Home | History | Annotate | Line # | Download | only in npf
npf_conn.c revision 1.8
      1 /*	$NetBSD: npf_conn.c,v 1.8 2014/07/25 23:21:46 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
      5  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      6  * All rights reserved.
      7  *
      8  * This material is based upon work partially supported by The
      9  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * NPF connection tracking for stateful filtering and translation.
     35  *
     36  * Overview
     37  *
     38  *	Connection direction is identified by the direction of its first
     39  *	packet.  Packets can be incoming or outgoing with respect to an
     40  *	interface.  To describe the packet in the context of connection
     41  *	direction we will use the terms "forwards stream" and "backwards
     42  *	stream".  All connections have two keys and thus two entries:
     43  *
     44  *		npf_conn_t::c_forw_entry for the forwards stream and
     45  *		npf_conn_t::c_back_entry for the backwards stream.
     46  *
     47  *	The keys are formed from the 5-tuple (source/destination address,
     48  *	source/destination port and the protocol).  Additional matching
     49  *	is performed for the interface (a common behaviour is equivalent
     50  *	to the 6-tuple lookup including the interface ID).  Note that the
     51  *	key may be formed using translated values in a case of NAT.
     52  *
     53  *	Connections can serve two purposes: for the implicit passing or
     54  *	to accommodate the dynamic NAT.  Connections for the former purpose
     55  *	are created by the rules with "stateful" attribute and are used for
     56  *	stateful filtering.  Such connections indicate that the packet of
     57  *	the backwards stream should be passed without inspection of the
     58  *	ruleset.  The other purpose is to associate a dynamic NAT mechanism
     59  *	with a connection.  Such connections are created by the NAT policies
     60  *	and they have a relationship with NAT translation structure via
     61  *	npf_conn_t::c_nat.  A single connection can serve both purposes,
     62  *	which is a common case.
     63  *
     64  * Connection life-cycle
     65  *
     66  *	Connections are established when a packet matches said rule or
     67  *	NAT policy.  Both keys of the established connection are inserted
     68  *	into the connection database.  A garbage collection thread
     69  *	periodically scans all connections and depending on connection
     70  *	properties (e.g. last activity time, protocol) removes connection
     71  *	entries and expires the actual connections.
     72  *
     73  *	Each connection has a reference count.  The reference is acquired
     74  *	on lookup and should be released by the caller.  It guarantees that
     75  *	the connection will not be destroyed, although it may be expired.
     76  *
     77  * Synchronisation
     78  *
     79  *	Connection database is accessed in a lock-less manner by the main
     80  *	routines: npf_conn_inspect() and npf_conn_establish().  Since they
     81  *	are always called from a software interrupt, the database is
     82  *	protected using passive serialisation.  The main place which can
     83  *	destroy a connection is npf_conn_worker().  The database itself
     84  *	can be replaced and destroyed in npf_conn_reload().
     85  *
     86  * ALG support
     87  *
     88  *	Application-level gateways (ALGs) can override generic connection
     89  *	inspection (npf_alg_conn() call in npf_conn_inspect() function) by
     90  *	performing their own lookup using different key.  Recursive call
     91  *	to npf_conn_inspect() is not allowed.  The ALGs ought to use the
     92  *	npf_conn_lookup() function for this purpose.
     93  *
     94  * Lock order
     95  *
     96  *	npf_config_lock ->
     97  *		conn_lock ->
     98  *			npf_conn_t::c_lock
     99  */
    100 
    101 #include <sys/cdefs.h>
    102 __KERNEL_RCSID(0, "$NetBSD: npf_conn.c,v 1.8 2014/07/25 23:21:46 rmind Exp $");
    103 
    104 #include <sys/param.h>
    105 #include <sys/types.h>
    106 
    107 #include <netinet/in.h>
    108 #include <netinet/tcp.h>
    109 
    110 #include <sys/atomic.h>
    111 #include <sys/condvar.h>
    112 #include <sys/kmem.h>
    113 #include <sys/kthread.h>
    114 #include <sys/mutex.h>
    115 #include <net/pfil.h>
    116 #include <sys/pool.h>
    117 #include <sys/queue.h>
    118 #include <sys/systm.h>
    119 
    120 #define __NPF_CONN_PRIVATE
    121 #include "npf_conn.h"
    122 #include "npf_impl.h"
    123 
    124 /*
    125  * Connection flags: PFIL_IN and PFIL_OUT values are reserved for direction.
    126  */
    127 CTASSERT(PFIL_ALL == (0x001 | 0x002));
    128 #define	CONN_ACTIVE	0x004	/* visible on inspection */
    129 #define	CONN_PASS	0x008	/* perform implicit passing */
    130 #define	CONN_EXPIRE	0x010	/* explicitly expire */
    131 #define	CONN_REMOVED	0x020	/* "forw/back" entries removed */
    132 
    133 /*
    134  * Connection tracking state: disabled (off) or enabled (on).
    135  */
    136 enum { CONN_TRACKING_OFF, CONN_TRACKING_ON };
    137 static volatile int	conn_tracking	__cacheline_aligned;
    138 
    139 /* Connection tracking database, connection cache and the lock. */
    140 static npf_conndb_t *	conn_db		__read_mostly;
    141 static pool_cache_t	conn_cache	__read_mostly;
    142 static kmutex_t		conn_lock	__cacheline_aligned;
    143 
    144 static void	npf_conn_worker(void);
    145 static void	npf_conn_destroy(npf_conn_t *);
    146 
    147 /*
    148  * npf_conn_sys{init,fini}: initialise/destroy connection tracking.
    149  */
    150 
    151 void
    152 npf_conn_sysinit(void)
    153 {
    154 	conn_cache = pool_cache_init(sizeof(npf_conn_t), coherency_unit,
    155 	    0, 0, "npfconpl", NULL, IPL_NET, NULL, NULL, NULL);
    156 	mutex_init(&conn_lock, MUTEX_DEFAULT, IPL_NONE);
    157 	conn_tracking = CONN_TRACKING_OFF;
    158 	conn_db = npf_conndb_create();
    159 
    160 	npf_worker_register(npf_conn_worker);
    161 }
    162 
    163 void
    164 npf_conn_sysfini(void)
    165 {
    166 	/* Note: the caller should have flushed the connections. */
    167 	KASSERT(conn_tracking == CONN_TRACKING_OFF);
    168 	npf_worker_unregister(npf_conn_worker);
    169 
    170 	npf_conndb_destroy(conn_db);
    171 	pool_cache_destroy(conn_cache);
    172 	mutex_destroy(&conn_lock);
    173 }
    174 
    175 /*
    176  * npf_conn_load: perform the load by flushing the current connection
    177  * database and replacing it with the new one or just destroying.
    178  *
    179  * => The caller must disable the connection tracking and ensure that
    180  *    there are no connection database lookups or references in-flight.
    181  */
    182 void
    183 npf_conn_load(npf_conndb_t *ndb, bool track)
    184 {
    185 	npf_conndb_t *odb = NULL;
    186 
    187 	KASSERT(npf_config_locked_p());
    188 
    189 	/*
    190 	 * The connection database is in the quiescent state.
    191 	 * Prevent G/C thread from running and install a new database.
    192 	 */
    193 	mutex_enter(&conn_lock);
    194 	if (ndb) {
    195 		KASSERT(conn_tracking == CONN_TRACKING_OFF);
    196 		odb = conn_db;
    197 		conn_db = ndb;
    198 		membar_sync();
    199 	}
    200 	if (track) {
    201 		/* After this point lookups start flying in. */
    202 		conn_tracking = CONN_TRACKING_ON;
    203 	}
    204 	mutex_exit(&conn_lock);
    205 
    206 	if (odb) {
    207 		/*
    208 		 * Flush all, no sync since the caller did it for us.
    209 		 * Also, release the pool cache memory.
    210 		 */
    211 		npf_conn_gc(odb, true, false);
    212 		npf_conndb_destroy(odb);
    213 		pool_cache_invalidate(conn_cache);
    214 	}
    215 }
    216 
    217 /*
    218  * npf_conn_tracking: enable/disable connection tracking.
    219  */
    220 void
    221 npf_conn_tracking(bool track)
    222 {
    223 	KASSERT(npf_config_locked_p());
    224 	conn_tracking = track ? CONN_TRACKING_ON : CONN_TRACKING_OFF;
    225 }
    226 
    227 static inline bool
    228 npf_conn_trackable_p(const npf_cache_t *npc)
    229 {
    230 	/*
    231 	 * Check if connection tracking is on.  Also, if layer 3 and 4 are
    232 	 * not cached - protocol is not supported or packet is invalid.
    233 	 */
    234 	if (conn_tracking != CONN_TRACKING_ON) {
    235 		return false;
    236 	}
    237 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
    238 		return false;
    239 	}
    240 	return true;
    241 }
    242 
    243 /*
    244  * npf_conn_conkey: construct a key for the connection lookup.
    245  *
    246  * => Returns the key length in bytes or zero on failure.
    247  */
    248 unsigned
    249 npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key, const bool forw)
    250 {
    251 	const u_int alen = npc->npc_alen;
    252 	const struct tcphdr *th;
    253 	const struct udphdr *uh;
    254 	u_int keylen, isrc, idst;
    255 	uint16_t id[2];
    256 
    257 	switch (npc->npc_proto) {
    258 	case IPPROTO_TCP:
    259 		KASSERT(npf_iscached(npc, NPC_TCP));
    260 		th = npc->npc_l4.tcp;
    261 		id[NPF_SRC] = th->th_sport;
    262 		id[NPF_DST] = th->th_dport;
    263 		break;
    264 	case IPPROTO_UDP:
    265 		KASSERT(npf_iscached(npc, NPC_UDP));
    266 		uh = npc->npc_l4.udp;
    267 		id[NPF_SRC] = uh->uh_sport;
    268 		id[NPF_DST] = uh->uh_dport;
    269 		break;
    270 	case IPPROTO_ICMP:
    271 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    272 			const struct icmp *ic = npc->npc_l4.icmp;
    273 			id[NPF_SRC] = ic->icmp_id;
    274 			id[NPF_DST] = ic->icmp_id;
    275 			break;
    276 		}
    277 		return 0;
    278 	case IPPROTO_ICMPV6:
    279 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    280 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    281 			id[NPF_SRC] = ic6->icmp6_id;
    282 			id[NPF_DST] = ic6->icmp6_id;
    283 			break;
    284 		}
    285 		return 0;
    286 	default:
    287 		/* Unsupported protocol. */
    288 		return 0;
    289 	}
    290 
    291 	if (__predict_true(forw)) {
    292 		isrc = NPF_SRC, idst = NPF_DST;
    293 	} else {
    294 		isrc = NPF_DST, idst = NPF_SRC;
    295 	}
    296 
    297 	/*
    298 	 * Construct a key formed out of 32-bit integers.  The key layout:
    299 	 *
    300 	 * Field: | proto |  alen | src-id | dst-id | src-addr | dst-addr |
    301 	 *        +-------+-------+--------+--------+----------+----------+
    302 	 * Bits:  |   8   |   8   |   16   |   16   |  32-128  |  32-128  |
    303 	 *
    304 	 * The source and destination are inverted if they key is for the
    305 	 * backwards stream (forw == false).  The address length depends
    306 	 * on the 'alen' field; it is a length in bytes, either 4 or 16.
    307 	 */
    308 
    309 	key->ck_key[0] = ((uint32_t)npc->npc_proto << 16) | (alen & 0xffff);
    310 	key->ck_key[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    311 
    312 	if (__predict_true(alen == sizeof(in_addr_t))) {
    313 		key->ck_key[2] = npc->npc_ips[isrc]->s6_addr32[0];
    314 		key->ck_key[3] = npc->npc_ips[idst]->s6_addr32[0];
    315 		keylen = 4 * sizeof(uint32_t);
    316 	} else {
    317 		const u_int nwords = alen >> 2;
    318 		memcpy(&key->ck_key[2], npc->npc_ips[isrc], alen);
    319 		memcpy(&key->ck_key[2 + nwords], npc->npc_ips[idst], alen);
    320 		keylen = (2 + (nwords * 2)) * sizeof(uint32_t);
    321 	}
    322 	return keylen;
    323 }
    324 
    325 static __inline void
    326 connkey_set_addr(npf_connkey_t *key, const npf_addr_t *naddr, const int di)
    327 {
    328 	const u_int alen = key->ck_key[0] & 0xffff;
    329 	uint32_t *addr = &key->ck_key[2 + ((alen >> 2) * di)];
    330 
    331 	KASSERT(alen > 0);
    332 	memcpy(addr, naddr, alen);
    333 }
    334 
    335 static __inline void
    336 connkey_set_id(npf_connkey_t *key, const uint16_t id, const int di)
    337 {
    338 	const uint32_t oid = key->ck_key[1];
    339 	const u_int shift = 16 * !di;
    340 	const uint32_t mask = 0xffff0000 >> shift;
    341 
    342 	key->ck_key[1] = ((uint32_t)id << shift) | (oid & mask);
    343 }
    344 
    345 /*
    346  * npf_conn_lookup: lookup if there is an established connection.
    347  *
    348  * => If found, we will hold a reference for the caller.
    349  */
    350 npf_conn_t *
    351 npf_conn_lookup(const npf_cache_t *npc, const int di, bool *forw)
    352 {
    353 	const nbuf_t *nbuf = npc->npc_nbuf;
    354 	npf_conn_t *con;
    355 	npf_connkey_t key;
    356 	u_int flags, cifid;
    357 	bool ok, pforw;
    358 
    359 	/* Construct a key and lookup for a connection in the store. */
    360 	if (!npf_conn_conkey(npc, &key, true)) {
    361 		return NULL;
    362 	}
    363 	con = npf_conndb_lookup(conn_db, &key, forw);
    364 	if (con == NULL) {
    365 		return NULL;
    366 	}
    367 	KASSERT(npc->npc_proto == con->c_proto);
    368 
    369 	/* Check if connection is active and not expired. */
    370 	flags = con->c_flags;
    371 	ok = (flags & (CONN_ACTIVE | CONN_EXPIRE)) == CONN_ACTIVE;
    372 
    373 	if (__predict_false(!ok)) {
    374 		atomic_dec_uint(&con->c_refcnt);
    375 		return NULL;
    376 	}
    377 
    378 	/*
    379 	 * Match the interface and the direction of the connection entry
    380 	 * and the packet.
    381 	 */
    382 	cifid = con->c_ifid;
    383 	if (__predict_false(cifid && cifid != nbuf->nb_ifid)) {
    384 		atomic_dec_uint(&con->c_refcnt);
    385 		return NULL;
    386 	}
    387 	pforw = (flags & PFIL_ALL) == di;
    388 	if (__predict_false(*forw != pforw)) {
    389 		atomic_dec_uint(&con->c_refcnt);
    390 		return NULL;
    391 	}
    392 
    393 	/* Update the last activity time. */
    394 	getnanouptime(&con->c_atime);
    395 	return con;
    396 }
    397 
    398 /*
    399  * npf_conn_inspect: lookup a connection and inspecting the protocol data.
    400  *
    401  * => If found, we will hold a reference for the caller.
    402  */
    403 npf_conn_t *
    404 npf_conn_inspect(npf_cache_t *npc, const int di, int *error)
    405 {
    406 	nbuf_t *nbuf = npc->npc_nbuf;
    407 	npf_conn_t *con;
    408 	bool forw, ok;
    409 
    410 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    411 	if (!npf_conn_trackable_p(npc)) {
    412 		return NULL;
    413 	}
    414 
    415 	/* Query ALG which may lookup connection for us. */
    416 	if ((con = npf_alg_conn(npc, di)) != NULL) {
    417 		/* Note: reference is held. */
    418 		return con;
    419 	}
    420 	if (nbuf_head_mbuf(nbuf) == NULL) {
    421 		*error = ENOMEM;
    422 		return NULL;
    423 	}
    424 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    425 
    426 	/* Main lookup of the connection. */
    427 	if ((con = npf_conn_lookup(npc, di, &forw)) == NULL) {
    428 		return NULL;
    429 	}
    430 
    431 	/* Inspect the protocol data and handle state changes. */
    432 	mutex_enter(&con->c_lock);
    433 	ok = npf_state_inspect(npc, &con->c_state, forw);
    434 	mutex_exit(&con->c_lock);
    435 
    436 	if (__predict_false(!ok)) {
    437 		/* Invalid: let the rules deal with it. */
    438 		npf_conn_release(con);
    439 		npf_stats_inc(NPF_STAT_INVALID_STATE);
    440 		con = NULL;
    441 	}
    442 	return con;
    443 }
    444 
    445 /*
    446  * npf_conn_establish: create a new connection, insert into the global list.
    447  *
    448  * => Connection is created with the reference held for the caller.
    449  * => Connection will be activated on the first reference release.
    450  */
    451 npf_conn_t *
    452 npf_conn_establish(npf_cache_t *npc, int di, bool per_if)
    453 {
    454 	const nbuf_t *nbuf = npc->npc_nbuf;
    455 	npf_conn_t *con;
    456 
    457 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
    458 
    459 	if (!npf_conn_trackable_p(npc)) {
    460 		return NULL;
    461 	}
    462 
    463 	/* Allocate and initialise the new connection. */
    464 	con = pool_cache_get(conn_cache, PR_NOWAIT);
    465 	if (__predict_false(!con)) {
    466 		return NULL;
    467 	}
    468 	NPF_PRINTF(("NPF: create conn %p\n", con));
    469 	npf_stats_inc(NPF_STAT_CONN_CREATE);
    470 
    471 	/* Reference count and flags (indicate direction). */
    472 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    473 	con->c_flags = (di & PFIL_ALL);
    474 	con->c_refcnt = 1;
    475 	con->c_rproc = NULL;
    476 	con->c_nat = NULL;
    477 
    478 	/* Initialize protocol state. */
    479 	if (!npf_state_init(npc, &con->c_state)) {
    480 		goto err;
    481 	}
    482 
    483 	KASSERT(npf_iscached(npc, NPC_IP46));
    484 	npf_connkey_t *fw = &con->c_forw_entry;
    485 	npf_connkey_t *bk = &con->c_back_entry;
    486 
    487 	/*
    488 	 * Construct "forwards" and "backwards" keys.  Also, set the
    489 	 * interface ID for this connection (unless it is global).
    490 	 */
    491 	if (!npf_conn_conkey(npc, fw, true)) {
    492 		goto err;
    493 	}
    494 	if (!npf_conn_conkey(npc, bk, false)) {
    495 		goto err;
    496 	}
    497 	fw->ck_backptr = bk->ck_backptr = con;
    498 	con->c_ifid = per_if ? nbuf->nb_ifid : 0;
    499 	con->c_proto = npc->npc_proto;
    500 
    501 	/* Set last activity time for a new connection. */
    502 	getnanouptime(&con->c_atime);
    503 
    504 	/*
    505 	 * Insert both keys (entries representing directions) of the
    506 	 * connection.  At this point, it becomes visible.
    507 	 */
    508 	if (!npf_conndb_insert(conn_db, fw, con)) {
    509 		goto err;
    510 	}
    511 	if (!npf_conndb_insert(conn_db, bk, con)) {
    512 		/* We have hit the duplicate. */
    513 		npf_conndb_remove(conn_db, fw);
    514 		npf_stats_inc(NPF_STAT_RACE_CONN);
    515 		goto err;
    516 	}
    517 
    518 	/* Finally, insert into the connection list. */
    519 	NPF_PRINTF(("NPF: establish conn %p\n", con));
    520 	npf_conndb_enqueue(conn_db, con);
    521 	return con;
    522 err:
    523 	npf_conn_destroy(con);
    524 	return NULL;
    525 }
    526 
    527 static void
    528 npf_conn_destroy(npf_conn_t *con)
    529 {
    530 	if (con->c_nat) {
    531 		/* Release any NAT structures. */
    532 		npf_nat_destroy(con->c_nat);
    533 	}
    534 	if (con->c_rproc) {
    535 		/* Release the rule procedure. */
    536 		npf_rproc_release(con->c_rproc);
    537 	}
    538 
    539 	/* Destroy the state. */
    540 	npf_state_destroy(&con->c_state);
    541 	mutex_destroy(&con->c_lock);
    542 
    543 	/* Free the structure, increase the counter. */
    544 	pool_cache_put(conn_cache, con);
    545 	npf_stats_inc(NPF_STAT_CONN_DESTROY);
    546 	NPF_PRINTF(("NPF: conn %p destroyed\n", con));
    547 }
    548 
    549 /*
    550  * npf_conn_setnat: associate NAT entry with the connection, update and
    551  * re-insert connection entry using the translation values.
    552  */
    553 int
    554 npf_conn_setnat(const npf_cache_t *npc, npf_conn_t *con,
    555     npf_nat_t *nt, u_int ntype)
    556 {
    557 	static const u_int nat_type_dimap[] = {
    558 		[NPF_NATOUT] = NPF_DST,
    559 		[NPF_NATIN] = NPF_SRC,
    560 	};
    561 	npf_connkey_t key, *bk;
    562 	npf_conn_t *ret __diagused;
    563 	npf_addr_t *taddr;
    564 	in_port_t tport;
    565 	u_int tidx;
    566 
    567 	KASSERT(con->c_refcnt > 0);
    568 
    569 	npf_nat_gettrans(nt, &taddr, &tport);
    570 	KASSERT(ntype == NPF_NATOUT || ntype == NPF_NATIN);
    571 	tidx = nat_type_dimap[ntype];
    572 
    573 	/* Construct a "backwards" key. */
    574 	if (!npf_conn_conkey(npc, &key, false)) {
    575 		return EINVAL;
    576 	}
    577 
    578 	/* Acquire the lock and check for the races. */
    579 	mutex_enter(&con->c_lock);
    580 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    581 		/* The connection got expired. */
    582 		mutex_exit(&con->c_lock);
    583 		return EINVAL;
    584 	}
    585 	if (__predict_false(con->c_nat != NULL)) {
    586 		/* Race with a duplicate packet. */
    587 		mutex_exit(&con->c_lock);
    588 		npf_stats_inc(NPF_STAT_RACE_NAT);
    589 		return EISCONN;
    590 	}
    591 
    592 	/* Remove the "backwards" entry. */
    593 	ret = npf_conndb_remove(conn_db, &key);
    594 	KASSERT(ret == con);
    595 
    596 	/* Set the source/destination IDs to the translation values. */
    597 	bk = &con->c_back_entry;
    598 	connkey_set_addr(bk, taddr, tidx);
    599 	if (tport) {
    600 		connkey_set_id(bk, tport, tidx);
    601 	}
    602 
    603 	/* Finally, re-insert the "backwards" entry. */
    604 	if (!npf_conndb_insert(conn_db, bk, con)) {
    605 		/*
    606 		 * Race: we have hit the duplicate, remove the "forwards"
    607 		 * entry and expire our connection; it is no longer valid.
    608 		 */
    609 		(void)npf_conndb_remove(conn_db, &con->c_forw_entry);
    610 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    611 		mutex_exit(&con->c_lock);
    612 
    613 		npf_stats_inc(NPF_STAT_RACE_NAT);
    614 		return EISCONN;
    615 	}
    616 
    617 	/* Associate the NAT entry and release the lock. */
    618 	con->c_nat = nt;
    619 	mutex_exit(&con->c_lock);
    620 	return 0;
    621 }
    622 
    623 /*
    624  * npf_conn_expire: explicitly mark connection as expired.
    625  */
    626 void
    627 npf_conn_expire(npf_conn_t *con)
    628 {
    629 	/* KASSERT(con->c_refcnt > 0); XXX: npf_nat_freepolicy() */
    630 	atomic_or_uint(&con->c_flags, CONN_EXPIRE);
    631 }
    632 
    633 /*
    634  * npf_conn_pass: return true if connection is "pass" one, otherwise false.
    635  */
    636 bool
    637 npf_conn_pass(const npf_conn_t *con, npf_rproc_t **rp)
    638 {
    639 	KASSERT(con->c_refcnt > 0);
    640 	if (__predict_true(con->c_flags & CONN_PASS)) {
    641 		*rp = con->c_rproc;
    642 		return true;
    643 	}
    644 	return false;
    645 }
    646 
    647 /*
    648  * npf_conn_setpass: mark connection as a "pass" one and associate the
    649  * rule procedure with it.
    650  */
    651 void
    652 npf_conn_setpass(npf_conn_t *con, npf_rproc_t *rp)
    653 {
    654 	KASSERT((con->c_flags & CONN_ACTIVE) == 0);
    655 	KASSERT(con->c_refcnt > 0);
    656 	KASSERT(con->c_rproc == NULL);
    657 
    658 	/*
    659 	 * No need for atomic since the connection is not yet active.
    660 	 * If rproc is set, the caller transfers its reference to us,
    661 	 * which will be released on npf_conn_destroy().
    662 	 */
    663 	con->c_flags |= CONN_PASS;
    664 	con->c_rproc = rp;
    665 }
    666 
    667 /*
    668  * npf_conn_release: release a reference, which might allow G/C thread
    669  * to destroy this connection.
    670  */
    671 void
    672 npf_conn_release(npf_conn_t *con)
    673 {
    674 	if ((con->c_flags & (CONN_ACTIVE | CONN_EXPIRE)) == 0) {
    675 		/* Activate: after this, connection is globally visible. */
    676 		con->c_flags |= CONN_ACTIVE;
    677 	}
    678 	KASSERT(con->c_refcnt > 0);
    679 	atomic_dec_uint(&con->c_refcnt);
    680 }
    681 
    682 /*
    683  * npf_conn_retnat: return associated NAT data entry and indicate
    684  * whether it is a "forwards" or "backwards" stream.
    685  */
    686 npf_nat_t *
    687 npf_conn_retnat(npf_conn_t *con, const int di, bool *forw)
    688 {
    689 	KASSERT(con->c_refcnt > 0);
    690 	*forw = (con->c_flags & PFIL_ALL) == di;
    691 	return con->c_nat;
    692 }
    693 
    694 /*
    695  * npf_conn_expired: criterion to check if connection is expired.
    696  */
    697 static inline bool
    698 npf_conn_expired(const npf_conn_t *con, const struct timespec *tsnow)
    699 {
    700 	const int etime = npf_state_etime(&con->c_state, con->c_proto);
    701 	struct timespec tsdiff;
    702 
    703 	if (__predict_false(con->c_flags & CONN_EXPIRE)) {
    704 		/* Explicitly marked to be expired. */
    705 		return true;
    706 	}
    707 	timespecsub(tsnow, &con->c_atime, &tsdiff);
    708 	return tsdiff.tv_sec > etime;
    709 }
    710 
    711 /*
    712  * npf_conn_gc: garbage collect the expired connections.
    713  *
    714  * => Must run in a single-threaded manner.
    715  * => If it is a flush request, then destroy all connections.
    716  * => If 'sync' is true, then perform passive serialisation.
    717  */
    718 void
    719 npf_conn_gc(npf_conndb_t *cd, bool flush, bool sync)
    720 {
    721 	npf_conn_t *con, *prev, *gclist = NULL;
    722 	struct timespec tsnow;
    723 
    724 	getnanouptime(&tsnow);
    725 
    726 	/*
    727 	 * Scan all connections and check them for expiration.
    728 	 */
    729 	prev = NULL;
    730 	con = npf_conndb_getlist(cd);
    731 	while (con) {
    732 		npf_conn_t *next = con->c_next;
    733 
    734 		/* Expired?  Flushing all? */
    735 		if (!npf_conn_expired(con, &tsnow) && !flush) {
    736 			prev = con;
    737 			con = next;
    738 			continue;
    739 		}
    740 
    741 		/* Remove both entries of the connection. */
    742 		mutex_enter(&con->c_lock);
    743 		if ((con->c_flags & CONN_REMOVED) == 0) {
    744 			npf_conn_t *ret __diagused;
    745 
    746 			ret = npf_conndb_remove(cd, &con->c_forw_entry);
    747 			KASSERT(ret == con);
    748 			ret = npf_conndb_remove(cd, &con->c_back_entry);
    749 			KASSERT(ret == con);
    750 		}
    751 
    752 		/* Flag the removal and expiration. */
    753 		atomic_or_uint(&con->c_flags, CONN_REMOVED | CONN_EXPIRE);
    754 		mutex_exit(&con->c_lock);
    755 
    756 		/* Move to the G/C list. */
    757 		npf_conndb_dequeue(cd, con, prev);
    758 		con->c_next = gclist;
    759 		gclist = con;
    760 
    761 		/* Next.. */
    762 		con = next;
    763 	}
    764 	npf_conndb_settail(cd, prev);
    765 
    766 	/*
    767 	 * Ensure it is safe to destroy the connections.
    768 	 * Note: drop the conn_lock (see the lock order).
    769 	 */
    770 	if (sync) {
    771 		mutex_exit(&conn_lock);
    772 		if (gclist) {
    773 			npf_config_enter();
    774 			npf_config_sync();
    775 			npf_config_exit();
    776 		}
    777 	}
    778 
    779 	/*
    780 	 * Garbage collect all expired connections.
    781 	 * May need to wait for the references to drain.
    782 	 */
    783 	con = gclist;
    784 	while (con) {
    785 		npf_conn_t *next = con->c_next;
    786 
    787 		/*
    788 		 * Destroy only if removed and no references.
    789 		 * Otherwise, wait for a tiny moment.
    790 		 */
    791 		if (__predict_false(con->c_refcnt)) {
    792 			kpause("npfcongc", false, 1, NULL);
    793 			continue;
    794 		}
    795 		npf_conn_destroy(con);
    796 		con = next;
    797 	}
    798 }
    799 
    800 /*
    801  * npf_conn_worker: G/C to run from a worker thread.
    802  */
    803 static void
    804 npf_conn_worker(void)
    805 {
    806 	mutex_enter(&conn_lock);
    807 	/* Note: the conn_lock will be released (sync == true). */
    808 	npf_conn_gc(conn_db, false, true);
    809 }
    810 
    811 /*
    812  * npf_conn_export: construct a list of connections prepared for saving.
    813  * Note: this is expected to be an expensive operation.
    814  */
    815 int
    816 npf_conn_export(prop_array_t conlist)
    817 {
    818 	npf_conn_t *con, *prev;
    819 
    820 	/*
    821 	 * Note: acquire conn_lock to prevent from the database
    822 	 * destruction and G/C thread.
    823 	 */
    824 	mutex_enter(&conn_lock);
    825 	if (conn_tracking != CONN_TRACKING_ON) {
    826 		mutex_exit(&conn_lock);
    827 		return 0;
    828 	}
    829 	prev = NULL;
    830 	con = npf_conndb_getlist(conn_db);
    831 	while (con) {
    832 		npf_conn_t *next = con->c_next;
    833 		prop_data_t d;
    834 
    835 		if ((con->c_flags & (CONN_ACTIVE|CONN_EXPIRE)) != CONN_ACTIVE)
    836 			goto skip;
    837 
    838 		prop_dictionary_t cdict = prop_dictionary_create();
    839 		prop_dictionary_set_uint32(cdict, "flags", con->c_flags);
    840 		prop_dictionary_set_uint32(cdict, "proto", con->c_proto);
    841 		/* FIXME: interface-id */
    842 
    843 		d = prop_data_create_data(&con->c_state, sizeof(npf_state_t));
    844 		prop_dictionary_set_and_rel(cdict, "state", d);
    845 
    846 		const uint32_t *fkey = con->c_forw_entry.ck_key;
    847 		d = prop_data_create_data(fkey, NPF_CONN_MAXKEYLEN);
    848 		prop_dictionary_set_and_rel(cdict, "forw-key", d);
    849 
    850 		const uint32_t *bkey = con->c_back_entry.ck_key;
    851 		d = prop_data_create_data(bkey, NPF_CONN_MAXKEYLEN);
    852 		prop_dictionary_set_and_rel(cdict, "back-key", d);
    853 
    854 		if (con->c_nat) {
    855 			npf_nat_export(cdict, con->c_nat);
    856 		}
    857 		prop_array_add(conlist, cdict);
    858 		prop_object_release(cdict);
    859 skip:
    860 		prev = con;
    861 		con = next;
    862 	}
    863 	npf_conndb_settail(conn_db, prev);
    864 	mutex_exit(&conn_lock);
    865 	return 0;
    866 }
    867 
    868 /*
    869  * npf_conn_import: fully reconstruct a single connection from a
    870  * directory and insert into the given database.
    871  */
    872 int
    873 npf_conn_import(npf_conndb_t *cd, prop_dictionary_t cdict,
    874     npf_ruleset_t *natlist)
    875 {
    876 	npf_conn_t *con;
    877 	npf_connkey_t *fw, *bk;
    878 	prop_object_t obj;
    879 	const void *d;
    880 
    881 	/* Allocate a connection and initialise it (clear first). */
    882 	con = pool_cache_get(conn_cache, PR_WAITOK);
    883 	memset(con, 0, sizeof(npf_conn_t));
    884 	mutex_init(&con->c_lock, MUTEX_DEFAULT, IPL_SOFTNET);
    885 
    886 	prop_dictionary_get_uint32(cdict, "proto", &con->c_proto);
    887 	prop_dictionary_get_uint32(cdict, "flags", &con->c_flags);
    888 	con->c_flags &= PFIL_ALL | CONN_ACTIVE | CONN_PASS;
    889 	getnanouptime(&con->c_atime);
    890 
    891 	obj = prop_dictionary_get(cdict, "state");
    892 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    893 	    prop_data_size(obj) != sizeof(npf_state_t)) {
    894 		goto err;
    895 	}
    896 	memcpy(&con->c_state, d, sizeof(npf_state_t));
    897 
    898 	/* Reconstruct NAT association, if any, or return NULL. */
    899 	con->c_nat = npf_nat_import(cdict, natlist, con);
    900 
    901 	/*
    902 	 * Fetch and copy the keys for each direction.
    903 	 */
    904 	obj = prop_dictionary_get(cdict, "forw-key");
    905 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    906 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    907 		goto err;
    908 	}
    909 	fw = &con->c_forw_entry;
    910 	memcpy(&fw->ck_key, d, NPF_CONN_MAXKEYLEN);
    911 
    912 	obj = prop_dictionary_get(cdict, "back-key");
    913 	if ((d = prop_data_data_nocopy(obj)) == NULL ||
    914 	    prop_data_size(obj) != NPF_CONN_MAXKEYLEN) {
    915 		goto err;
    916 	}
    917 	bk = &con->c_back_entry;
    918 	memcpy(&bk->ck_key, d, NPF_CONN_MAXKEYLEN);
    919 
    920 	fw->ck_backptr = bk->ck_backptr = con;
    921 
    922 	/* Insert the entries and the connection itself. */
    923 	if (!npf_conndb_insert(cd, fw, con)) {
    924 		goto err;
    925 	}
    926 	if (!npf_conndb_insert(cd, bk, con)) {
    927 		npf_conndb_remove(cd, fw);
    928 		goto err;
    929 	}
    930 	npf_conndb_enqueue(cd, con);
    931 	return 0;
    932 err:
    933 	npf_conn_destroy(con);
    934 	return EINVAL;
    935 }
    936 
    937 #if defined(DDB) || defined(_NPF_TESTING)
    938 
    939 void
    940 npf_conn_print(const npf_conn_t *con)
    941 {
    942 	const u_int alen = NPF_CONN_GETALEN(&con->c_forw_entry);
    943 	const uint32_t *fkey = con->c_forw_entry.ck_key;
    944 	const uint32_t *bkey = con->c_back_entry.ck_key;
    945 	const u_int proto = con->c_proto;
    946 	struct timespec tsnow, tsdiff;
    947 	const void *src, *dst;
    948 	int etime;
    949 
    950 	getnanouptime(&tsnow);
    951 	timespecsub(&tsnow, &con->c_atime, &tsdiff);
    952 	etime = npf_state_etime(&con->c_state, proto);
    953 
    954 	printf("%p:\n\tproto %d flags 0x%x tsdiff %d etime %d\n",
    955 	    con, proto, con->c_flags, (int)tsdiff.tv_sec, etime);
    956 
    957 	src = &fkey[2], dst = &fkey[2 + (alen >> 2)];
    958 	printf("\tforw %s:%d", npf_addr_dump(src, alen), ntohs(fkey[1] >> 16));
    959 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(fkey[1] & 0xffff));
    960 
    961 	src = &bkey[2], dst = &bkey[2 + (alen >> 2)];
    962 	printf("\tback %s:%d", npf_addr_dump(src, alen), ntohs(bkey[1] >> 16));
    963 	printf("-> %s:%d\n", npf_addr_dump(dst, alen), ntohs(bkey[1] & 0xffff));
    964 
    965 	npf_state_dump(&con->c_state);
    966 	if (con->c_nat) {
    967 		npf_nat_dump(con->c_nat);
    968 	}
    969 }
    970 
    971 #endif
    972