Home | History | Annotate | Line # | Download | only in npf
      1  1.1  rmind /*-
      2  1.2  rmind  * Copyright (c) 2014-2020 Mindaugas Rasiukevicius <rmind at netbsd org>
      3  1.1  rmind  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
      4  1.1  rmind  * All rights reserved.
      5  1.1  rmind  *
      6  1.1  rmind  * This material is based upon work partially supported by The
      7  1.1  rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      8  1.1  rmind  *
      9  1.1  rmind  * Redistribution and use in source and binary forms, with or without
     10  1.1  rmind  * modification, are permitted provided that the following conditions
     11  1.1  rmind  * are met:
     12  1.1  rmind  * 1. Redistributions of source code must retain the above copyright
     13  1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     14  1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     15  1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     16  1.1  rmind  *    documentation and/or other materials provided with the distribution.
     17  1.1  rmind  *
     18  1.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  1.1  rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  1.1  rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  1.1  rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  1.1  rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  1.1  rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  1.1  rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  1.1  rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  1.1  rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  1.1  rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  1.1  rmind  * POSSIBILITY OF SUCH DAMAGE.
     29  1.1  rmind  */
     30  1.1  rmind 
     31  1.1  rmind /*
     32  1.2  rmind  * Connection key -- is an n-tuple structure encoding the address length,
     33  1.2  rmind  * layer 3 protocol, source and destination addresses and ports (or other
     34  1.2  rmind  * protocol IDs) and some configurable elements (see below).
     35  1.1  rmind  *
     36  1.1  rmind  * Key layout
     37  1.1  rmind  *
     38  1.2  rmind  *	The single key is formed out of 32-bit integers.  The layout is
     39  1.2  rmind  *	as follows (first row -- fields, second row -- number of bits):
     40  1.1  rmind  *
     41  1.2  rmind  *	| alen | proto |  ckey  | src-id | dst-id | src-addr | dst-addr |
     42  1.2  rmind  *	+------+-------+--------+--------+--------+----------+----------+
     43  1.2  rmind  *	|   4  |   8   |   20   |   16   |   16   |  32-128  |  32-128  |
     44  1.1  rmind  *
     45  1.1  rmind  *	The source and destination are inverted if the key is for the
     46  1.2  rmind  *	backwards stream (NPF_FLOW_BACK).  The address length depends on
     47  1.2  rmind  *	the 'alen' field.  The length is in words and is either 1 or 4,
     48  1.2  rmind  *	meaning 4 or 16 in bytes.
     49  1.2  rmind  *
     50  1.2  rmind  *	The 20-bit configurable key area ('ckey') is for the optional
     51  1.2  rmind  *	elements which may be included or excluded by the user.  It has
     52  1.2  rmind  *	the following layout:
     53  1.2  rmind  *
     54  1.2  rmind  *	| direction | interface-id |
     55  1.2  rmind  *	+-----------+--------------+
     56  1.2  rmind  *	|     2     |      18      |
     57  1.2  rmind  *
     58  1.2  rmind  *	Note: neither direction nor interface ID cannot be zero; we rely
     59  1.2  rmind  *	on this by reserving the zero 'ckey' value to for the case when
     60  1.2  rmind  *	these checks are not applicable.
     61  1.1  rmind  *
     62  1.1  rmind  * Embedding in the connection structure (npf_conn_t)
     63  1.1  rmind  *
     64  1.1  rmind  *	Two keys are stored in the npf_conn_t::c_keys[] array, which is
     65  1.1  rmind  *	variable-length, depending on whether the keys store IPv4 or IPv6
     66  1.1  rmind  *	addresses.  The length of the first key determines the position
     67  1.1  rmind  *	of the second key.
     68  1.2  rmind  *
     69  1.2  rmind  * WARNING: the keys must be immutable while they are in conndb.
     70  1.1  rmind  */
     71  1.1  rmind 
     72  1.1  rmind #ifdef _KERNEL
     73  1.1  rmind #include <sys/cdefs.h>
     74  1.1  rmind __KERNEL_RCSID(0, "$NetBSD: npf_connkey.c,v 1.2 2020/05/30 14:16:56 rmind Exp $");
     75  1.1  rmind 
     76  1.1  rmind #include <sys/param.h>
     77  1.1  rmind #include <sys/types.h>
     78  1.1  rmind #endif
     79  1.1  rmind 
     80  1.1  rmind #define __NPF_CONN_PRIVATE
     81  1.1  rmind #include "npf_conn.h"
     82  1.1  rmind #include "npf_impl.h"
     83  1.1  rmind 
     84  1.2  rmind unsigned
     85  1.2  rmind npf_connkey_setkey(npf_connkey_t *key, unsigned alen, unsigned proto,
     86  1.2  rmind     const void *ipv, const uint16_t *id, const npf_flow_t flow)
     87  1.1  rmind {
     88  1.1  rmind 	const npf_addr_t * const *ips = ipv;
     89  1.1  rmind 	uint32_t *k = key->ck_key;
     90  1.1  rmind 	unsigned isrc, idst;
     91  1.1  rmind 
     92  1.2  rmind 	if (__predict_true(flow == NPF_FLOW_FORW)) {
     93  1.1  rmind 		isrc = NPF_SRC, idst = NPF_DST;
     94  1.1  rmind 	} else {
     95  1.1  rmind 		isrc = NPF_DST, idst = NPF_SRC;
     96  1.1  rmind 	}
     97  1.1  rmind 
     98  1.1  rmind 	/*
     99  1.1  rmind 	 * See the key layout explanation above.
    100  1.1  rmind 	 */
    101  1.2  rmind 	KASSERT((alen >> 2) <= 0xf && proto <= 0xff);
    102  1.2  rmind 	k[0] = ((uint32_t)(alen >> 2) << 28) | (proto << 20);
    103  1.1  rmind 	k[1] = ((uint32_t)id[isrc] << 16) | id[idst];
    104  1.1  rmind 
    105  1.1  rmind 	if (__predict_true(alen == sizeof(in_addr_t))) {
    106  1.1  rmind 		k[2] = ips[isrc]->word32[0];
    107  1.1  rmind 		k[3] = ips[idst]->word32[0];
    108  1.1  rmind 		return 4 * sizeof(uint32_t);
    109  1.1  rmind 	} else {
    110  1.1  rmind 		const unsigned nwords = alen >> 2;
    111  1.1  rmind 		memcpy(&k[2], ips[isrc], alen);
    112  1.1  rmind 		memcpy(&k[2 + nwords], ips[idst], alen);
    113  1.1  rmind 		return (2 + (nwords * 2)) * sizeof(uint32_t);
    114  1.1  rmind 	}
    115  1.1  rmind }
    116  1.1  rmind 
    117  1.2  rmind void
    118  1.2  rmind npf_connkey_getkey(const npf_connkey_t *key, unsigned *alen, unsigned *proto,
    119  1.2  rmind     npf_addr_t *ips, uint16_t *id)
    120  1.1  rmind {
    121  1.1  rmind 	const uint32_t *k = key->ck_key;
    122  1.1  rmind 
    123  1.1  rmind 	/*
    124  1.1  rmind 	 * See the key layout explanation above.
    125  1.1  rmind 	 */
    126  1.1  rmind 
    127  1.2  rmind 	*alen = (k[0] >> 28) << 2;
    128  1.2  rmind 	*proto = (k[0] >> 16) & 0xff;
    129  1.1  rmind 	id[NPF_SRC] = k[1] >> 16;
    130  1.1  rmind 	id[NPF_DST] = k[1] & 0xffff;
    131  1.1  rmind 
    132  1.1  rmind 	switch (*alen) {
    133  1.1  rmind 	case sizeof(struct in6_addr):
    134  1.1  rmind 	case sizeof(struct in_addr):
    135  1.1  rmind 		memcpy(&ips[NPF_SRC], &k[2], *alen);
    136  1.1  rmind 		memcpy(&ips[NPF_DST], &k[2 + ((unsigned)*alen >> 2)], *alen);
    137  1.1  rmind 		return;
    138  1.1  rmind 	default:
    139  1.1  rmind 		KASSERT(0);
    140  1.1  rmind 	}
    141  1.1  rmind }
    142  1.1  rmind 
    143  1.2  rmind static inline void
    144  1.2  rmind npf_connkey_setckey(npf_connkey_t *key, unsigned ifid, unsigned di)
    145  1.2  rmind {
    146  1.2  rmind 	if (ifid) {
    147  1.2  rmind 		/*
    148  1.2  rmind 		 * Interface ID: the lower 18 bits of the 20-bit 'ckey'.
    149  1.2  rmind 		 * Note: the interface ID cannot be zero.
    150  1.2  rmind 		 */
    151  1.2  rmind 		CTASSERT(NPF_MAX_IFMAP < (1U << 18));
    152  1.2  rmind 		key->ck_key[0] |= ifid;
    153  1.2  rmind 	}
    154  1.2  rmind 	if (di) {
    155  1.2  rmind 		/*
    156  1.2  rmind 		 * Direction: The highest 2 bits of the 20-bit 'ckey'.
    157  1.2  rmind 		 * Note: we rely on PFIL_IN and PFIL_OUT definitions.
    158  1.2  rmind 		 */
    159  1.2  rmind 		CTASSERT(PFIL_IN == 0x1 || PFIL_OUT == 0x2);
    160  1.2  rmind 		KASSERT((di & ~PFIL_ALL) == 0);
    161  1.2  rmind 		key->ck_key[0] |= ((uint32_t)di << 18);
    162  1.2  rmind 	}
    163  1.2  rmind }
    164  1.2  rmind 
    165  1.2  rmind static void
    166  1.2  rmind npf_connkey_getckey(const npf_connkey_t *key, unsigned *ifid, unsigned *di)
    167  1.2  rmind {
    168  1.2  rmind 	const uint32_t * const k = key->ck_key;
    169  1.2  rmind 
    170  1.2  rmind 	*ifid = k[0] & ((1U << 20) - 1);
    171  1.2  rmind 	*di = (k[0] >> 18) & PFIL_ALL;
    172  1.2  rmind }
    173  1.2  rmind 
    174  1.1  rmind /*
    175  1.2  rmind  * npf_conn_adjkey: adjust the connection key by setting the address/port.
    176  1.2  rmind  *
    177  1.2  rmind  * => The 'which' must either be NPF_SRC or NPF_DST.
    178  1.1  rmind  */
    179  1.1  rmind void
    180  1.1  rmind npf_conn_adjkey(npf_connkey_t *key, const npf_addr_t *naddr,
    181  1.2  rmind     const uint16_t id, const unsigned which)
    182  1.1  rmind {
    183  1.2  rmind 	const unsigned alen = NPF_CONNKEY_ALEN(key);
    184  1.1  rmind 	uint32_t * const k = key->ck_key;
    185  1.2  rmind 	uint32_t *addr = &k[2 + ((alen >> 2) * which)];
    186  1.1  rmind 
    187  1.2  rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    188  1.1  rmind 	KASSERT(alen > 0);
    189  1.1  rmind 	memcpy(addr, naddr, alen);
    190  1.1  rmind 
    191  1.1  rmind 	if (id) {
    192  1.1  rmind 		const uint32_t oid = k[1];
    193  1.2  rmind 		const unsigned shift = 16 * !which;
    194  1.1  rmind 		const uint32_t mask = 0xffff0000 >> shift;
    195  1.1  rmind 		k[1] = ((uint32_t)id << shift) | (oid & mask);
    196  1.1  rmind 	}
    197  1.1  rmind }
    198  1.1  rmind 
    199  1.2  rmind static unsigned
    200  1.2  rmind npf_connkey_copy(const npf_connkey_t *skey, npf_connkey_t *dkey, bool invert)
    201  1.2  rmind {
    202  1.2  rmind 	const unsigned klen = NPF_CONNKEY_LEN(skey);
    203  1.2  rmind 	const uint32_t *sk = skey->ck_key;
    204  1.2  rmind 	uint32_t *dk = dkey->ck_key;
    205  1.2  rmind 
    206  1.2  rmind 	if (invert) {
    207  1.2  rmind 		const unsigned alen = NPF_CONNKEY_ALEN(skey);
    208  1.2  rmind 		const unsigned nwords = alen >> 2;
    209  1.2  rmind 
    210  1.2  rmind 		dk[0] = sk[1];
    211  1.2  rmind 		dk[1] = (sk[1] >> 16) | (sk[1] << 16);
    212  1.2  rmind 		memcpy(&dk[2], &sk[2 + nwords], alen);
    213  1.2  rmind 		memcpy(&dk[2 + nwords], &sk[2], alen);
    214  1.2  rmind 	} else {
    215  1.2  rmind 		memcpy(dk, sk, klen);
    216  1.2  rmind 	}
    217  1.2  rmind 	return klen;
    218  1.2  rmind }
    219  1.2  rmind 
    220  1.1  rmind /*
    221  1.1  rmind  * npf_conn_conkey: construct a key for the connection lookup.
    222  1.1  rmind  *
    223  1.1  rmind  * => Returns the key length in bytes or zero on failure.
    224  1.1  rmind  */
    225  1.1  rmind unsigned
    226  1.2  rmind npf_conn_conkey(const npf_cache_t *npc, npf_connkey_t *key,
    227  1.2  rmind     const unsigned di, const npf_flow_t flow)
    228  1.1  rmind {
    229  1.2  rmind 	const npf_conn_params_t *params = npc->npc_ctx->params[NPF_PARAMS_CONN];
    230  1.2  rmind 	const nbuf_t *nbuf = npc->npc_nbuf;
    231  1.1  rmind 	const unsigned proto = npc->npc_proto;
    232  1.1  rmind 	const unsigned alen = npc->npc_alen;
    233  1.1  rmind 	const struct tcphdr *th;
    234  1.1  rmind 	const struct udphdr *uh;
    235  1.1  rmind 	uint16_t id[2] = { 0, 0 };
    236  1.2  rmind 	unsigned ret;
    237  1.2  rmind 
    238  1.2  rmind 	if (npc->npc_ckey) {
    239  1.2  rmind 		/*
    240  1.2  rmind 		 * Request to override the connection key.
    241  1.2  rmind 		 */
    242  1.2  rmind 		const bool invert = flow != NPF_FLOW_FORW;
    243  1.2  rmind 		return npf_connkey_copy(npc->npc_ckey, key, invert);
    244  1.2  rmind 	}
    245  1.1  rmind 
    246  1.1  rmind 	switch (proto) {
    247  1.1  rmind 	case IPPROTO_TCP:
    248  1.1  rmind 		KASSERT(npf_iscached(npc, NPC_TCP));
    249  1.1  rmind 		th = npc->npc_l4.tcp;
    250  1.1  rmind 		id[NPF_SRC] = th->th_sport;
    251  1.1  rmind 		id[NPF_DST] = th->th_dport;
    252  1.1  rmind 		break;
    253  1.1  rmind 	case IPPROTO_UDP:
    254  1.1  rmind 		KASSERT(npf_iscached(npc, NPC_UDP));
    255  1.1  rmind 		uh = npc->npc_l4.udp;
    256  1.1  rmind 		id[NPF_SRC] = uh->uh_sport;
    257  1.1  rmind 		id[NPF_DST] = uh->uh_dport;
    258  1.1  rmind 		break;
    259  1.1  rmind 	case IPPROTO_ICMP:
    260  1.1  rmind 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    261  1.1  rmind 			const struct icmp *ic = npc->npc_l4.icmp;
    262  1.1  rmind 			id[NPF_SRC] = ic->icmp_id;
    263  1.1  rmind 			id[NPF_DST] = ic->icmp_id;
    264  1.1  rmind 			break;
    265  1.1  rmind 		}
    266  1.1  rmind 		return 0;
    267  1.1  rmind 	case IPPROTO_ICMPV6:
    268  1.1  rmind 		if (npf_iscached(npc, NPC_ICMP_ID)) {
    269  1.1  rmind 			const struct icmp6_hdr *ic6 = npc->npc_l4.icmp6;
    270  1.1  rmind 			id[NPF_SRC] = ic6->icmp6_id;
    271  1.1  rmind 			id[NPF_DST] = ic6->icmp6_id;
    272  1.1  rmind 			break;
    273  1.1  rmind 		}
    274  1.1  rmind 		return 0;
    275  1.1  rmind 	default:
    276  1.1  rmind 		/* Unsupported protocol. */
    277  1.1  rmind 		return 0;
    278  1.1  rmind 	}
    279  1.2  rmind 
    280  1.2  rmind 	ret = npf_connkey_setkey(key, alen, proto, npc->npc_ips, id, flow);
    281  1.2  rmind 	npf_connkey_setckey(key,
    282  1.2  rmind 	    params->connkey_interface ? nbuf->nb_ifid : 0,
    283  1.2  rmind 	    params->connkey_direction ? (di & PFIL_ALL) : 0);
    284  1.2  rmind 	return ret;
    285  1.1  rmind }
    286  1.1  rmind 
    287  1.1  rmind /*
    288  1.1  rmind  * npf_conn_getforwkey: get the address to the "forwards" key.
    289  1.1  rmind  */
    290  1.1  rmind npf_connkey_t *
    291  1.1  rmind npf_conn_getforwkey(npf_conn_t *conn)
    292  1.1  rmind {
    293  1.1  rmind 	return (void *)&conn->c_keys[0];
    294  1.1  rmind }
    295  1.1  rmind 
    296  1.1  rmind /*
    297  1.1  rmind  * npf_conn_getbackkey: get the address to the "backwards" key.
    298  1.1  rmind  *
    299  1.1  rmind  * => It depends on the address length.
    300  1.1  rmind  */
    301  1.1  rmind npf_connkey_t *
    302  1.1  rmind npf_conn_getbackkey(npf_conn_t *conn, unsigned alen)
    303  1.1  rmind {
    304  1.1  rmind 	const unsigned off = 2 + ((alen * 2) >> 2);
    305  1.1  rmind 	KASSERT(off == NPF_CONNKEY_V4WORDS || off == NPF_CONNKEY_V6WORDS);
    306  1.1  rmind 	return (void *)&conn->c_keys[off];
    307  1.1  rmind }
    308  1.1  rmind 
    309  1.1  rmind /*
    310  1.1  rmind  * Connection key exporting/importing.
    311  1.1  rmind  */
    312  1.1  rmind 
    313  1.1  rmind nvlist_t *
    314  1.2  rmind npf_connkey_export(npf_t *npf, const npf_connkey_t *key)
    315  1.1  rmind {
    316  1.2  rmind 	unsigned alen, proto, ifid, di;
    317  1.1  rmind 	npf_addr_t ips[2];
    318  1.2  rmind 	uint16_t ids[2];
    319  1.2  rmind 	nvlist_t *key_nv;
    320  1.2  rmind 
    321  1.2  rmind 	key_nv = nvlist_create(0);
    322  1.2  rmind 
    323  1.2  rmind 	npf_connkey_getkey(key, &alen, &proto, ips, ids);
    324  1.2  rmind 	nvlist_add_number(key_nv, "proto", proto);
    325  1.2  rmind 	nvlist_add_number(key_nv, "sport", ids[NPF_SRC]);
    326  1.2  rmind 	nvlist_add_number(key_nv, "dport", ids[NPF_DST]);
    327  1.2  rmind 	nvlist_add_binary(key_nv, "saddr", &ips[NPF_SRC], alen);
    328  1.2  rmind 	nvlist_add_binary(key_nv, "daddr", &ips[NPF_DST], alen);
    329  1.2  rmind 
    330  1.2  rmind 	npf_connkey_getckey(key, &ifid, &di);
    331  1.2  rmind 	if (ifid) {
    332  1.2  rmind 		char ifname[IFNAMSIZ];
    333  1.2  rmind 		npf_ifmap_copyname(npf, ifid, ifname, sizeof(ifname));
    334  1.2  rmind 		nvlist_add_string(key_nv, "ifname", ifname);
    335  1.2  rmind 	}
    336  1.2  rmind 	if (di) {
    337  1.2  rmind 		nvlist_add_number(key_nv, "di", di);
    338  1.2  rmind 	}
    339  1.1  rmind 
    340  1.2  rmind 	return key_nv;
    341  1.1  rmind }
    342  1.1  rmind 
    343  1.1  rmind unsigned
    344  1.2  rmind npf_connkey_import(npf_t *npf, const nvlist_t *key_nv, npf_connkey_t *key)
    345  1.1  rmind {
    346  1.1  rmind 	npf_addr_t const * ips[2];
    347  1.2  rmind 	size_t alen1, alen2, proto;
    348  1.2  rmind 	unsigned ret, di, ifid = 0;
    349  1.2  rmind 	const char *ifname;
    350  1.2  rmind 	uint16_t ids[2];
    351  1.1  rmind 
    352  1.2  rmind 	proto = dnvlist_get_number(key_nv, "proto", 0);
    353  1.2  rmind 	if (proto >= IPPROTO_MAX) {
    354  1.2  rmind 		return 0;
    355  1.2  rmind 	}
    356  1.2  rmind 	ids[NPF_SRC] = dnvlist_get_number(key_nv, "sport", 0);
    357  1.2  rmind 	ids[NPF_DST] = dnvlist_get_number(key_nv, "dport", 0);
    358  1.2  rmind 	ips[NPF_SRC] = dnvlist_get_binary(key_nv, "saddr", &alen1, NULL, 0);
    359  1.2  rmind 	ips[NPF_DST] = dnvlist_get_binary(key_nv, "daddr", &alen2, NULL, 0);
    360  1.1  rmind 	if (alen1 == 0 || alen1 > sizeof(npf_addr_t) || alen1 != alen2) {
    361  1.1  rmind 		return 0;
    362  1.1  rmind 	}
    363  1.2  rmind 	ret = npf_connkey_setkey(key, alen1, proto, ips, ids, NPF_FLOW_FORW);
    364  1.2  rmind 	if (ret == 0) {
    365  1.2  rmind 		return 0;
    366  1.2  rmind 	}
    367  1.2  rmind 
    368  1.2  rmind 	ifname = dnvlist_get_string(key_nv, "ifname", NULL);
    369  1.2  rmind 	if (ifname && (ifid = npf_ifmap_register(npf, ifname)) == 0) {
    370  1.2  rmind 		return 0;
    371  1.2  rmind 	}
    372  1.2  rmind 	di = dnvlist_get_number(key_nv, "di", 0) & PFIL_ALL;
    373  1.2  rmind 	npf_connkey_setckey(key, ifid, di);
    374  1.2  rmind 
    375  1.2  rmind 	return ret;
    376  1.1  rmind }
    377  1.1  rmind 
    378  1.1  rmind #if defined(DDB) || defined(_NPF_TESTING)
    379  1.1  rmind 
    380  1.1  rmind void
    381  1.1  rmind npf_connkey_print(const npf_connkey_t *key)
    382  1.1  rmind {
    383  1.2  rmind 	unsigned alen, proto, ifid, di;
    384  1.1  rmind 	npf_addr_t ips[2];
    385  1.2  rmind 	uint16_t ids[2];
    386  1.1  rmind 
    387  1.2  rmind 	npf_connkey_getkey(key, &alen, &proto, ips, ids);
    388  1.2  rmind 	npf_connkey_getckey(key, &ifid, &di);
    389  1.2  rmind 	printf("\tkey (ifid %u, di %x)\t", ifid, di);
    390  1.2  rmind 	printf("%s:%u", npf_addr_dump(&ips[0], alen), ids[0]);
    391  1.2  rmind 	printf("-> %s:%u\n", npf_addr_dump(&ips[1], alen), ids[1]);
    392  1.1  rmind }
    393  1.1  rmind 
    394  1.1  rmind #endif
    395