Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.6
      1 /*	$NetBSD: npf_conn.c,v 1.6 2014/07/23 01:25:34 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
      5  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This material is based upon work partially supported by The
      9  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * NPF connection tracking for stateful filtering and translation.
     35  *
     36  * Overview
     37  *
     38  *	Connection direction is identified by the direction of its first
     39  *	packet.  Packets can be incoming or outgoing with respect to an
     40  *	interface.  To describe the packet in the context of connection
     41  *	direction we will use the terms "forwards stream" and "backwards
     42  *	stream".  All connections have two keys and thus two entries:
     43  *
     44  *		npf_conn_t::c_forw_entry for the forwards stream and
     45  *		npf_conn_t::c_back_entry for the backwards stream.
     46  *
     47  *	The keys are formed from the 5-tuple (source/destination address,
     48  *	source/destination port and the protocol).  Additional matching
     49  *	is performed for the interface (a common behaviour is equivalent
     50  *	to the 6-tuple lookup including the interface ID).  Note that the
     51  *	key may be formed using translated values in a case of NAT.
     52  *
     53  *	Connections can serve two purposes: for the implicit passing or
     54  *	to accommodate the dynamic NAT.  Connections for the former purpose
     55  *	are created by the rules with "stateful" attribute and are used for
     56  *	stateful filtering.  Such connections indicate that the packet of
     57  *	the backwards stream should be passed without inspection of the
     58  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     59  *	with a connection.  Such connections are created by the NAT policies
     60  *	and they have a relationship with NAT translation structure via
     61  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     62  *	which is a common case.
     63  *
     64  * Connection life-cycle
     65  *
     66  *	Connections are established when a packet matches said rule or
     67  *	NAT policy.  Both keys of the established connection are inserted
     68  *	into the connection database.  A garbage collection thread
     69  *	periodically scans all connections and depending on connection
     70  *	properties (e.g. last activity time, protocol) removes connection
     71  *	entries and expires the actual connections.
     72  *
     73  *	Each connection has a reference count.  The reference is acquired
     74  *	on lookup and should be released by the caller.  It guarantees that
     75  *	the connection will not be destroyed, although it may be expired.
     76  *
     77  * Synchronisation
     78  *
     79  *	Connection database is accessed in a lock-less manner by the main
     80  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     81  *	are always called from a software interrupt, the database is
     82  *	protected using passive serialisation.  The main place which can
     83  *	destroy a connection is npf_conn_worker().  The database itself
     84  *	can be replaced and destroyed in npf_conn_reload().
     85  *
     86  * ALG support
     87  *
     88  *	Application-level gateways (ALGs) can override generic connection
     89  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     90  *	performing their own lookup using different key.  Recursive call
     91  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     92  *	npf_conn_lookup() function for this purpose.
     93  *
     94  * Lock order
     95  *
     96  *	npf_config_lock ->
     97  *		conn_lock ->
     98  *			npf_conn_t::c_lock
     99  */
    100 
    101 #include <sys/cdefs.h>
    102 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.6 2014/07/23 01:25:34 rmind Exp $");
    103 
    104 #include <sys/param.h>
    105 #include <sys/types.h>
    106 
    107 #include <netinet/in.h>
    108 #include <netinet/tcp.h>
    109 
    110 #include <sys/atomic.h>
    111 #include <sys/condvar.h>
    112 #include <sys/kmem.h>
    113 #include <sys/kthread.h>
    114 #include <sys/mutex.h>
    115 #include <net/pfil.h>
    116 #include <sys/pool.h>
    117 #include <sys/queue.h>
    118 #include <sys/systm.h>
    119 
    120 #define __NPF_CONN_PRIVATE
    121 #include "npf_conn.h"
    122 #include "npf_impl.h"
    123 
    124 /*
    125  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    126  */
    127 CTASSERT(PFIL_ALL == (0x001 | 0x002));
    128 #define	CONN_ACTIVE	0x004	/* visible on inspection */
    129 #define	CONN_PASS	0x008	/* perform implicit passing */
    130 #define	CONN_EXPIRE	0x010	/* explicitly expire */
    131 #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    132 
    133 /*
    134  * Connection tracking state: disabled (off) or enabled (on).
    135  */
    136 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    137 static volatile int	conn_tracking	__cacheline_aligned;
    138 
    139 /* Connection tracking database, connection cache and the lock. */
    140 static npf_conndb_t *	conn_db		__read_mostly;
    141 static pool_cache_t	conn_cache	__read_mostly;
    142 static kmutex_t		conn_lock	__cacheline_aligned;
    143 
    144 static void	npf_conn_gc(npf_conndb_t *, bool, bool);
    145 static void	npf_conn_worker(void);
    146 static void	npf_conn_destroy(npf_conn_t *);
    147 
    148 /*
    149  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    150  */
    151 
    152 void
    153 npf_conn_sysinit(void)
    154 {
    155 	conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
    156 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
    157 	mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
    158 	conn_tracking = CONN_TRACKING_OFF;
    159 	conn_db = npf_conndb_create();
    160 
    161 	npf_worker_register(npf_conn_worker);
    162 }
    163 
    164 void
    165 npf_conn_sysfini(void)
    166 {
    167 	/* Note: the caller should have flushed the connections. */
    168 	KASSERT(conn_tracking == CONN_TRACKING_OFF);
    169 	npf_worker_unregister(npf_conn_worker);
    170 
    171 	npf_conndb_destroy(conn_db);
    172 	pool_cache_destroy(conn_cache);
    173 	mutex_destroy(&conn_lock);
    174 }
    175 
    176 /*
    177  * npf_conn_load: perform the load by flushing the current connection
    178  * database and replacing it with the new one or just destroying.
    179  *
    180  * => The caller must disable the connection tracking and ensure that
    181  *    there are no connection database lookups or references in-flight.
    182  */
    183 void
    184 npf_conn_load(npf_conndb_t *ndb, bool track)
    185 {
    186 	npf_conndb_t *odb = NULL;
    187 
    188 	KASSERT(npf_config_locked_p());
    189 
    190 	/*
    191 	 * The connection database is in the quiescent state.
    192 	 * Prevent G/C thread from running and install a new database.
    193 	 */
    194 	mutex_enter(&conn_lock);
    195 	if (ndb) {
    196 		KASSERT(conn_tracking == CONN_TRACKING_OFF);
    197 		odb = conn_db;
    198 		conn_db = ndb;
    199 		membar_sync();
    200 	}
    201 	if (track) {
    202 		/* After this point lookups start flying in. */
    203 		conn_tracking = CONN_TRACKING_ON;
    204 	}
    205 	mutex_exit(&conn_lock);
    206 
    207 	if (odb) {
    208 		/*
    209 		 * Flush all, no sync since the caller did it for us.
    210 		 * Also, release the pool cache memory.
    211 		 */
    212 		npf_conn_gc(odb, true, false);
    213 		npf_conndb_destroy(odb);
    214 		pool_cache_invalidate(conn_cache);
    215 	}
    216 }
    217 
    218 /*
    219  * npf_conn_tracking: enable/disable connection tracking.
    220  */
    221 void
    222 npf_conn_tracking(bool track)
    223 {
    224 	KASSERT(npf_config_locked_p());
    225 	conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
    226 }
    227 
    228 static inline bool
    229 npf_conn_trackable_p(const npf_cache_t *npc)
    230 {
    231 	/*
    232 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    233 	 * not cached - protocol is not supported or packet is invalid.
    234 	 */
    235 	if (conn_tracking != CONN_TRACKING_ON) {
    236 		return false;
    237 	}
    238 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    239 		return false;
    240 	}
    241 	return true;
    242 }
    243 
    244 /*
    245  * npf_conn_conkey: construct a key for the connection lookup.
    246  */
    247 bool
    248 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
    249 {
    250 	const u_int alen = npc->npc_alen;
    251 	const struct tcphdr *th;
    252 	const struct udphdr *uh;
    253 	u_int keylen, isrc, idst;
    254 	uint16_t id[2];
    255 
    256 	switch (npc->npc_proto) {
    257 	case IPPROTO_TCP:
    258 		KASSERT(npf_iscached(npc, NPC_TCP));
    259 		th = npc->npc_l4.tcp;
    260 		id[NPF_SRC] = th->th_sport;
    261 		id[NPF_DST] = th->th_dport;
    262 		break;
    263 	case IPPROTO_UDP:
    264 		KASSERT(npf_iscached(npc, NPC_UDP));
    265 		uh = npc->npc_l4.udp;
    266 		id[NPF_SRC] = uh->uh_sport;
    267 		id[NPF_DST] = uh->uh_dport;
    268 		break;
    269 	case IPPROTO_ICMP:
    270 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    271 			const struct icmp *ic = npc->npc_l4.icmp;
    272 			id[NPF_SRC] = ic->icmp_id;
    273 			id[NPF_DST] = ic->icmp_id;
    274 			break;
    275 		}
    276 		return false;
    277 	case IPPROTO_ICMPV6:
    278 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    279 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    280 			id[NPF_SRC] = ic6->icmp6_id;
    281 			id[NPF_DST] = ic6->icmp6_id;
    282 			break;
    283 		}
    284 		return false;
    285 	default:
    286 		/* Unsupported protocol. */
    287 		return false;
    288 	}
    289 
    290 	/*
    291 	 * Finally, construct a key formed out of 32-bit integers.
    292 	 */
    293 	if (__predict_true(forw)) {
    294 		isrc = NPF_SRC, idst = NPF_DST;
    295 	} else {
    296 		isrc = NPF_DST, idst = NPF_SRC;
    297 	}
    298 
    299 	key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff);
    300 	key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    301 
    302 	if (__predict_true(alen == sizeof(in_addr_t))) {
    303 		key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0];
    304 		key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0];
    305 		keylen = 4 * sizeof(uint32_t);
    306 	} else {
    307 		const u_int nwords = alen >> 2;
    308 		memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen);
    309 		memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen);
    310 		keylen = (2 + (nwords * 2)) * sizeof(uint32_t);
    311 	}
    312 	(void)keylen;
    313 	return true;
    314 }
    315 
    316 static __inline void
    317 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
    318 {
    319 	const u_int alen = key->ck_key[0] & 0xffff;
    320 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
    321 
    322 	KASSERT(alen > 0);
    323 	memcpy(addr, naddr, alen);
    324 }
    325 
    326 static __inline void
    327 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
    328 {
    329 	const uint32_t oid = key->ck_key[1];
    330 	const u_int shift = 16 * !di;
    331 	const uint32_t mask = 0xffff0000 >> shift;
    332 
    333 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
    334 }
    335 
    336 /*
    337  * npf_conn_lookup: lookup if there is an established connection.
    338  *
    339  * => If found, we will hold a reference for the caller.
    340  */
    341 npf_conn_t *
    342 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
    343 {
    344 	const nbuf_t *nbuf = npc->npc_nbuf;
    345 	npf_conn_t *con;
    346 	npf_connkey_t key;
    347 	u_int flags, cifid;
    348 	bool ok, pforw;
    349 
    350 	/* Construct a key and lookup for a connection in the store. */
    351 	if (!npf_conn_conkey(npc, &key, true)) {
    352 		return NULL;
    353 	}
    354 	con = npf_conndb_lookup(conn_db, &key, forw);
    355 	if (con == NULL) {
    356 		return NULL;
    357 	}
    358 	KASSERT(npc->npc_proto == con->c_proto);
    359 
    360 	/* Check if connection is active and not expired. */
    361 	flags = con->c_flags;
    362 	ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    363 
    364 	if (__predict_false(!ok)) {
    365 		atomic_dec_uint(&con->c_refcnt);
    366 		return NULL;
    367 	}
    368 
    369 	/*
    370 	 * Match the interface and the direction of the connection entry
    371 	 * and the packet.
    372 	 */
    373 	cifid = con->c_ifid;
    374 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
    375 		atomic_dec_uint(&con->c_refcnt);
    376 		return NULL;
    377 	}
    378 	pforw = (flags & PFIL_ALL) == di;
    379 	if (__predict_false(*forw != pforw)) {
    380 		atomic_dec_uint(&con->c_refcnt);
    381 		return NULL;
    382 	}
    383 
    384 	/* Update the last activity time. */
    385 	getnanouptime(&con->c_atime);
    386 	return con;
    387 }
    388 
    389 /*
    390  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    391  *
    392  * => If found, we will hold a reference for the caller.
    393  */
    394 npf_conn_t *
    395 npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
    396 {
    397 	nbuf_t *nbuf = npc->npc_nbuf;
    398 	npf_conn_t *con;
    399 	bool forw, ok;
    400 
    401 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    402 	if (!npf_conn_trackable_p(npc)) {
    403 		return NULL;
    404 	}
    405 
    406 	/* Query ALG which may lookup connection for us. */
    407 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    408 		/* Note: reference is held. */
    409 		return con;
    410 	}
    411 	if (nbuf_head_mbuf(nbuf) == NULL) {
    412 		*error = ENOMEM;
    413 		return NULL;
    414 	}
    415 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    416 
    417 	/* Main lookup of the connection. */
    418 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
    419 		return NULL;
    420 	}
    421 
    422 	/* Inspect the protocol data and handle state changes. */
    423 	mutex_enter(&con->c_lock);
    424 	ok = npf_state_inspect(npc, &con->c_state, forw);
    425 	mutex_exit(&con->c_lock);
    426 
    427 	if (__predict_false(!ok)) {
    428 		/* Invalid: let the rules deal with it. */
    429 		npf_conn_release(con);
    430 		npf_stats_inc(NPF_STAT_INVALID_STATE);
    431 		con = NULL;
    432 	}
    433 	return con;
    434 }
    435 
    436 /*
    437  * npf_conn_establish: create a new connection, insert into the global list.
    438  *
    439  * => Connection is created with the reference held for the caller.
    440  * => Connection will be activated on the first reference release.
    441  */
    442 npf_conn_t *
    443 npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
    444 {
    445 	const nbuf_t *nbuf = npc->npc_nbuf;
    446 	npf_conn_t *con;
    447 
    448 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    449 
    450 	if (!npf_conn_trackable_p(npc)) {
    451 		return NULL;
    452 	}
    453 
    454 	/* Allocate and initialise the new connection. */
    455 	con = pool_cache_get(conn_cache, PR_NOWAIT);
    456 	if (__predict_false(!con)) {
    457 		return NULL;
    458 	}
    459 	NPF_PRINTF(("NPF: create conn %p\n", con));
    460 	npf_stats_inc(NPF_STAT_CONN_CREATE);
    461 
    462 	/* Reference count and flags (indicate direction). */
    463 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    464 	con->c_flags = (di & PFIL_ALL);
    465 	con->c_refcnt = 1;
    466 	con->c_rproc = NULL;
    467 	con->c_nat = NULL;
    468 
    469 	/* Initialize protocol state. */
    470 	if (!npf_state_init(npc, &con->c_state)) {
    471 		goto err;
    472 	}
    473 
    474 	KASSERT(npf_iscached(npc, NPC_IP46));
    475 	npf_connkey_t *fw = &con->c_forw_entry;
    476 	npf_connkey_t *bk = &con->c_back_entry;
    477 
    478 	/*
    479 	 * Construct "forwards" and "backwards" keys.  Also, set the
    480 	 * interface ID for this connection (unless it is global).
    481 	 */
    482 	if (!npf_conn_conkey(npc, fw, true)) {
    483 		goto err;
    484 	}
    485 	if (!npf_conn_conkey(npc, bk, false)) {
    486 		goto err;
    487 	}
    488 	fw->ck_backptr = bk->ck_backptr = con;
    489 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
    490 	con->c_proto = npc->npc_proto;
    491 
    492 	/* Set last activity time for a new connection. */
    493 	getnanouptime(&con->c_atime);
    494 
    495 	/*
    496 	 * Insert both keys (entries representing directions) of the
    497 	 * connection.  At this point, it becomes visible.
    498 	 */
    499 	if (!npf_conndb_insert(conn_db, fw, con)) {
    500 		goto err;
    501 	}
    502 	if (!npf_conndb_insert(conn_db, bk, con)) {
    503 		/* We have hit the duplicate. */
    504 		npf_conndb_remove(conn_db, fw);
    505 		npf_stats_inc(NPF_STAT_RACE_CONN);
    506 		goto err;
    507 	}
    508 
    509 	/* Finally, insert into the connection list. */
    510 	NPF_PRINTF(("NPF: establish conn %p\n", con));
    511 	npf_conndb_enqueue(conn_db, con);
    512 	return con;
    513 err:
    514 	npf_conn_destroy(con);
    515 	return NULL;
    516 }
    517 
    518 static void
    519 npf_conn_destroy(npf_conn_t *con)
    520 {
    521 	if (con->c_nat) {
    522 		/* Release any NAT structures. */
    523 		npf_nat_destroy(con->c_nat);
    524 	}
    525 	if (con->c_rproc) {
    526 		/* Release the rule procedure. */
    527 		npf_rproc_release(con->c_rproc);
    528 	}
    529 
    530 	/* Destroy the state. */
    531 	npf_state_destroy(&con->c_state);
    532 	mutex_destroy(&con->c_lock);
    533 
    534 	/* Free the structure, increase the counter. */
    535 	pool_cache_put(conn_cache, con);
    536 	npf_stats_inc(NPF_STAT_CONN_DESTROY);
    537 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    538 }
    539 
    540 /*
    541  * npf_conn_setnat: associate NAT entry with the connection, update and
    542  * re-insert connection entry using the translation values.
    543  */
    544 int
    545 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    546     npf_nat_t *nt, u_int ntype)
    547 {
    548 	static const u_int nat_type_dimap[] = {
    549 		[NPF_NATOUT] = NPF_DST,
    550 		[NPF_NATIN] = NPF_SRC,
    551 	};
    552 	npf_connkey_t key, *bk;
    553 	npf_conn_t *ret __diagused;
    554 	npf_addr_t *taddr;
    555 	in_port_t tport;
    556 	u_int tidx;
    557 
    558 	KASSERT(con->c_refcnt > 0);
    559 
    560 	npf_nat_gettrans(nt, &taddr, &tport);
    561 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    562 	tidx = nat_type_dimap[ntype];
    563 
    564 	/* Construct a "backwards" key. */
    565 	if (!npf_conn_conkey(npc, &key, false)) {
    566 		return EINVAL;
    567 	}
    568 
    569 	/* Acquire the lock and check for the races. */
    570 	mutex_enter(&con->c_lock);
    571 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    572 		/* The connection got expired. */
    573 		mutex_exit(&con->c_lock);
    574 		return EINVAL;
    575 	}
    576 	if (__predict_false(con->c_nat != NULL)) {
    577 		/* Race with a duplicate packet. */
    578 		mutex_exit(&con->c_lock);
    579 		npf_stats_inc(NPF_STAT_RACE_NAT);
    580 		return EISCONN;
    581 	}
    582 
    583 	/* Remove the "backwards" entry. */
    584 	ret = npf_conndb_remove(conn_db, &key);
    585 	KASSERT(ret == con);
    586 
    587 	/* Set the source/destination IDs to the translation values. */
    588 	bk = &con->c_back_entry;
    589 	connkey_set_addr(bk, taddr, tidx);
    590 	if (tport) {
    591 		connkey_set_id(bk, tport, tidx);
    592 	}
    593 
    594 	/* Finally, re-insert the "backwards" entry. */
    595 	if (!npf_conndb_insert(conn_db, bk, con)) {
    596 		/*
    597 		 * Race: we have hit the duplicate, remove the "forwards"
    598 		 * entry and expire our connection; it is no longer valid.
    599 		 */
    600 		(void)npf_conndb_remove(conn_db, &con->c_forw_entry);
    601 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    602 		mutex_exit(&con->c_lock);
    603 
    604 		npf_stats_inc(NPF_STAT_RACE_NAT);
    605 		return EISCONN;
    606 	}
    607 
    608 	/* Associate the NAT entry and release the lock. */
    609 	con->c_nat = nt;
    610 	mutex_exit(&con->c_lock);
    611 	return 0;
    612 }
    613 
    614 /*
    615  * npf_conn_expire: explicitly mark connection as expired.
    616  */
    617 void
    618 npf_conn_expire(npf_conn_t *con)
    619 {
    620 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    621 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    622 }
    623 
    624 /*
    625  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    626  */
    627 bool
    628 npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
    629 {
    630 	KASSERT(con->c_refcnt > 0);
    631 	if (__predict_true(con->c_flags & CONN_PASS)) {
    632 		*rp = con->c_rproc;
    633 		return true;
    634 	}
    635 	return false;
    636 }
    637 
    638 /*
    639  * npf_conn_setpass: mark connection as a "pass" one and associate the
    640  * rule procedure with it.
    641  */
    642 void
    643 npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
    644 {
    645 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    646 	KASSERT(con->c_refcnt > 0);
    647 	KASSERT(con->c_rproc == NULL);
    648 
    649 	/*
    650 	 * No need for atomic since the connection is not yet active.
    651 	 * If rproc is set, the caller transfers its reference to us,
    652 	 * which will be released on npf_conn_destroy().
    653 	 */
    654 	con->c_flags |= CONN_PASS;
    655 	con->c_rproc = rp;
    656 }
    657 
    658 /*
    659  * npf_conn_release: release a reference, which might allow G/C thread
    660  * to destroy this connection.
    661  */
    662 void
    663 npf_conn_release(npf_conn_t *con)
    664 {
    665 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    666 		/* Activate: after this, connection is globally visible. */
    667 		con->c_flags |= CONN_ACTIVE;
    668 	}
    669 	KASSERT(con->c_refcnt > 0);
    670 	atomic_dec_uint(&con->c_refcnt);
    671 }
    672 
    673 /*
    674  * npf_conn_retnat: return associated NAT data entry and indicate
    675  * whether it is a "forwards" or "backwards" stream.
    676  */
    677 npf_nat_t *
    678 npf_conn_retnat(npf_conn_t *con, const int di, bool *forw)
    679 {
    680 	KASSERT(con->c_refcnt > 0);
    681 	*forw = (con->c_flags & PFIL_ALL) == di;
    682 	return con->c_nat;
    683 }
    684 
    685 /*
    686  * npf_conn_expired: criterion to check if connection is expired.
    687  */
    688 static inline bool
    689 npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
    690 {
    691 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
    692 	struct timespec tsdiff;
    693 
    694 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    695 		/* Explicitly marked to be expired. */
    696 		return true;
    697 	}
    698 	timespecsub(tsnow, &con->c_atime, &tsdiff);
    699 	return tsdiff.tv_sec > etime;
    700 }
    701 
    702 /*
    703  * npf_conn_gc: garbage collect the expired connections.
    704  *
    705  * => Must run in a single-threaded manner.
    706  * => If it is a flush request, then destroy all connections.
    707  * => If 'sync' is true, then perform passive serialisation.
    708  */
    709 static void
    710 npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
    711 {
    712 	npf_conn_t *con, *prev, *gclist = NULL;
    713 	struct timespec tsnow;
    714 
    715 	getnanouptime(&tsnow);
    716 
    717 	/*
    718 	 * Scan all connections and check them for expiration.
    719 	 */
    720 	prev = NULL;
    721 	con = npf_conndb_getlist(cd);
    722 	while (con) {
    723 		npf_conn_t *next = con->c_next;
    724 
    725 		/* Expired?  Flushing all? */
    726 		if (!npf_conn_expired(con, &tsnow) && !flush) {
    727 			prev = con;
    728 			con = next;
    729 			continue;
    730 		}
    731 
    732 		/* Remove both entries of the connection. */
    733 		mutex_enter(&con->c_lock);
    734 		if ((con->c_flags & CONN_REMOVED) == 0) {
    735 			npf_conn_t *ret __diagused;
    736 
    737 			ret = npf_conndb_remove(cd, &con->c_forw_entry);
    738 			KASSERT(ret == con);
    739 			ret = npf_conndb_remove(cd, &con->c_back_entry);
    740 			KASSERT(ret == con);
    741 		}
    742 
    743 		/* Flag the removal and expiration. */
    744 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    745 		mutex_exit(&con->c_lock);
    746 
    747 		/* Move to the G/C list. */
    748 		npf_conndb_dequeue(cd, con, prev);
    749 		con->c_next = gclist;
    750 		gclist = con;
    751 
    752 		/* Next.. */
    753 		con = next;
    754 	}
    755 	npf_conndb_settail(cd, prev);
    756 
    757 	/*
    758 	 * Ensure it is safe to destroy the connections.
    759 	 * Note: drop the conn_lock (see the lock order).
    760 	 */
    761 	if (sync) {
    762 		mutex_exit(&conn_lock);
    763 		if (gclist) {
    764 			npf_config_enter();
    765 			npf_config_sync();
    766 			npf_config_exit();
    767 		}
    768 	}
    769 
    770 	/*
    771 	 * Garbage collect all expired connections.
    772 	 * May need to wait for the references to drain.
    773 	 */
    774 	con = gclist;
    775 	while (con) {
    776 		npf_conn_t *next = con->c_next;
    777 
    778 		/*
    779 		 * Destroy only if removed and no references.
    780 		 * Otherwise, wait for a tiny moment.
    781 		 */
    782 		if (__predict_false(con->c_refcnt)) {
    783 			kpause("npfcongc", false, 1, NULL);
    784 			continue;
    785 		}
    786 		npf_conn_destroy(con);
    787 		con = next;
    788 	}
    789 }
    790 
    791 /*
    792  * npf_conn_worker: G/C to run from a worker thread.
    793  */
    794 static void
    795 npf_conn_worker(void)
    796 {
    797 	mutex_enter(&conn_lock);
    798 	/* Note: the conn_lock will be released (sync == true). */
    799 	npf_conn_gc(conn_db, false, true);
    800 }
    801 
    802 /*
    803  * npf_conn_export: construct a list of connections prepared for saving.
    804  * Note: this is expected to be an expensive operation.
    805  */
    806 int
    807 npf_conn_export(prop_array_t conlist)
    808 {
    809 	npf_conn_t *con, *prev;
    810 
    811 	/*
    812 	 * Note: acquire conn_lock to prevent from the database
    813 	 * destruction and G/C thread.
    814 	 */
    815 	mutex_enter(&conn_lock);
    816 	if (conn_tracking != CONN_TRACKING_ON) {
    817 		mutex_exit(&conn_lock);
    818 		return 0;
    819 	}
    820 	prev = NULL;
    821 	con = npf_conndb_getlist(conn_db);
    822 	while (con) {
    823 		npf_conn_t *next = con->c_next;
    824 		prop_data_t d;
    825 
    826 		if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE)
    827 			goto skip;
    828 
    829 		prop_dictionary_t cdict = prop_dictionary_create();
    830 		prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
    831 		prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
    832 		/* FIXME: interface-id */
    833 
    834 		d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
    835 		prop_dictionary_set_and_rel(cdict, "state", d);
    836 
    837 		const uint32_t *fkey = con->c_forw_entry.ck_key;
    838 		d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
    839 		prop_dictionary_set_and_rel(cdict, "forw-key", d);
    840 
    841 		const uint32_t *bkey = con->c_back_entry.ck_key;
    842 		d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
    843 		prop_dictionary_set_and_rel(cdict, "back-key", d);
    844 
    845 		if (con->c_nat) {
    846 			npf_nat_export(cdict, con->c_nat);
    847 		}
    848 		prop_array_add(conlist, cdict);
    849 		prop_object_release(cdict);
    850 skip:
    851 		prev = con;
    852 		con = next;
    853 	}
    854 	npf_conndb_settail(conn_db, prev);
    855 	mutex_exit(&conn_lock);
    856 	return 0;
    857 }
    858 
    859 /*
    860  * npf_conn_import: fully reconstruct a single connection from a
    861  * directory and insert into the given database.
    862  */
    863 int
    864 npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
    865     npf_ruleset_t *natlist)
    866 {
    867 	npf_conn_t *con;
    868 	npf_connkey_t *fw, *bk;
    869 	prop_object_t obj;
    870 	const void *d;
    871 
    872 	/* Allocate a connection and initialise it (clear first). */
    873 	con = pool_cache_get(conn_cache, PR_WAITOK);
    874 	memset(con, 0, sizeof(npf_conn_t));
    875 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    876 
    877 	prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
    878 	prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
    879 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
    880 	getnanouptime(&con->c_atime);
    881 
    882 	obj = prop_dictionary_get(cdict, "state");
    883 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    884 	    prop_data_size(obj) != sizeof(npf_state_t)) {
    885 		goto err;
    886 	}
    887 	memcpy(&con->c_state, d, sizeof(npf_state_t));
    888 
    889 	/* Reconstruct NAT association, if any, or return NULL. */
    890 	con->c_nat = npf_nat_import(cdict, natlist, con);
    891 
    892 	/*
    893 	 * Fetch and copy the keys for each direction.
    894 	 */
    895 	obj = prop_dictionary_get(cdict, "forw-key");
    896 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    897 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    898 		goto err;
    899 	}
    900 	fw = &con->c_forw_entry;
    901 	memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
    902 
    903 	obj = prop_dictionary_get(cdict, "back-key");
    904 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    905 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    906 		goto err;
    907 	}
    908 	bk = &con->c_back_entry;
    909 	memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
    910 
    911 	fw->ck_backptr = bk->ck_backptr = con;
    912 
    913 	/* Insert the entries and the connection itself. */
    914 	if (!npf_conndb_insert(cd, fw, con)) {
    915 		goto err;
    916 	}
    917 	if (!npf_conndb_insert(cd, bk, con)) {
    918 		npf_conndb_remove(cd, fw);
    919 		goto err;
    920 	}
    921 	npf_conndb_enqueue(cd, con);
    922 	return 0;
    923 err:
    924 	npf_conn_destroy(con);
    925 	return EINVAL;
    926 }
    927 
    928 #if defined(DDB) || defined(_NPF_TESTING)
    929 
    930 void
    931 npf_conn_print(const npf_conn_t *con)
    932 {
    933 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
    934 	const uint32_t *fkey = con->c_forw_entry.ck_key;
    935 	const uint32_t *bkey = con->c_back_entry.ck_key;
    936 	const u_int proto = con->c_proto;
    937 	struct timespec tsnow, tsdiff;
    938 	const void *src, *dst;
    939 	int etime;
    940 
    941 	getnanouptime(&tsnow);
    942 	timespecsub(&tsnow, &con->c_atime, &tsdiff);
    943 	etime = npf_state_etime(&con->c_state, proto);
    944 
    945 	printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
    946 	    con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
    947 
    948 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
    949 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
    950 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
    951 
    952 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
    953 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
    954 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
    955 
    956 	npf_state_dump(&con->c_state);
    957 	if (con->c_nat) {
    958 		npf_nat_dump(con->c_nat);
    959 	}
    960 }
    961 
    962 #endif
    963