npf_inet.c revision 1.10.4.8 1 1.10.4.8 riz /* $NetBSD: npf_inet.c,v 1.10.4.8 2013/02/08 19:18:09 riz Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.10.4.2 riz * Copyright (c) 2009-2012 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This material is based upon work partially supported by The
8 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.1 rmind /*
33 1.1 rmind * Various procotol related helper routines.
34 1.10.4.2 riz *
35 1.10.4.2 riz * This layer manipulates npf_cache_t structure i.e. caches requested headers
36 1.10.4.2 riz * and stores which information was cached in the information bit field.
37 1.10.4.2 riz * It is also responsibility of this layer to update or invalidate the cache
38 1.10.4.2 riz * on rewrites (e.g. by translation routines).
39 1.1 rmind */
40 1.1 rmind
41 1.1 rmind #include <sys/cdefs.h>
42 1.10.4.8 riz __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.10.4.8 2013/02/08 19:18:09 riz Exp $");
43 1.1 rmind
44 1.1 rmind #include <sys/param.h>
45 1.10.4.1 riz #include <sys/types.h>
46 1.1 rmind
47 1.4 rmind #include <net/pfil.h>
48 1.4 rmind #include <net/if.h>
49 1.4 rmind #include <net/ethertypes.h>
50 1.4 rmind #include <net/if_ether.h>
51 1.4 rmind
52 1.1 rmind #include <netinet/in_systm.h>
53 1.1 rmind #include <netinet/in.h>
54 1.1 rmind #include <netinet/ip.h>
55 1.4 rmind #include <netinet/ip6.h>
56 1.1 rmind #include <netinet/tcp.h>
57 1.1 rmind #include <netinet/udp.h>
58 1.1 rmind #include <netinet/ip_icmp.h>
59 1.1 rmind
60 1.1 rmind #include "npf_impl.h"
61 1.1 rmind
62 1.1 rmind /*
63 1.1 rmind * npf_fixup{16,32}_cksum: update IPv4 checksum.
64 1.1 rmind */
65 1.1 rmind
66 1.1 rmind uint16_t
67 1.1 rmind npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
68 1.1 rmind {
69 1.1 rmind uint32_t sum;
70 1.1 rmind
71 1.1 rmind /*
72 1.1 rmind * RFC 1624:
73 1.1 rmind * HC' = ~(~HC + ~m + m')
74 1.1 rmind */
75 1.1 rmind sum = ~ntohs(cksum) & 0xffff;
76 1.1 rmind sum += (~ntohs(odatum) & 0xffff) + ntohs(ndatum);
77 1.1 rmind sum = (sum >> 16) + (sum & 0xffff);
78 1.1 rmind sum += (sum >> 16);
79 1.1 rmind
80 1.1 rmind return htons(~sum & 0xffff);
81 1.1 rmind }
82 1.1 rmind
83 1.1 rmind uint16_t
84 1.1 rmind npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
85 1.1 rmind {
86 1.1 rmind
87 1.1 rmind cksum = npf_fixup16_cksum(cksum, odatum & 0xffff, ndatum & 0xffff);
88 1.1 rmind cksum = npf_fixup16_cksum(cksum, odatum >> 16, ndatum >> 16);
89 1.1 rmind return cksum;
90 1.1 rmind }
91 1.1 rmind
92 1.1 rmind /*
93 1.4 rmind * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
94 1.4 rmind */
95 1.4 rmind uint16_t
96 1.10.4.8 riz npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
97 1.10.4.8 riz const npf_addr_t *naddr)
98 1.4 rmind {
99 1.10.4.8 riz const uint32_t *oip32 = (const uint32_t *)oaddr;
100 1.10.4.8 riz const uint32_t *nip32 = (const uint32_t *)naddr;
101 1.4 rmind
102 1.4 rmind KASSERT(sz % sizeof(uint32_t) == 0);
103 1.4 rmind do {
104 1.4 rmind cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
105 1.4 rmind sz -= sizeof(uint32_t);
106 1.4 rmind } while (sz);
107 1.4 rmind
108 1.4 rmind return cksum;
109 1.4 rmind }
110 1.4 rmind
111 1.4 rmind /*
112 1.4 rmind * npf_addr_sum: provide IP address as a summed (if needed) 32-bit integer.
113 1.4 rmind * Note: used for hash function.
114 1.1 rmind */
115 1.4 rmind uint32_t
116 1.4 rmind npf_addr_sum(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
117 1.1 rmind {
118 1.4 rmind uint32_t mix = 0;
119 1.4 rmind int i;
120 1.1 rmind
121 1.5 rmind KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
122 1.5 rmind
123 1.4 rmind for (i = 0; i < (sz >> 2); i++) {
124 1.4 rmind mix += a1->s6_addr32[i];
125 1.4 rmind mix += a2->s6_addr32[i];
126 1.4 rmind }
127 1.4 rmind return mix;
128 1.4 rmind }
129 1.1 rmind
130 1.10.4.3 riz /*
131 1.10.4.3 riz * npf_addr_mask: apply the mask to a given address and store the result.
132 1.10.4.3 riz */
133 1.10.4.3 riz void
134 1.10.4.3 riz npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
135 1.10.4.3 riz const int alen, npf_addr_t *out)
136 1.10.4.2 riz {
137 1.10.4.3 riz const int nwords = alen >> 2;
138 1.10.4.2 riz uint_fast8_t length = mask;
139 1.10.4.2 riz
140 1.10.4.2 riz /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
141 1.10.4.2 riz KASSERT(length <= NPF_MAX_NETMASK);
142 1.10.4.2 riz
143 1.10.4.3 riz for (int i = 0; i < nwords; i++) {
144 1.10.4.3 riz uint32_t wordmask;
145 1.10.4.3 riz
146 1.10.4.2 riz if (length >= 32) {
147 1.10.4.3 riz wordmask = htonl(0xffffffff);
148 1.10.4.2 riz length -= 32;
149 1.10.4.3 riz } else if (length) {
150 1.10.4.3 riz wordmask = htonl(0xffffffff << (32 - length));
151 1.10.4.2 riz length = 0;
152 1.10.4.3 riz } else {
153 1.10.4.3 riz wordmask = 0;
154 1.10.4.2 riz }
155 1.10.4.3 riz out->s6_addr32[i] = addr->s6_addr32[i] & wordmask;
156 1.10.4.2 riz }
157 1.10.4.2 riz }
158 1.10.4.2 riz
159 1.10.4.2 riz /*
160 1.10.4.2 riz * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
161 1.10.4.2 riz *
162 1.10.4.3 riz * => Return 0 if equal and negative/positive if less/greater accordingly.
163 1.10.4.2 riz * => Ignore the mask, if NPF_NO_NETMASK is specified.
164 1.10.4.2 riz */
165 1.10.4.2 riz int
166 1.10.4.2 riz npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
167 1.10.4.3 riz const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
168 1.10.4.2 riz {
169 1.10.4.3 riz npf_addr_t realaddr1, realaddr2;
170 1.10.4.2 riz
171 1.10.4.2 riz if (mask1 != NPF_NO_NETMASK) {
172 1.10.4.3 riz npf_addr_mask(addr1, mask1, alen, &realaddr1);
173 1.10.4.3 riz addr1 = &realaddr1;
174 1.10.4.2 riz }
175 1.10.4.2 riz if (mask2 != NPF_NO_NETMASK) {
176 1.10.4.3 riz npf_addr_mask(addr2, mask2, alen, &realaddr2);
177 1.10.4.3 riz addr2 = &realaddr2;
178 1.10.4.2 riz }
179 1.10.4.3 riz return memcmp(addr1, addr2, alen);
180 1.10.4.2 riz }
181 1.10.4.2 riz
182 1.4 rmind /*
183 1.4 rmind * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
184 1.10.4.2 riz *
185 1.10.4.2 riz * => Returns all values in host byte-order.
186 1.4 rmind */
187 1.4 rmind int
188 1.10.4.2 riz npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
189 1.4 rmind {
190 1.10.4.8 riz const struct tcphdr *th = npc->npc_l4.tcp;
191 1.8 rmind u_int thlen;
192 1.1 rmind
193 1.7 zoltan KASSERT(npf_iscached(npc, NPC_TCP));
194 1.1 rmind
195 1.4 rmind *seq = ntohl(th->th_seq);
196 1.4 rmind *ack = ntohl(th->th_ack);
197 1.4 rmind *win = (uint32_t)ntohs(th->th_win);
198 1.8 rmind thlen = th->th_off << 2;
199 1.1 rmind
200 1.7 zoltan if (npf_iscached(npc, NPC_IP4)) {
201 1.10.4.8 riz const struct ip *ip = npc->npc_ip.v4;
202 1.10 rmind return ntohs(ip->ip_len) - npf_cache_hlen(npc) - thlen;
203 1.10.4.2 riz } else if (npf_iscached(npc, NPC_IP6)) {
204 1.10.4.8 riz const struct ip6_hdr *ip6 = npc->npc_ip.v6;
205 1.8 rmind return ntohs(ip6->ip6_plen) - thlen;
206 1.7 zoltan }
207 1.7 zoltan return 0;
208 1.1 rmind }
209 1.1 rmind
210 1.1 rmind /*
211 1.4 rmind * npf_fetch_tcpopts: parse and return TCP options.
212 1.1 rmind */
213 1.1 rmind bool
214 1.10.4.8 riz npf_fetch_tcpopts(npf_cache_t *npc, nbuf_t *nbuf, uint16_t *mss, int *wscale)
215 1.1 rmind {
216 1.10.4.8 riz const struct tcphdr *th = npc->npc_l4.tcp;
217 1.4 rmind int topts_len, step;
218 1.10.4.8 riz void *nptr;
219 1.4 rmind uint8_t val;
220 1.10.4.8 riz bool ok;
221 1.4 rmind
222 1.7 zoltan KASSERT(npf_iscached(npc, NPC_IP46));
223 1.7 zoltan KASSERT(npf_iscached(npc, NPC_TCP));
224 1.10 rmind
225 1.4 rmind /* Determine if there are any TCP options, get their length. */
226 1.4 rmind topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
227 1.4 rmind if (topts_len <= 0) {
228 1.4 rmind /* No options. */
229 1.1 rmind return false;
230 1.4 rmind }
231 1.4 rmind KASSERT(topts_len <= MAX_TCPOPTLEN);
232 1.1 rmind
233 1.4 rmind /* First step: IP and TCP header up to options. */
234 1.10 rmind step = npf_cache_hlen(npc) + sizeof(struct tcphdr);
235 1.10.4.8 riz nbuf_reset(nbuf);
236 1.4 rmind next:
237 1.10.4.8 riz if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
238 1.10.4.8 riz ok = false;
239 1.10.4.8 riz goto done;
240 1.4 rmind }
241 1.10.4.8 riz val = *(uint8_t *)nptr;
242 1.10.4.2 riz
243 1.4 rmind switch (val) {
244 1.4 rmind case TCPOPT_EOL:
245 1.4 rmind /* Done. */
246 1.10.4.8 riz ok = true;
247 1.10.4.8 riz goto done;
248 1.4 rmind case TCPOPT_NOP:
249 1.4 rmind topts_len--;
250 1.4 rmind step = 1;
251 1.4 rmind break;
252 1.4 rmind case TCPOPT_MAXSEG:
253 1.10.4.8 riz if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) {
254 1.10.4.8 riz ok = false;
255 1.10.4.8 riz goto done;
256 1.4 rmind }
257 1.4 rmind if (mss) {
258 1.10.4.8 riz if (*mss) {
259 1.10.4.8 riz memcpy(nptr, mss, sizeof(uint16_t));
260 1.10.4.8 riz } else {
261 1.10.4.8 riz memcpy(mss, nptr, sizeof(uint16_t));
262 1.10.4.8 riz }
263 1.4 rmind }
264 1.4 rmind topts_len -= TCPOLEN_MAXSEG;
265 1.10.4.8 riz step = 2;
266 1.4 rmind break;
267 1.4 rmind case TCPOPT_WINDOW:
268 1.10 rmind /* TCP Window Scaling (RFC 1323). */
269 1.10.4.8 riz if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) {
270 1.10.4.8 riz ok = false;
271 1.10.4.8 riz goto done;
272 1.4 rmind }
273 1.10.4.8 riz val = *(uint8_t *)nptr;
274 1.4 rmind *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
275 1.4 rmind topts_len -= TCPOLEN_WINDOW;
276 1.10.4.8 riz step = 1;
277 1.4 rmind break;
278 1.4 rmind default:
279 1.10.4.8 riz if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) {
280 1.10.4.8 riz ok = false;
281 1.10.4.8 riz goto done;
282 1.4 rmind }
283 1.10.4.8 riz val = *(uint8_t *)nptr;
284 1.10.4.5 jdc if (val < 2 || val > topts_len) {
285 1.10.4.8 riz ok = false;
286 1.10.4.8 riz goto done;
287 1.4 rmind }
288 1.4 rmind topts_len -= val;
289 1.4 rmind step = val - 1;
290 1.4 rmind }
291 1.10.4.2 riz
292 1.6 rmind /* Any options left? */
293 1.4 rmind if (__predict_true(topts_len > 0)) {
294 1.4 rmind goto next;
295 1.4 rmind }
296 1.10.4.8 riz ok = true;
297 1.10.4.8 riz done:
298 1.10.4.8 riz if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
299 1.10.4.8 riz npf_recache(npc, nbuf);
300 1.10.4.8 riz }
301 1.10.4.8 riz return ok;
302 1.1 rmind }
303 1.1 rmind
304 1.10.4.8 riz static int
305 1.10.4.8 riz npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
306 1.1 rmind {
307 1.10.4.8 riz const void *nptr = nbuf_dataptr(nbuf);
308 1.10.4.8 riz const uint8_t ver = *(const uint8_t *)nptr;
309 1.10.4.8 riz int flags = 0;
310 1.10.4.2 riz
311 1.4 rmind switch (ver >> 4) {
312 1.10.4.2 riz case IPVERSION: {
313 1.10.4.8 riz struct ip *ip;
314 1.10.4.2 riz
315 1.10.4.8 riz ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
316 1.10.4.8 riz if (ip == NULL) {
317 1.10.4.8 riz return 0;
318 1.4 rmind }
319 1.10.4.2 riz
320 1.4 rmind /* Check header length and fragment offset. */
321 1.10 rmind if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
322 1.10.4.8 riz return 0;
323 1.4 rmind }
324 1.4 rmind if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
325 1.4 rmind /* Note fragmentation. */
326 1.10.4.8 riz flags |= NPC_IPFRAG;
327 1.4 rmind }
328 1.10.4.2 riz
329 1.4 rmind /* Cache: layer 3 - IPv4. */
330 1.10.4.4 riz npc->npc_alen = sizeof(struct in_addr);
331 1.4 rmind npc->npc_srcip = (npf_addr_t *)&ip->ip_src;
332 1.4 rmind npc->npc_dstip = (npf_addr_t *)&ip->ip_dst;
333 1.7 zoltan npc->npc_hlen = ip->ip_hl << 2;
334 1.10.4.8 riz npc->npc_proto = ip->ip_p;
335 1.10.4.8 riz
336 1.10.4.8 riz npc->npc_ip.v4 = ip;
337 1.10.4.8 riz flags |= NPC_IP4;
338 1.4 rmind break;
339 1.10.4.2 riz }
340 1.4 rmind
341 1.10.4.2 riz case (IPV6_VERSION >> 4): {
342 1.10.4.8 riz struct ip6_hdr *ip6;
343 1.10.4.8 riz struct ip6_ext *ip6e;
344 1.10.4.8 riz size_t off, hlen;
345 1.10.4.8 riz
346 1.10.4.8 riz ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
347 1.10.4.8 riz if (ip6 == NULL) {
348 1.10.4.8 riz return 0;
349 1.7 zoltan }
350 1.10.4.8 riz
351 1.10.4.8 riz /* Set initial next-protocol value. */
352 1.10.4.8 riz hlen = sizeof(struct ip6_hdr);
353 1.10.4.8 riz npc->npc_proto = ip6->ip6_nxt;
354 1.10.4.3 riz npc->npc_hlen = hlen;
355 1.7 zoltan
356 1.10.4.2 riz /*
357 1.10.4.8 riz * Advance by the length of the current header.
358 1.10.4.2 riz */
359 1.10.4.8 riz off = nbuf_offset(nbuf);
360 1.10.4.8 riz while (nbuf_advance(nbuf, hlen, 0) != NULL) {
361 1.10.4.8 riz ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e));
362 1.10.4.8 riz if (ip6e == NULL) {
363 1.10.4.8 riz return 0;
364 1.10.4.8 riz }
365 1.10.4.8 riz
366 1.10.4.3 riz /*
367 1.10.4.3 riz * Determine whether we are going to continue.
368 1.10.4.3 riz */
369 1.10.4.8 riz switch (npc->npc_proto) {
370 1.10.4.3 riz case IPPROTO_HOPOPTS:
371 1.7 zoltan case IPPROTO_DSTOPTS:
372 1.7 zoltan case IPPROTO_ROUTING:
373 1.10.4.8 riz hlen = (ip6e->ip6e_len + 1) << 3;
374 1.7 zoltan break;
375 1.7 zoltan case IPPROTO_FRAGMENT:
376 1.10.4.3 riz hlen = sizeof(struct ip6_frag);
377 1.10.4.8 riz flags |= NPC_IPFRAG;
378 1.7 zoltan break;
379 1.7 zoltan case IPPROTO_AH:
380 1.10.4.8 riz hlen = (ip6e->ip6e_len + 2) << 2;
381 1.7 zoltan break;
382 1.7 zoltan default:
383 1.10.4.3 riz hlen = 0;
384 1.7 zoltan break;
385 1.7 zoltan }
386 1.8 rmind
387 1.10.4.3 riz if (!hlen) {
388 1.10.4.3 riz break;
389 1.10.4.3 riz }
390 1.10.4.8 riz npc->npc_proto = ip6e->ip6e_nxt;
391 1.10.4.3 riz npc->npc_hlen += hlen;
392 1.10.4.3 riz }
393 1.7 zoltan
394 1.10.4.8 riz /* Restore the offset. */
395 1.10.4.8 riz nbuf_reset(nbuf);
396 1.10.4.8 riz if (off) {
397 1.10.4.8 riz nbuf_advance(nbuf, off, 0);
398 1.10.4.8 riz }
399 1.10.4.8 riz
400 1.10.4.2 riz /* Cache: layer 3 - IPv6. */
401 1.10.4.4 riz npc->npc_alen = sizeof(struct in6_addr);
402 1.7 zoltan npc->npc_srcip = (npf_addr_t *)&ip6->ip6_src;
403 1.7 zoltan npc->npc_dstip = (npf_addr_t *)&ip6->ip6_dst;
404 1.10.4.8 riz
405 1.10.4.8 riz npc->npc_ip.v6 = ip6;
406 1.10.4.8 riz flags |= NPC_IP6;
407 1.7 zoltan break;
408 1.10.4.2 riz }
409 1.4 rmind default:
410 1.10.4.8 riz break;
411 1.4 rmind }
412 1.10.4.8 riz return flags;
413 1.1 rmind }
414 1.1 rmind
415 1.1 rmind /*
416 1.4 rmind * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
417 1.10.4.2 riz * and TCP, UDP or ICMP headers.
418 1.10.4.8 riz *
419 1.10.4.8 riz * => nbuf offset shall be set accordingly.
420 1.1 rmind */
421 1.10 rmind int
422 1.2 rmind npf_cache_all(npf_cache_t *npc, nbuf_t *nbuf)
423 1.1 rmind {
424 1.10.4.8 riz int flags, l4flags;
425 1.10.4.8 riz u_int hlen;
426 1.1 rmind
427 1.10.4.8 riz /*
428 1.10.4.8 riz * This routine is a main point where the references are cached,
429 1.10.4.8 riz * therefore clear the flag as we reset.
430 1.10.4.8 riz */
431 1.10.4.8 riz again:
432 1.10.4.8 riz nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
433 1.10.4.8 riz
434 1.10.4.8 riz /*
435 1.10.4.8 riz * First, cache the L3 header (IPv4 or IPv6). If IP packet is
436 1.10.4.8 riz * fragmented, then we cannot look into L4.
437 1.10.4.8 riz */
438 1.10.4.8 riz flags = npf_cache_ip(npc, nbuf);
439 1.10.4.8 riz if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) {
440 1.10.4.8 riz npc->npc_info |= flags;
441 1.10.4.8 riz return flags;
442 1.1 rmind }
443 1.10.4.8 riz hlen = npc->npc_hlen;
444 1.10.4.8 riz
445 1.10.4.8 riz switch (npc->npc_proto) {
446 1.1 rmind case IPPROTO_TCP:
447 1.10.4.8 riz /* Cache: layer 4 - TCP. */
448 1.10.4.8 riz npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
449 1.10.4.8 riz sizeof(struct tcphdr));
450 1.10.4.8 riz l4flags = NPC_LAYER4 | NPC_TCP;
451 1.10 rmind break;
452 1.1 rmind case IPPROTO_UDP:
453 1.10.4.8 riz /* Cache: layer 4 - UDP. */
454 1.10.4.8 riz npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
455 1.10.4.8 riz sizeof(struct udphdr));
456 1.10.4.8 riz l4flags = NPC_LAYER4 | NPC_UDP;
457 1.10 rmind break;
458 1.1 rmind case IPPROTO_ICMP:
459 1.10.4.8 riz /* Cache: layer 4 - ICMPv4. */
460 1.10.4.8 riz npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
461 1.10.4.8 riz offsetof(struct icmp, icmp_void));
462 1.10.4.8 riz l4flags = NPC_LAYER4 | NPC_ICMP;
463 1.10.4.8 riz break;
464 1.10.4.5 jdc case IPPROTO_ICMPV6:
465 1.10.4.8 riz /* Cache: layer 4 - ICMPv6. */
466 1.10.4.8 riz npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
467 1.10.4.8 riz offsetof(struct icmp6_hdr, icmp6_data32));
468 1.10.4.8 riz l4flags = NPC_LAYER4 | NPC_ICMP;
469 1.10.4.8 riz break;
470 1.10.4.8 riz default:
471 1.10.4.8 riz l4flags = 0;
472 1.10 rmind break;
473 1.1 rmind }
474 1.10.4.8 riz
475 1.10.4.8 riz if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
476 1.10.4.8 riz goto again;
477 1.10.4.8 riz }
478 1.10.4.8 riz
479 1.10.4.8 riz /* Add the L4 flags if nbuf_advance() succeeded. */
480 1.10.4.8 riz if (l4flags && npc->npc_l4.hdr) {
481 1.10.4.8 riz flags |= l4flags;
482 1.10.4.8 riz }
483 1.10.4.8 riz npc->npc_info |= flags;
484 1.10.4.8 riz return flags;
485 1.10.4.8 riz }
486 1.10.4.8 riz
487 1.10.4.8 riz void
488 1.10.4.8 riz npf_recache(npf_cache_t *npc, nbuf_t *nbuf)
489 1.10.4.8 riz {
490 1.10.4.8 riz const int mflags __unused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
491 1.10.4.8 riz int flags;
492 1.10.4.8 riz
493 1.10.4.8 riz nbuf_reset(nbuf);
494 1.10.4.8 riz npc->npc_info = 0;
495 1.10.4.8 riz flags = npf_cache_all(npc, nbuf);
496 1.10.4.8 riz KASSERT((flags & mflags) == mflags);
497 1.10.4.8 riz KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
498 1.1 rmind }
499 1.1 rmind
500 1.1 rmind /*
501 1.10.4.8 riz * npf_rwrip: rewrite required IP address.
502 1.4 rmind */
503 1.4 rmind bool
504 1.10.4.8 riz npf_rwrip(const npf_cache_t *npc, int di, const npf_addr_t *addr)
505 1.4 rmind {
506 1.4 rmind npf_addr_t *oaddr;
507 1.4 rmind
508 1.4 rmind KASSERT(npf_iscached(npc, NPC_IP46));
509 1.4 rmind
510 1.10.4.8 riz /*
511 1.10.4.8 riz * Rewrite source address if outgoing and destination if incoming.
512 1.10.4.8 riz */
513 1.10.4.8 riz oaddr = (di == PFIL_OUT) ? npc->npc_srcip : npc->npc_dstip;
514 1.10.4.4 riz memcpy(oaddr, addr, npc->npc_alen);
515 1.4 rmind return true;
516 1.4 rmind }
517 1.4 rmind
518 1.4 rmind /*
519 1.10.4.8 riz * npf_rwrport: rewrite required TCP/UDP port.
520 1.1 rmind */
521 1.1 rmind bool
522 1.10.4.8 riz npf_rwrport(const npf_cache_t *npc, int di, const in_port_t port)
523 1.1 rmind {
524 1.4 rmind const int proto = npf_cache_ipproto(npc);
525 1.4 rmind in_port_t *oport;
526 1.1 rmind
527 1.4 rmind KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
528 1.1 rmind KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
529 1.1 rmind
530 1.10.4.8 riz /* Get the offset and store the port in it. */
531 1.4 rmind if (proto == IPPROTO_TCP) {
532 1.10.4.8 riz struct tcphdr *th = npc->npc_l4.tcp;
533 1.10.4.8 riz oport = (di == PFIL_OUT) ? &th->th_sport : &th->th_dport;
534 1.1 rmind } else {
535 1.10.4.8 riz struct udphdr *uh = npc->npc_l4.udp;
536 1.10.4.8 riz oport = (di == PFIL_OUT) ? &uh->uh_sport : &uh->uh_dport;
537 1.1 rmind }
538 1.10.4.8 riz memcpy(oport, &port, sizeof(in_port_t));
539 1.1 rmind return true;
540 1.1 rmind }
541 1.1 rmind
542 1.1 rmind /*
543 1.10.4.8 riz * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
544 1.1 rmind */
545 1.1 rmind bool
546 1.10.4.8 riz npf_rwrcksum(const npf_cache_t *npc, const int di,
547 1.10.4.8 riz const npf_addr_t *addr, const in_port_t port)
548 1.1 rmind {
549 1.4 rmind const int proto = npf_cache_ipproto(npc);
550 1.10.4.8 riz const int alen = npc->npc_alen;
551 1.4 rmind npf_addr_t *oaddr;
552 1.10.4.7 riz uint16_t *ocksum;
553 1.10.4.7 riz in_port_t oport;
554 1.10.4.7 riz
555 1.10.4.8 riz KASSERT(npf_iscached(npc, NPC_LAYER4));
556 1.10.4.7 riz oaddr = (di == PFIL_OUT) ? npc->npc_srcip : npc->npc_dstip;
557 1.10.4.7 riz
558 1.4 rmind if (npf_iscached(npc, NPC_IP4)) {
559 1.10.4.8 riz struct ip *ip = npc->npc_ip.v4;
560 1.10.4.8 riz uint16_t ipsum = ip->ip_sum;
561 1.4 rmind
562 1.10.4.8 riz /* Recalculate IPv4 checksum and rewrite. */
563 1.10.4.8 riz ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
564 1.4 rmind } else {
565 1.4 rmind /* No checksum for IPv6. */
566 1.4 rmind KASSERT(npf_iscached(npc, NPC_IP6));
567 1.4 rmind }
568 1.4 rmind
569 1.10.4.7 riz /* Nothing else to do for ICMP. */
570 1.10.4.7 riz if (proto == IPPROTO_ICMP) {
571 1.4 rmind return true;
572 1.4 rmind }
573 1.7 zoltan KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
574 1.4 rmind
575 1.10.4.7 riz /*
576 1.10.4.7 riz * Calculate TCP/UDP checksum:
577 1.10.4.7 riz * - Skip if UDP and the current checksum is zero.
578 1.10.4.7 riz * - Fixup the IP address change.
579 1.10.4.7 riz * - Fixup the port change, if required (non-zero).
580 1.10.4.7 riz */
581 1.4 rmind if (proto == IPPROTO_TCP) {
582 1.10.4.8 riz struct tcphdr *th = npc->npc_l4.tcp;
583 1.4 rmind
584 1.10.4.7 riz ocksum = &th->th_sum;
585 1.10.4.7 riz oport = (di == PFIL_OUT) ? th->th_sport : th->th_dport;
586 1.4 rmind } else {
587 1.10.4.8 riz struct udphdr *uh = npc->npc_l4.udp;
588 1.4 rmind
589 1.4 rmind KASSERT(proto == IPPROTO_UDP);
590 1.10.4.7 riz ocksum = &uh->uh_sum;
591 1.10.4.7 riz if (*ocksum == 0) {
592 1.4 rmind /* No need to update. */
593 1.4 rmind return true;
594 1.4 rmind }
595 1.10.4.7 riz oport = (di == PFIL_OUT) ? uh->uh_sport : uh->uh_dport;
596 1.10.4.7 riz }
597 1.10.4.7 riz
598 1.10.4.8 riz uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
599 1.10.4.7 riz if (port) {
600 1.10.4.7 riz cksum = npf_fixup16_cksum(cksum, oport, port);
601 1.4 rmind }
602 1.1 rmind
603 1.10.4.8 riz /* Rewrite TCP/UDP checksum. */
604 1.10.4.8 riz memcpy(ocksum, &cksum, sizeof(uint16_t));
605 1.4 rmind return true;
606 1.4 rmind }
607 1.4 rmind
608 1.10.4.3 riz #if defined(DDB) || defined(_NPF_TESTING)
609 1.10.4.3 riz
610 1.10.4.3 riz void
611 1.10.4.3 riz npf_addr_dump(const npf_addr_t *addr)
612 1.10.4.3 riz {
613 1.10.4.3 riz printf("IP[%x:%x:%x:%x]\n",
614 1.10.4.3 riz addr->s6_addr32[0], addr->s6_addr32[1],
615 1.10.4.3 riz addr->s6_addr32[2], addr->s6_addr32[3]);
616 1.10.4.3 riz }
617 1.10.4.3 riz
618 1.10.4.3 riz #endif
619