npf_conn.c revision 1.7 1 /* $NetBSD: npf_conn.c,v 1.7 2014/07/25 23:07:21 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
5 * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
6 * All rights reserved.
7 *
8 * This material is based upon work partially supported by The
9 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * NPF connection tracking for stateful filtering and translation.
35 *
36 * Overview
37 *
38 * Connection direction is identified by the direction of its first
39 * packet. Packets can be incoming or outgoing with respect to an
40 * interface. To describe the packet in the context of connection
41 * direction we will use the terms "forwards stream" and "backwards
42 * stream". All connections have two keys and thus two entries:
43 *
44 * npf_conn_t::c_forw_entry for the forwards stream and
45 * npf_conn_t::c_back_entry for the backwards stream.
46 *
47 * The keys are formed from the 5-tuple (source/destination address,
48 * source/destination port and the protocol). Additional matching
49 * is performed for the interface (a common behaviour is equivalent
50 * to the 6-tuple lookup including the interface ID). Note that the
51 * key may be formed using translated values in a case of NAT.
52 *
53 * Connections can serve two purposes: for the implicit passing or
54 * to accommodate the dynamic NAT. Connections for the former purpose
55 * are created by the rules with "stateful" attribute and are used for
56 * stateful filtering. Such connections indicate that the packet of
57 * the backwards stream should be passed without inspection of the
58 * ruleset. The other purpose is to associate a dynamic NAT mechanism
59 * with a connection. Such connections are created by the NAT policies
60 * and they have a relationship with NAT translation structure via
61 * npf_conn_t::c_nat. A single connection can serve both purposes,
62 * which is a common case.
63 *
64 * Connection life-cycle
65 *
66 * Connections are established when a packet matches said rule or
67 * NAT policy. Both keys of the established connection are inserted
68 * into the connection database. A garbage collection thread
69 * periodically scans all connections and depending on connection
70 * properties (e.g. last activity time, protocol) removes connection
71 * entries and expires the actual connections.
72 *
73 * Each connection has a reference count. The reference is acquired
74 * on lookup and should be released by the caller. It guarantees that
75 * the connection will not be destroyed, although it may be expired.
76 *
77 * Synchronisation
78 *
79 * Connection database is accessed in a lock-less manner by the main
80 * routines: npf_conn_inspect() and npf_conn_establish(). Since they
81 * are always called from a software interrupt, the database is
82 * protected using passive serialisation. The main place which can
83 * destroy a connection is npf_conn_worker(). The database itself
84 * can be replaced and destroyed in npf_conn_reload().
85 *
86 * ALG support
87 *
88 * Application-level gateways (ALGs) can override generic connection
89 * inspection (npf_alg_conn() call in npf_conn_inspect() function) by
90 * performing their own lookup using different key. Recursive call
91 * to npf_conn_inspect() is not allowed. The ALGs ought to use the
92 * npf_conn_lookup() function for this purpose.
93 *
94 * Lock order
95 *
96 * npf_config_lock ->
97 * conn_lock ->
98 * npf_conn_t::c_lock
99 */
100
101 #include <sys/cdefs.h>
102 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.7 2014/07/25 23:07:21 rmind Exp $");
103
104 #include <sys/param.h>
105 #include <sys/types.h>
106
107 #include <netinet/in.h>
108 #include <netinet/tcp.h>
109
110 #include <sys/atomic.h>
111 #include <sys/condvar.h>
112 #include <sys/kmem.h>
113 #include <sys/kthread.h>
114 #include <sys/mutex.h>
115 #include <net/pfil.h>
116 #include <sys/pool.h>
117 #include <sys/queue.h>
118 #include <sys/systm.h>
119
120 #define __NPF_CONN_PRIVATE
121 #include "npf_conn.h"
122 #include "npf_impl.h"
123
124 /*
125 * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
126 */
127 CTASSERT(PFIL_ALL == (0x001 | 0x002));
128 #define CONN_ACTIVE 0x004 /* visible on inspection */
129 #define CONN_PASS 0x008 /* perform implicit passing */
130 #define CONN_EXPIRE 0x010 /* explicitly expire */
131 #define CONN_REMOVED 0x020 /* "forw/back" entries removed */
132
133 /*
134 * Connection tracking state: disabled (off) or enabled (on).
135 */
136 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
137 static volatile int conn_tracking __cacheline_aligned;
138
139 /* Connection tracking database, connection cache and the lock. */
140 static npf_conndb_t * conn_db __read_mostly;
141 static pool_cache_t conn_cache __read_mostly;
142 static kmutex_t conn_lock __cacheline_aligned;
143
144 static void npf_conn_worker(void);
145 static void npf_conn_destroy(npf_conn_t *);
146
147 /*
148 * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
149 */
150
151 void
152 npf_conn_sysinit(void)
153 {
154 conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
155 0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
156 mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
157 conn_tracking = CONN_TRACKING_OFF;
158 conn_db = npf_conndb_create();
159
160 npf_worker_register(npf_conn_worker);
161 }
162
163 void
164 npf_conn_sysfini(void)
165 {
166 /* Note: the caller should have flushed the connections. */
167 KASSERT(conn_tracking == CONN_TRACKING_OFF);
168 npf_worker_unregister(npf_conn_worker);
169
170 npf_conndb_destroy(conn_db);
171 pool_cache_destroy(conn_cache);
172 mutex_destroy(&conn_lock);
173 }
174
175 /*
176 * npf_conn_load: perform the load by flushing the current connection
177 * database and replacing it with the new one or just destroying.
178 *
179 * => The caller must disable the connection tracking and ensure that
180 * there are no connection database lookups or references in-flight.
181 */
182 void
183 npf_conn_load(npf_conndb_t *ndb, bool track)
184 {
185 npf_conndb_t *odb = NULL;
186
187 KASSERT(npf_config_locked_p());
188
189 /*
190 * The connection database is in the quiescent state.
191 * Prevent G/C thread from running and install a new database.
192 */
193 mutex_enter(&conn_lock);
194 if (ndb) {
195 KASSERT(conn_tracking == CONN_TRACKING_OFF);
196 odb = conn_db;
197 conn_db = ndb;
198 membar_sync();
199 }
200 if (track) {
201 /* After this point lookups start flying in. */
202 conn_tracking = CONN_TRACKING_ON;
203 }
204 mutex_exit(&conn_lock);
205
206 if (odb) {
207 /*
208 * Flush all, no sync since the caller did it for us.
209 * Also, release the pool cache memory.
210 */
211 npf_conn_gc(odb, true, false);
212 npf_conndb_destroy(odb);
213 pool_cache_invalidate(conn_cache);
214 }
215 }
216
217 /*
218 * npf_conn_tracking: enable/disable connection tracking.
219 */
220 void
221 npf_conn_tracking(bool track)
222 {
223 KASSERT(npf_config_locked_p());
224 conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
225 }
226
227 static inline bool
228 npf_conn_trackable_p(const npf_cache_t *npc)
229 {
230 /*
231 * Check if connection tracking is on. Also, if layer 3 and 4 are
232 * not cached - protocol is not supported or packet is invalid.
233 */
234 if (conn_tracking != CONN_TRACKING_ON) {
235 return false;
236 }
237 if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
238 return false;
239 }
240 return true;
241 }
242
243 /*
244 * npf_conn_conkey: construct a key for the connection lookup.
245 */
246 bool
247 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
248 {
249 const u_int alen = npc->npc_alen;
250 const struct tcphdr *th;
251 const struct udphdr *uh;
252 u_int keylen, isrc, idst;
253 uint16_t id[2];
254
255 switch (npc->npc_proto) {
256 case IPPROTO_TCP:
257 KASSERT(npf_iscached(npc, NPC_TCP));
258 th = npc->npc_l4.tcp;
259 id[NPF_SRC] = th->th_sport;
260 id[NPF_DST] = th->th_dport;
261 break;
262 case IPPROTO_UDP:
263 KASSERT(npf_iscached(npc, NPC_UDP));
264 uh = npc->npc_l4.udp;
265 id[NPF_SRC] = uh->uh_sport;
266 id[NPF_DST] = uh->uh_dport;
267 break;
268 case IPPROTO_ICMP:
269 if (npf_iscached(npc, NPC_ICMP_ID)) {
270 const struct icmp *ic = npc->npc_l4.icmp;
271 id[NPF_SRC] = ic->icmp_id;
272 id[NPF_DST] = ic->icmp_id;
273 break;
274 }
275 return false;
276 case IPPROTO_ICMPV6:
277 if (npf_iscached(npc, NPC_ICMP_ID)) {
278 const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
279 id[NPF_SRC] = ic6->icmp6_id;
280 id[NPF_DST] = ic6->icmp6_id;
281 break;
282 }
283 return false;
284 default:
285 /* Unsupported protocol. */
286 return false;
287 }
288
289 /*
290 * Finally, construct a key formed out of 32-bit integers.
291 */
292 if (__predict_true(forw)) {
293 isrc = NPF_SRC, idst = NPF_DST;
294 } else {
295 isrc = NPF_DST, idst = NPF_SRC;
296 }
297
298 key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff);
299 key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
300
301 if (__predict_true(alen == sizeof(in_addr_t))) {
302 key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0];
303 key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0];
304 keylen = 4 * sizeof(uint32_t);
305 } else {
306 const u_int nwords = alen >> 2;
307 memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen);
308 memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen);
309 keylen = (2 + (nwords * 2)) * sizeof(uint32_t);
310 }
311 (void)keylen;
312 return true;
313 }
314
315 static __inline void
316 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
317 {
318 const u_int alen = key->ck_key[0] & 0xffff;
319 uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
320
321 KASSERT(alen > 0);
322 memcpy(addr, naddr, alen);
323 }
324
325 static __inline void
326 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
327 {
328 const uint32_t oid = key->ck_key[1];
329 const u_int shift = 16 * !di;
330 const uint32_t mask = 0xffff0000 >> shift;
331
332 key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
333 }
334
335 /*
336 * npf_conn_lookup: lookup if there is an established connection.
337 *
338 * => If found, we will hold a reference for the caller.
339 */
340 npf_conn_t *
341 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
342 {
343 const nbuf_t *nbuf = npc->npc_nbuf;
344 npf_conn_t *con;
345 npf_connkey_t key;
346 u_int flags, cifid;
347 bool ok, pforw;
348
349 /* Construct a key and lookup for a connection in the store. */
350 if (!npf_conn_conkey(npc, &key, true)) {
351 return NULL;
352 }
353 con = npf_conndb_lookup(conn_db, &key, forw);
354 if (con == NULL) {
355 return NULL;
356 }
357 KASSERT(npc->npc_proto == con->c_proto);
358
359 /* Check if connection is active and not expired. */
360 flags = con->c_flags;
361 ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
362
363 if (__predict_false(!ok)) {
364 atomic_dec_uint(&con->c_refcnt);
365 return NULL;
366 }
367
368 /*
369 * Match the interface and the direction of the connection entry
370 * and the packet.
371 */
372 cifid = con->c_ifid;
373 if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
374 atomic_dec_uint(&con->c_refcnt);
375 return NULL;
376 }
377 pforw = (flags & PFIL_ALL) == di;
378 if (__predict_false(*forw != pforw)) {
379 atomic_dec_uint(&con->c_refcnt);
380 return NULL;
381 }
382
383 /* Update the last activity time. */
384 getnanouptime(&con->c_atime);
385 return con;
386 }
387
388 /*
389 * npf_conn_inspect: lookup a connection and inspecting the protocol data.
390 *
391 * => If found, we will hold a reference for the caller.
392 */
393 npf_conn_t *
394 npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
395 {
396 nbuf_t *nbuf = npc->npc_nbuf;
397 npf_conn_t *con;
398 bool forw, ok;
399
400 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
401 if (!npf_conn_trackable_p(npc)) {
402 return NULL;
403 }
404
405 /* Query ALG which may lookup connection for us. */
406 if ((con = npf_alg_conn(npc, di)) != NULL) {
407 /* Note: reference is held. */
408 return con;
409 }
410 if (nbuf_head_mbuf(nbuf) == NULL) {
411 *error = ENOMEM;
412 return NULL;
413 }
414 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
415
416 /* Main lookup of the connection. */
417 if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
418 return NULL;
419 }
420
421 /* Inspect the protocol data and handle state changes. */
422 mutex_enter(&con->c_lock);
423 ok = npf_state_inspect(npc, &con->c_state, forw);
424 mutex_exit(&con->c_lock);
425
426 if (__predict_false(!ok)) {
427 /* Invalid: let the rules deal with it. */
428 npf_conn_release(con);
429 npf_stats_inc(NPF_STAT_INVALID_STATE);
430 con = NULL;
431 }
432 return con;
433 }
434
435 /*
436 * npf_conn_establish: create a new connection, insert into the global list.
437 *
438 * => Connection is created with the reference held for the caller.
439 * => Connection will be activated on the first reference release.
440 */
441 npf_conn_t *
442 npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
443 {
444 const nbuf_t *nbuf = npc->npc_nbuf;
445 npf_conn_t *con;
446
447 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
448
449 if (!npf_conn_trackable_p(npc)) {
450 return NULL;
451 }
452
453 /* Allocate and initialise the new connection. */
454 con = pool_cache_get(conn_cache, PR_NOWAIT);
455 if (__predict_false(!con)) {
456 return NULL;
457 }
458 NPF_PRINTF(("NPF: create conn %p\n", con));
459 npf_stats_inc(NPF_STAT_CONN_CREATE);
460
461 /* Reference count and flags (indicate direction). */
462 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
463 con->c_flags = (di & PFIL_ALL);
464 con->c_refcnt = 1;
465 con->c_rproc = NULL;
466 con->c_nat = NULL;
467
468 /* Initialize protocol state. */
469 if (!npf_state_init(npc, &con->c_state)) {
470 goto err;
471 }
472
473 KASSERT(npf_iscached(npc, NPC_IP46));
474 npf_connkey_t *fw = &con->c_forw_entry;
475 npf_connkey_t *bk = &con->c_back_entry;
476
477 /*
478 * Construct "forwards" and "backwards" keys. Also, set the
479 * interface ID for this connection (unless it is global).
480 */
481 if (!npf_conn_conkey(npc, fw, true)) {
482 goto err;
483 }
484 if (!npf_conn_conkey(npc, bk, false)) {
485 goto err;
486 }
487 fw->ck_backptr = bk->ck_backptr = con;
488 con->c_ifid = per_if ? nbuf->nb_ifid : 0;
489 con->c_proto = npc->npc_proto;
490
491 /* Set last activity time for a new connection. */
492 getnanouptime(&con->c_atime);
493
494 /*
495 * Insert both keys (entries representing directions) of the
496 * connection. At this point, it becomes visible.
497 */
498 if (!npf_conndb_insert(conn_db, fw, con)) {
499 goto err;
500 }
501 if (!npf_conndb_insert(conn_db, bk, con)) {
502 /* We have hit the duplicate. */
503 npf_conndb_remove(conn_db, fw);
504 npf_stats_inc(NPF_STAT_RACE_CONN);
505 goto err;
506 }
507
508 /* Finally, insert into the connection list. */
509 NPF_PRINTF(("NPF: establish conn %p\n", con));
510 npf_conndb_enqueue(conn_db, con);
511 return con;
512 err:
513 npf_conn_destroy(con);
514 return NULL;
515 }
516
517 static void
518 npf_conn_destroy(npf_conn_t *con)
519 {
520 if (con->c_nat) {
521 /* Release any NAT structures. */
522 npf_nat_destroy(con->c_nat);
523 }
524 if (con->c_rproc) {
525 /* Release the rule procedure. */
526 npf_rproc_release(con->c_rproc);
527 }
528
529 /* Destroy the state. */
530 npf_state_destroy(&con->c_state);
531 mutex_destroy(&con->c_lock);
532
533 /* Free the structure, increase the counter. */
534 pool_cache_put(conn_cache, con);
535 npf_stats_inc(NPF_STAT_CONN_DESTROY);
536 NPF_PRINTF(("NPF: conn %p destroyed\n", con));
537 }
538
539 /*
540 * npf_conn_setnat: associate NAT entry with the connection, update and
541 * re-insert connection entry using the translation values.
542 */
543 int
544 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
545 npf_nat_t *nt, u_int ntype)
546 {
547 static const u_int nat_type_dimap[] = {
548 [NPF_NATOUT] = NPF_DST,
549 [NPF_NATIN] = NPF_SRC,
550 };
551 npf_connkey_t key, *bk;
552 npf_conn_t *ret __diagused;
553 npf_addr_t *taddr;
554 in_port_t tport;
555 u_int tidx;
556
557 KASSERT(con->c_refcnt > 0);
558
559 npf_nat_gettrans(nt, &taddr, &tport);
560 KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
561 tidx = nat_type_dimap[ntype];
562
563 /* Construct a "backwards" key. */
564 if (!npf_conn_conkey(npc, &key, false)) {
565 return EINVAL;
566 }
567
568 /* Acquire the lock and check for the races. */
569 mutex_enter(&con->c_lock);
570 if (__predict_false(con->c_flags & CONN_EXPIRE)) {
571 /* The connection got expired. */
572 mutex_exit(&con->c_lock);
573 return EINVAL;
574 }
575 if (__predict_false(con->c_nat != NULL)) {
576 /* Race with a duplicate packet. */
577 mutex_exit(&con->c_lock);
578 npf_stats_inc(NPF_STAT_RACE_NAT);
579 return EISCONN;
580 }
581
582 /* Remove the "backwards" entry. */
583 ret = npf_conndb_remove(conn_db, &key);
584 KASSERT(ret == con);
585
586 /* Set the source/destination IDs to the translation values. */
587 bk = &con->c_back_entry;
588 connkey_set_addr(bk, taddr, tidx);
589 if (tport) {
590 connkey_set_id(bk, tport, tidx);
591 }
592
593 /* Finally, re-insert the "backwards" entry. */
594 if (!npf_conndb_insert(conn_db, bk, con)) {
595 /*
596 * Race: we have hit the duplicate, remove the "forwards"
597 * entry and expire our connection; it is no longer valid.
598 */
599 (void)npf_conndb_remove(conn_db, &con->c_forw_entry);
600 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
601 mutex_exit(&con->c_lock);
602
603 npf_stats_inc(NPF_STAT_RACE_NAT);
604 return EISCONN;
605 }
606
607 /* Associate the NAT entry and release the lock. */
608 con->c_nat = nt;
609 mutex_exit(&con->c_lock);
610 return 0;
611 }
612
613 /*
614 * npf_conn_expire: explicitly mark connection as expired.
615 */
616 void
617 npf_conn_expire(npf_conn_t *con)
618 {
619 /* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
620 atomic_or_uint(&con->c_flags, CONN_EXPIRE);
621 }
622
623 /*
624 * npf_conn_pass: return true if connection is "pass" one, otherwise false.
625 */
626 bool
627 npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
628 {
629 KASSERT(con->c_refcnt > 0);
630 if (__predict_true(con->c_flags & CONN_PASS)) {
631 *rp = con->c_rproc;
632 return true;
633 }
634 return false;
635 }
636
637 /*
638 * npf_conn_setpass: mark connection as a "pass" one and associate the
639 * rule procedure with it.
640 */
641 void
642 npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
643 {
644 KASSERT((con->c_flags & CONN_ACTIVE) == 0);
645 KASSERT(con->c_refcnt > 0);
646 KASSERT(con->c_rproc == NULL);
647
648 /*
649 * No need for atomic since the connection is not yet active.
650 * If rproc is set, the caller transfers its reference to us,
651 * which will be released on npf_conn_destroy().
652 */
653 con->c_flags |= CONN_PASS;
654 con->c_rproc = rp;
655 }
656
657 /*
658 * npf_conn_release: release a reference, which might allow G/C thread
659 * to destroy this connection.
660 */
661 void
662 npf_conn_release(npf_conn_t *con)
663 {
664 if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
665 /* Activate: after this, connection is globally visible. */
666 con->c_flags |= CONN_ACTIVE;
667 }
668 KASSERT(con->c_refcnt > 0);
669 atomic_dec_uint(&con->c_refcnt);
670 }
671
672 /*
673 * npf_conn_retnat: return associated NAT data entry and indicate
674 * whether it is a "forwards" or "backwards" stream.
675 */
676 npf_nat_t *
677 npf_conn_retnat(npf_conn_t *con, const int di, bool *forw)
678 {
679 KASSERT(con->c_refcnt > 0);
680 *forw = (con->c_flags & PFIL_ALL) == di;
681 return con->c_nat;
682 }
683
684 /*
685 * npf_conn_expired: criterion to check if connection is expired.
686 */
687 static inline bool
688 npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
689 {
690 const int etime = npf_state_etime(&con->c_state, con->c_proto);
691 struct timespec tsdiff;
692
693 if (__predict_false(con->c_flags & CONN_EXPIRE)) {
694 /* Explicitly marked to be expired. */
695 return true;
696 }
697 timespecsub(tsnow, &con->c_atime, &tsdiff);
698 return tsdiff.tv_sec > etime;
699 }
700
701 /*
702 * npf_conn_gc: garbage collect the expired connections.
703 *
704 * => Must run in a single-threaded manner.
705 * => If it is a flush request, then destroy all connections.
706 * => If 'sync' is true, then perform passive serialisation.
707 */
708 void
709 npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
710 {
711 npf_conn_t *con, *prev, *gclist = NULL;
712 struct timespec tsnow;
713
714 getnanouptime(&tsnow);
715
716 /*
717 * Scan all connections and check them for expiration.
718 */
719 prev = NULL;
720 con = npf_conndb_getlist(cd);
721 while (con) {
722 npf_conn_t *next = con->c_next;
723
724 /* Expired? Flushing all? */
725 if (!npf_conn_expired(con, &tsnow) && !flush) {
726 prev = con;
727 con = next;
728 continue;
729 }
730
731 /* Remove both entries of the connection. */
732 mutex_enter(&con->c_lock);
733 if ((con->c_flags & CONN_REMOVED) == 0) {
734 npf_conn_t *ret __diagused;
735
736 ret = npf_conndb_remove(cd, &con->c_forw_entry);
737 KASSERT(ret == con);
738 ret = npf_conndb_remove(cd, &con->c_back_entry);
739 KASSERT(ret == con);
740 }
741
742 /* Flag the removal and expiration. */
743 atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
744 mutex_exit(&con->c_lock);
745
746 /* Move to the G/C list. */
747 npf_conndb_dequeue(cd, con, prev);
748 con->c_next = gclist;
749 gclist = con;
750
751 /* Next.. */
752 con = next;
753 }
754 npf_conndb_settail(cd, prev);
755
756 /*
757 * Ensure it is safe to destroy the connections.
758 * Note: drop the conn_lock (see the lock order).
759 */
760 if (sync) {
761 mutex_exit(&conn_lock);
762 if (gclist) {
763 npf_config_enter();
764 npf_config_sync();
765 npf_config_exit();
766 }
767 }
768
769 /*
770 * Garbage collect all expired connections.
771 * May need to wait for the references to drain.
772 */
773 con = gclist;
774 while (con) {
775 npf_conn_t *next = con->c_next;
776
777 /*
778 * Destroy only if removed and no references.
779 * Otherwise, wait for a tiny moment.
780 */
781 if (__predict_false(con->c_refcnt)) {
782 kpause("npfcongc", false, 1, NULL);
783 continue;
784 }
785 npf_conn_destroy(con);
786 con = next;
787 }
788 }
789
790 /*
791 * npf_conn_worker: G/C to run from a worker thread.
792 */
793 static void
794 npf_conn_worker(void)
795 {
796 mutex_enter(&conn_lock);
797 /* Note: the conn_lock will be released (sync == true). */
798 npf_conn_gc(conn_db, false, true);
799 }
800
801 /*
802 * npf_conn_export: construct a list of connections prepared for saving.
803 * Note: this is expected to be an expensive operation.
804 */
805 int
806 npf_conn_export(prop_array_t conlist)
807 {
808 npf_conn_t *con, *prev;
809
810 /*
811 * Note: acquire conn_lock to prevent from the database
812 * destruction and G/C thread.
813 */
814 mutex_enter(&conn_lock);
815 if (conn_tracking != CONN_TRACKING_ON) {
816 mutex_exit(&conn_lock);
817 return 0;
818 }
819 prev = NULL;
820 con = npf_conndb_getlist(conn_db);
821 while (con) {
822 npf_conn_t *next = con->c_next;
823 prop_data_t d;
824
825 if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE)
826 goto skip;
827
828 prop_dictionary_t cdict = prop_dictionary_create();
829 prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
830 prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
831 /* FIXME: interface-id */
832
833 d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
834 prop_dictionary_set_and_rel(cdict, "state", d);
835
836 const uint32_t *fkey = con->c_forw_entry.ck_key;
837 d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
838 prop_dictionary_set_and_rel(cdict, "forw-key", d);
839
840 const uint32_t *bkey = con->c_back_entry.ck_key;
841 d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
842 prop_dictionary_set_and_rel(cdict, "back-key", d);
843
844 if (con->c_nat) {
845 npf_nat_export(cdict, con->c_nat);
846 }
847 prop_array_add(conlist, cdict);
848 prop_object_release(cdict);
849 skip:
850 prev = con;
851 con = next;
852 }
853 npf_conndb_settail(conn_db, prev);
854 mutex_exit(&conn_lock);
855 return 0;
856 }
857
858 /*
859 * npf_conn_import: fully reconstruct a single connection from a
860 * directory and insert into the given database.
861 */
862 int
863 npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
864 npf_ruleset_t *natlist)
865 {
866 npf_conn_t *con;
867 npf_connkey_t *fw, *bk;
868 prop_object_t obj;
869 const void *d;
870
871 /* Allocate a connection and initialise it (clear first). */
872 con = pool_cache_get(conn_cache, PR_WAITOK);
873 memset(con, 0, sizeof(npf_conn_t));
874 mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
875
876 prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
877 prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
878 con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
879 getnanouptime(&con->c_atime);
880
881 obj = prop_dictionary_get(cdict, "state");
882 if ((d = prop_data_data_nocopy(obj)) == NULL ||
883 prop_data_size(obj) != sizeof(npf_state_t)) {
884 goto err;
885 }
886 memcpy(&con->c_state, d, sizeof(npf_state_t));
887
888 /* Reconstruct NAT association, if any, or return NULL. */
889 con->c_nat = npf_nat_import(cdict, natlist, con);
890
891 /*
892 * Fetch and copy the keys for each direction.
893 */
894 obj = prop_dictionary_get(cdict, "forw-key");
895 if ((d = prop_data_data_nocopy(obj)) == NULL ||
896 prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
897 goto err;
898 }
899 fw = &con->c_forw_entry;
900 memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
901
902 obj = prop_dictionary_get(cdict, "back-key");
903 if ((d = prop_data_data_nocopy(obj)) == NULL ||
904 prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
905 goto err;
906 }
907 bk = &con->c_back_entry;
908 memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
909
910 fw->ck_backptr = bk->ck_backptr = con;
911
912 /* Insert the entries and the connection itself. */
913 if (!npf_conndb_insert(cd, fw, con)) {
914 goto err;
915 }
916 if (!npf_conndb_insert(cd, bk, con)) {
917 npf_conndb_remove(cd, fw);
918 goto err;
919 }
920 npf_conndb_enqueue(cd, con);
921 return 0;
922 err:
923 npf_conn_destroy(con);
924 return EINVAL;
925 }
926
927 #if defined(DDB) || defined(_NPF_TESTING)
928
929 void
930 npf_conn_print(const npf_conn_t *con)
931 {
932 const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
933 const uint32_t *fkey = con->c_forw_entry.ck_key;
934 const uint32_t *bkey = con->c_back_entry.ck_key;
935 const u_int proto = con->c_proto;
936 struct timespec tsnow, tsdiff;
937 const void *src, *dst;
938 int etime;
939
940 getnanouptime(&tsnow);
941 timespecsub(&tsnow, &con->c_atime, &tsdiff);
942 etime = npf_state_etime(&con->c_state, proto);
943
944 printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
945 con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
946
947 src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
948 printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
949 printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
950
951 src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
952 printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
953 printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
954
955 npf_state_dump(&con->c_state);
956 if (con->c_nat) {
957 npf_nat_dump(con->c_nat);
958 }
959 }
960
961 #endif
962