static inline void
254 conn_update_atime(npf_conn_t *con)
255 {
256 struct timespec tsnow;
257
258 getnanouptime(&tsnow);
259 con->c_atime = tsnow.tv_sec;
260 }
261
262 /*
263 * npf_conn_check: check that:
264 *
265 * - the connection is active;
266 *
267 * - the packet is travelling in the right direction with the respect
268 * to the connection direction (if interface-id is not zero);
269 *
270 * - the packet is travelling on the same interface as the
271 * connection interface (if interface-id is not zero).
272 */
273 static bool
274 npf_conn_check(const npf_conn_t *con, const nbuf_t *nbuf,
275 const unsigned di, const bool forw)
276 {
277 const uint32_t flags = con->c_flags;
278 const unsigned ifid = con->c_ifid;
279 bool active, pforw;
280
281 active = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
282 if (__predict_false(!active)) {
283 return false;
284 }
285 if (ifid && nbuf) {
286 pforw = (flags & PFIL_ALL) == (unsigned)di;
287 if (__predict_false(forw != pforw)) {
288 return false;
289 }
290 if (__predict_false(ifid != nbuf->nb_ifid)) {
291 return false;
292 }
293 }
294 return true;
295 }
296
297 /*
298 * npf_conn_lookup: lookup if there is an established connection.
299 *
300 * => If found, we will hold a reference for the caller.
301 */
302 npf_conn_t *
303 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
304 {
305 npf_t *npf = npc->npc_ctx;
306 const nbuf_t *nbuf = npc->npc_nbuf;
307 npf_conn_t *con;
308 npf_connkey_t key;
309
310 /* Construct a key and lookup for a connection in the store. */
311 if (!npf_conn_conkey(npc, &key, true)) {
312 return NULL;
313 }
314 con = npf_conndb_lookup(npf->conn_db, &key, forw);
315 if (con == NULL) {
316 return NULL;
317 }
318 KASSERT(npc->npc_proto == con->c_proto);
319
320 /* Extra checks for the connection and packet. */
321 if (!npf_conn_check(con, nbuf, di, *forw)) {
322 atomic_dec_uint(&con->c_refcnt);
323 return NULL;
324 }
325
326 /* Update the last activity time. */
327 conn_update_atime(con);
328 return con;
329 }
330
331 /*
332 * npf_conn_inspect: lookup a connection and inspecting the protocol data.
333 *
334 * => If found, we will hold a reference for the caller.
335 */
336 npf_conn_t *
337 npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
338 {
339 nbuf_t *nbuf = npc->npc_nbuf;
340 npf_conn_t *con;
341 bool forw, ok;
342
343 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
344 if (!npf_conn_trackable_p(npc)) {
345 return NULL;
346 }
347
348 /* Query ALG which may lookup connection for us. */
349 if ((con = npf_alg_conn(npc, di)) != NULL) {
350 /* Note: reference is held. */
351 return con;
352 }
353 if (nbuf_head_mbuf(nbuf) == NULL) {
354 *error = ENOMEM;
355 return NULL;
356 }
357 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
358
359 /* Main lookup of the connection. */
360 if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
361 return NULL;
362 }
363
364 /* Inspect the protocol data and handle state changes. */
365 mutex_enter(&con->c_lock);
366 ok = npf_state_inspect(npc, &con->c_state, forw);
367 mutex_exit(&con->c_lock);
368
369 /* If invalid state: let the rules deal with it. */
370 if (__predict_false(!ok)) {
371 npf_conn_release(con);
372 npf_stats_inc(npc->npc_ctx, NPF_STAT_INVALID_STATE);
373 return NULL;
374 }
375
376 /*
377 * If this is multi-end state, then specially tag the packet
378 * so it will be just passed-through on other interfaces.
379 */
380 if (con->c_ifid == 0 && nbuf_add_tag(nbuf, NPF_NTAG_PASS) != 0) {
381 npf_conn_release(con);
382 *error = ENOMEM;
383 return NULL;
384 }
385 return con;
386 }
387
388 /*
389 * npf_conn_establish: create a new connection, insert into the global list.
390 *
391 * => Connection is created with the reference held for the caller.
392 * => Connection will be activated on the first reference release.
393 */
394 npf_conn_t *
395 npf_conn_establish(npf_cache_t *npc, int di, bool global)
396 {
397 npf_t *npf = npc->npc_ctx;
398 const unsigned alen = npc->npc_alen;
399 const unsigned idx = NPF_CONNCACHE(alen);
400 const nbuf_t *nbuf = npc->npc_nbuf;
401 npf_connkey_t *fw, *bk;
402 npf_conn_t *con;
403 int error = 0;
404
405 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
406
407 if (!npf_conn_trackable_p(npc)) {
408 return NULL;
409 }
410
411 /* Allocate and initialise the new connection. */
412 con = pool_cache_get(npf->conn_cache[idx], PR_NOWAIT);
413 if (__predict_false(!con)) {
414 npf_worker_signal(npf);
415 return NULL;
416 }
417 NPF_PRINTF(("NPF: create conn %p\n", con));
418 npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
419
420 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
421 con->c_flags = (di & PFIL_ALL);
422 con->c_refcnt = 0;
423 con->c_rproc = NULL;
424 con->c_nat = NULL;
425
426 con->c_proto = npc->npc_proto;
427 CTASSERT(sizeof(con->c_proto) >= sizeof(npc->npc_proto));
428 con->c_alen = alen;
429
430 /* Initialize the protocol state. */
431 if (!npf_state_init(npc, &con->c_state)) {
432 npf_conn_destroy(npf, con);
433 return NULL;
434 }
435 KASSERT(npf_iscached(npc, NPC_IP46));
436
437 fw = npf_conn_getforwkey(con);
438 bk = npf_conn_getbackkey(con, alen);
439
440 /*
441 * Construct "forwards" and "backwards" keys. Also, set the
442 * interface ID for this connection (unless it is global).
443 */
444 if (!npf_conn_conkey(npc, fw, true) ||
445 !npf_conn_conkey(npc, bk, false)) {
446 npf_conn_destroy(npf, con);
447 return NULL;
448 }
449 con->c_ifid = global ? nbuf->nb_ifid : 0;
450
451 /*
452 * Set last activity time for a new connection and acquire
453 * a reference for the caller before we make it visible.
454 */
455 conn_update_atime(con);
456 con->c_refcnt = 1;
457
458 /*
459 * Insert both keys (entries representing directions) of the
460 * connection. At this point it becomes visible, but we activate
461 * the connection later.
462 */
463 mutex_enter(&con->c_lock);
464 if (!npf_conndb_insert(npf->conn_db, fw, con, true)) {
465 error = EISCONN;
466 goto err;
467 }
468 if (!npf_conndb_insert(npf->conn_db, bk, con, false)) {
469 npf_conn_t *ret __diagused;
470 ret = npf_conndb_remove(npf->conn_db, fw);
471 KASSERT(ret == con);
472 error = EISCONN;
473 goto err;
474 }
475 err:
476 /*
477 * If we have hit the duplicate: mark the connection as expired
478 * and let the G/C thread to take care of it. We cannot do it
479 * here since there might be references acquired already.
480 */
481 if (error) {
482 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
483 atomic_dec_uint(&con->c_refcnt);
484 npf_stats_inc(npf, NPF_STAT_RACE_CONN);
485 } else {
486 NPF_PRINTF(("NPF: establish conn %p\n", con));
487 }
488
489 /* Finally, insert into the connection list. */
490 npf_conndb_enqueue(npf->conn_db, con);
491 mutex_exit(&con->c_lock);
492
493 return error ? NULL : con;
494 }
495
496 void
497 npf_conn_destroy(npf_t *npf, npf_conn_t *con)
498 {
499 const unsigned idx __unused = NPF_CONNCACHE(con->c_alen);
500
501 KASSERT(con->c_refcnt == 0);
502
503 if (con->c_nat) {
504 /* Release any NAT structures. */
505 npf_nat_destroy(con->c_nat);
506 }
507 if (con->c_rproc) {
508 /* Release the rule procedure. */
509 npf_rproc_release(con->c_rproc);
510 }
511
512 /* Destroy the state. */
513 npf_state_destroy(&con->c_state);
514 mutex_destroy(&con->c_lock);
515
516 /* Free the structure, increase the counter. */
517 pool_cache_put(npf->conn_cache[idx], con);
518 npf_stats_inc(npf, NPF_STAT_CONN_DESTROY);
519 NPF_PRINTF(("NPF: conn %p destroyed\n", con));
520 }
521
522 /*
523 * npf_conn_setnat: associate NAT entry with the connection, update and
524 * re-insert connection entry using the translation values.
525 *
526 * => The caller must be holding a reference.
527 */
528 int
529 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
530 npf_nat_t *nt, unsigned ntype)
531 {
532 static const u_int nat_type_dimap[] = {
533 [NPF_NATOUT] = NPF_DST,
534 [NPF_NATIN] = NPF_SRC,
535 };
536 npf_t *npf = npc->npc_ctx;
537 npf_connkey_t key, *fw, *bk;
538 npf_conn_t *ret __diagused;
539 npf_addr_t *taddr;
540 in_port_t tport;
541
542 KASSERT(con->c_refcnt > 0);
543
544 npf_nat_gettrans(nt, &taddr, &tport);
545 KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
546
547 /* Construct a "backwards" key. */
548 if (!npf_conn_conkey(npc, &key, false)) {
549 return EINVAL;
550 }
551
552 /* Acquire the lock and check for the races. */
553 mutex_enter(&con->c_lock);
554 if (__predict_false(con->c_flags & CONN_EXPIRE)) {
555 /* The connection got expired. */
556 mutex_exit(&con->c_lock);
557 return EINVAL;
558 }
559 KASSERT((con->c_flags & CONN_REMOVED) == 0);
560
561 if (__predict_false(con->c_nat != NULL)) {
562 /* Race with a duplicate packet. */
563 mutex_exit(&con->c_lock);
564 npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
565 return EISCONN;
566 }
567
568 /* Remove the "backwards" key. */
569 fw = npf_conn_getforwkey(con);
570 bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
571 ret = npf_conndb_remove(npf->conn_db, bk);
572 KASSERT(ret == con);
573
574 /* Set the source/destination IDs to the translation values. */
575 npf_conn_adjkey(bk, taddr, tport, nat_type_dimap[ntype]);
576
577 /* Finally, re-insert the "backwards" key. */
578 if (!npf_conndb_insert(npf->conn_db, bk, con, false)) {
579 /*
580 * Race: we have hit the duplicate, remove the "forwards"
581 * key and expire our connection; it is no longer valid.
582 */
583 ret = npf_conndb_remove(npf->conn_db, fw);
584 KASSERT(ret == con);
585
586 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
587 mutex_exit(&con->c_lock);
588
589 npf_stats_inc(npc->npc_ctx, NPF_STAT_RACE_NAT);
590 return EISCONN;
591 }
592
593 /* Associate the NAT entry and release the lock. */
594 con->c_nat = nt;
595 mutex_exit(&con->c_lock);
596 return 0;
597 }
598
599 /*
600 * npf_conn_expire: explicitly mark connection as expired.
601 */
602 void
603 npf_conn_expire(npf_conn_t *con)
604 {
605 /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
606 atomic_or_uint(&con->c_flags, CONN_EXPIRE);
607 }
608
609 /*
610 * npf_conn_pass: return true if connection is "pass" one, otherwise false.
611 */
612 bool
613 npf_conn_pass(const npf_conn_t *con, npf_match_info_t *mi, npf_rproc_t **rp)
614 {
615 KASSERT(con->c_refcnt > 0);
616 if (__predict_true(con->c_flags & CONN_PASS)) {
617 mi->mi_rid = con->c_rid;
618 mi->mi_retfl = con->c_retfl;
619 *rp = con->c_rproc;
620 return true;
621 }
622 return false;
623 }
624
625 /*
626 * npf_conn_setpass: mark connection as a "pass" one and associate the
627 * rule procedure with it.
628 */
629 void
630 npf_conn_setpass(npf_conn_t *con, const npf_match_info_t *mi, npf_rproc_t *rp)
631 {
632 KASSERT((con->c_flags & CONN_ACTIVE) == 0);
633 KASSERT(con->c_refcnt > 0);
634 KASSERT(con->c_rproc == NULL);
635
636 /*
637 * No need for atomic since the connection is not yet active.
638 * If rproc is set, the caller transfers its reference to us,
639 * which will be released on npf_conn_destroy().
640 */
641 atomic_or_uint(&con->c_flags, CONN_PASS);
642 con->c_rproc = rp;
643 if (rp) {
644 con->c_rid = mi->mi_rid;
645 con->c_retfl = mi->mi_retfl;
646 }
647 }
648
649 /*
650 * npf_conn_release: release a reference, which might allow G/C thread
651 * to destroy this connection.
652 */
653 void
654 npf_conn_release(npf_conn_t *con)
655 {
656 if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
657 /* Activate: after this, connection is globally visible. */
658 atomic_or_uint(&con->c_flags, CONN_ACTIVE);
659 }
660 KASSERT(con->c_refcnt > 0);
661 atomic_dec_uint(&con->c_refcnt);
662 }
663
664 /*
665 * npf_conn_getnat: return associated NAT data entry and indicate
666 * whether it is a "forwards" or "backwards" stream.
667 */
668 npf_nat_t *
669 npf_conn_getnat(npf_conn_t *con, const int di, bool *forw)
670 {
671 KASSERT(con->c_refcnt > 0);
672 *forw = (con->c_flags & PFIL_ALL) == (u_int)di;
673 return con->c_nat;
674 }
675
676 /*
677 * npf_conn_expired: criterion to check if connection is expired.
678 */
679 bool
680 npf_conn_expired(npf_t *npf, const npf_conn_t *con, uint64_t tsnow)
681 {
682 const int etime = npf_state_etime(npf, &con->c_state, con->c_proto);
683 int elapsed;
684
685 if (__predict_false(con->c_flags & CONN_EXPIRE)) {
686 /* Explicitly marked to be expired. */
687 return true;
688 }
689
690 /*
691 * Note: another thread may update 'atime' and it might
692 * become greater than 'now'.
693 */
694 elapsed = (int64_t)tsnow - con->c_atime;
695 return elapsed > etime;
696 }
697
698 /*
699 * npf_conn_remove: unlink the connection and mark as expired.
700 */
701 void
702 npf_conn_remove(npf_conndb_t *cd, npf_conn_t *con)
703 {
704 /* Remove both entries of the connection. */
705 mutex_enter(&con->c_lock);
706 if ((con->c_flags & CONN_REMOVED) == 0) {
707 npf_connkey_t *fw, *bk;
708 npf_conn_t *ret __diagused;
709
710 fw = npf_conn_getforwkey(con);
711 ret = npf_conndb_remove(cd, fw);
712 KASSERT(ret == con);
713
714 bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
715 ret = npf_conndb_remove(cd, bk);
716 KASSERT(ret == con);
717 }
718
719 /* Flag the removal and expiration. */
720 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
721 mutex_exit(&con->c_lock);
722 }
723
724 /*
725 * npf_conn_worker: G/C to run from a worker thread.
726 */
727 void
728 npf_conn_worker(npf_t *npf)
729 {
730 npf_conndb_gc(npf, npf->conn_db, false, true);
731 }
732
733 /*
734 * npf_conndb_export: construct a list of connections prepared for saving.
735 * Note: this is expected to be an expensive operation.
736 */
737 int
738 npf_conndb_export(npf_t *npf, nvlist_t *npf_dict)
739 {
740 npf_conn_t *head, *con;
741
742 /*
743 * Note: acquire conn_lock to prevent from the database
744 * destruction and G/C thread.
745 */
746 mutex_enter(&npf->conn_lock);
747 if (npf->conn_tracking != CONN_TRACKING_ON) {
748 mutex_exit(&npf->conn_lock);
749 return 0;
750 }
751 head = npf_conndb_getlist(npf->conn_db);
752 con = head;
753 while (con) {
754 nvlist_t *cdict;
755
756 if ((cdict = npf_conn_export(npf, con)) != NULL) {
757 nvlist_append_nvlist_array(npf_dict, "conn-list", cdict);
758 nvlist_destroy(cdict);
759 }
760 if ((con = npf_conndb_getnext(npf->conn_db, con)) == head) {
761 break;
762 }
763 }
764 mutex_exit(&npf->conn_lock);
765 return 0;
766 }
767
768 /*
769 * npf_conn_export: serialise a single connection.
770 */
771 static nvlist_t *
772 npf_conn_export(npf_t *npf, npf_conn_t *con)
773 {
774 nvlist_t *cdict, *kdict;
775 npf_connkey_t *fw, *bk;
776 unsigned alen;
777
778 if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE) {
779 return NULL;
780 }
781 cdict = nvlist_create(0);
782 nvlist_add_number(cdict, "flags", con->c_flags);
783 nvlist_add_number(cdict, "proto", con->c_proto);
784 if (con->c_ifid) {
785 char ifname[IFNAMSIZ];
786 npf_ifmap_copyname(npf, con->c_ifid, ifname, sizeof(ifname));
787 nvlist_add_string(cdict, "ifname", ifname);
788 }
789 nvlist_add_binary(cdict, "state", &con->c_state, sizeof(npf_state_t));
790
791 fw = npf_conn_getforwkey(con);
792 alen = NPF_CONNKEY_ALEN(fw);
793 KASSERT(alen == con->c_alen);
794 bk = npf_conn_getbackkey(con, alen);
795
796 kdict = npf_connkey_export(fw);
797 nvlist_move_nvlist(cdict, "forw-key", kdict);
798
799 kdict = npf_connkey_export(bk);
800 nvlist_move_nvlist(cdict, "back-key", kdict);
801
802 /* Let the address length be based on on first key. */
803 nvlist_add_number(cdict, "alen", alen);
804
805 if (con->c_nat) {
806 npf_nat_export(cdict, con->c_nat);
807 }
808 return cdict;
809 }
810
811 /*
812 * npf_conn_import: fully reconstruct a single connection from a
813 * nvlist and insert into the given database.
814 */
815 int
816 npf_conn_import(npf_t *npf, npf_conndb_t *cd, const nvlist_t *cdict,
817 npf_ruleset_t *natlist)
818 {
819 npf_conn_t *con;
820 npf_connkey_t *fw, *bk;
821 const nvlist_t *nat, *conkey;
822 const char *ifname;
823 const void *state;
824 unsigned alen, idx;
825 size_t len;
826
827 /*
828 * To determine the length of the connection, which depends
829 * on the address length in the connection keys.
830 */
831 alen = dnvlist_get_number(cdict, "alen", 0);
832 idx = NPF_CONNCACHE(alen);
833
834 /* Allocate a connection and initialise it (clear first). */
835 con = pool_cache_get(npf->conn_cache[idx], PR_WAITOK);
836 memset(con, 0, sizeof(npf_conn_t));
837 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
838 npf_stats_inc(npf, NPF_STAT_CONN_CREATE);
839
840 con->c_proto = dnvlist_get_number(cdict, "proto", 0);
841 con->c_flags = dnvlist_get_number(cdict, "flags", 0);
842 con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
843 conn_update_atime(con);
844
845 ifname = dnvlist_get_string(cdict, "ifname", NULL);
846 if (ifname && (con->c_ifid = npf_ifmap_register(npf, ifname)) == 0) {
847 goto err;
848 }
849
850 state = dnvlist_get_binary(cdict, "state", &len, NULL, 0);
851 if (!state || len != sizeof(npf_state_t)) {
852 goto err;
853 }
854 memcpy(&con->c_state, state, sizeof(npf_state_t));
855
856 /* Reconstruct NAT association, if any. */
857 if ((nat = dnvlist_get_nvlist(cdict, "nat", NULL)) != NULL &&
858 (con->c_nat = npf_nat_import(npf, nat, natlist, con)) == NULL) {
859 goto err;
860 }
861
862 /*
863 * Fetch and copy the keys for each direction.
864 */
865 fw = npf_conn_getforwkey(con);
866 conkey = dnvlist_get_nvlist(cdict, "forw-key", NULL);
867 if (conkey == NULL || !npf_connkey_import(conkey, fw)) {
868 goto err;
869 }
870 bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
871 conkey = dnvlist_get_nvlist(cdict, "back-key", NULL);
872 if (conkey == NULL || !npf_connkey_import(conkey, bk)) {
873 goto err;
874 }
875
876 /* Guard against the contradicting address lengths. */
877 if (NPF_CONNKEY_ALEN(fw) != alen || NPF_CONNKEY_ALEN(bk) != alen) {
878 goto err;
879 }
880
881 /* Insert the entries and the connection itself. */
882 if (!npf_conndb_insert(cd, fw, con, true)) {
883 goto err;
884 }
885 if (!npf_conndb_insert(cd, bk, con, false)) {
886 npf_conndb_remove(cd, fw);
887 goto err;
888 }
889
890 NPF_PRINTF(("NPF: imported conn %p\n", con));
891 npf_conndb_enqueue(cd, con);
892 return 0;
893 err:
894 npf_conn_destroy(npf, con);
895 return EINVAL;
896 }
897
898 int
899 npf_conn_find(npf_t *npf, const nvlist_t *idict, nvlist_t **odict)
900 {
901 const nvlist_t *kdict;
902 npf_connkey_t key;
903 npf_conn_t *con;
904 uint16_t dir;
905 bool forw;
906
907 kdict = dnvlist_get_nvlist(idict, "key", NULL);
908 if (!kdict || !npf_connkey_import(kdict, &key)) {
909 return EINVAL;
910 }
911 con = npf_conndb_lookup(npf->conn_db, &key, &forw);
912 if (con == NULL) {
913 return ESRCH;
914 }
915 dir = dnvlist_get_number(idict, "direction", 0);
916 if (!npf_conn_check(con, NULL, dir, true)) {
917 atomic_dec_uint(&con->c_refcnt);
918 return ESRCH;
919 }
920 *odict = npf_conn_export(npf, con);
921 atomic_dec_uint(&con->c_refcnt);
922 return *odict ? 0 : ENOSPC;
923 }
924
925 #if defined(DDB) || defined(_NPF_TESTING)
926
927 void
928 npf_conn_print(npf_conn_t *con)
929 {
930 const npf_connkey_t *fw = npf_conn_getforwkey(con);
931 const npf_connkey_t *bk = npf_conn_getbackkey(con, NPF_CONNKEY_ALEN(fw));
932 const unsigned proto = con->c_proto;
933 struct timespec tspnow;
934
935 getnanouptime(&tspnow);
936 printf("%p:\n\tproto %d flags 0x%x tsdiff %ld etime %d\n", con,
937 proto, con->c_flags, (long)(tspnow.tv_sec - con->c_atime),
938 npf_state_etime(npf_getkernctx(), &con->c_state, proto));
939 npf_connkey_print(fw);
940 npf_connkey_print(bk);
941 npf_state_dump(&con->c_state);
942 if (con->c_nat) {
943 npf_nat_dump(con->c_nat);
944 }
945 }
946
947 #endif
948