Home | History | Annotate | Line # | Download | only in npf
npf_inet.c revision 1.32.2.3
      1  1.32.2.3  martin /*	$NetBSD: npf_inet.c,v 1.32.2.3 2018/05/14 16:16:04 martin Exp $	*/
      2       1.1   rmind 
      3       1.1   rmind /*-
      4      1.29   rmind  * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
      5       1.1   rmind  * All rights reserved.
      6       1.1   rmind  *
      7       1.1   rmind  * This material is based upon work partially supported by The
      8       1.1   rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      9       1.1   rmind  *
     10       1.1   rmind  * Redistribution and use in source and binary forms, with or without
     11       1.1   rmind  * modification, are permitted provided that the following conditions
     12       1.1   rmind  * are met:
     13       1.1   rmind  * 1. Redistributions of source code must retain the above copyright
     14       1.1   rmind  *    notice, this list of conditions and the following disclaimer.
     15       1.1   rmind  * 2. Redistributions in binary form must reproduce the above copyright
     16       1.1   rmind  *    notice, this list of conditions and the following disclaimer in the
     17       1.1   rmind  *    documentation and/or other materials provided with the distribution.
     18       1.1   rmind  *
     19       1.1   rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20       1.1   rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21       1.1   rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22       1.1   rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23       1.1   rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24       1.1   rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25       1.1   rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26       1.1   rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27       1.1   rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28       1.1   rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29       1.1   rmind  * POSSIBILITY OF SUCH DAMAGE.
     30       1.1   rmind  */
     31       1.1   rmind 
     32       1.1   rmind /*
     33      1.22   rmind  * Various protocol related helper routines.
     34      1.12   rmind  *
     35      1.12   rmind  * This layer manipulates npf_cache_t structure i.e. caches requested headers
     36      1.12   rmind  * and stores which information was cached in the information bit field.
     37      1.12   rmind  * It is also responsibility of this layer to update or invalidate the cache
     38      1.12   rmind  * on rewrites (e.g. by translation routines).
     39       1.1   rmind  */
     40       1.1   rmind 
     41       1.1   rmind #include <sys/cdefs.h>
     42  1.32.2.3  martin __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.32.2.3 2018/05/14 16:16:04 martin Exp $");
     43       1.1   rmind 
     44       1.1   rmind #include <sys/param.h>
     45      1.11   rmind #include <sys/types.h>
     46       1.1   rmind 
     47       1.4   rmind #include <net/pfil.h>
     48       1.4   rmind #include <net/if.h>
     49       1.4   rmind #include <net/ethertypes.h>
     50       1.4   rmind #include <net/if_ether.h>
     51       1.4   rmind 
     52       1.1   rmind #include <netinet/in_systm.h>
     53       1.1   rmind #include <netinet/in.h>
     54  1.32.2.2  martin #include <netinet6/in6_var.h>
     55       1.1   rmind #include <netinet/ip.h>
     56       1.4   rmind #include <netinet/ip6.h>
     57       1.1   rmind #include <netinet/tcp.h>
     58       1.1   rmind #include <netinet/udp.h>
     59       1.1   rmind #include <netinet/ip_icmp.h>
     60       1.1   rmind 
     61       1.1   rmind #include "npf_impl.h"
     62       1.1   rmind 
     63       1.1   rmind /*
     64      1.27   rmind  * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
     65       1.1   rmind  */
     66       1.1   rmind 
     67       1.1   rmind uint16_t
     68       1.1   rmind npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
     69       1.1   rmind {
     70       1.1   rmind 	uint32_t sum;
     71       1.1   rmind 
     72       1.1   rmind 	/*
     73       1.1   rmind 	 * RFC 1624:
     74       1.1   rmind 	 *	HC' = ~(~HC + ~m + m')
     75      1.27   rmind 	 *
     76      1.27   rmind 	 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
     77       1.1   rmind 	 */
     78      1.27   rmind 	sum = ~cksum & 0xffff;
     79      1.27   rmind 	sum += (~odatum & 0xffff) + ndatum;
     80       1.1   rmind 	sum = (sum >> 16) + (sum & 0xffff);
     81       1.1   rmind 	sum += (sum >> 16);
     82       1.1   rmind 
     83      1.27   rmind 	return ~sum & 0xffff;
     84       1.1   rmind }
     85       1.1   rmind 
     86       1.1   rmind uint16_t
     87       1.1   rmind npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
     88       1.1   rmind {
     89      1.27   rmind 	uint32_t sum;
     90      1.27   rmind 
     91      1.27   rmind 	/*
     92      1.27   rmind 	 * Checksum 32-bit datum as as two 16-bit.  Note, the first
     93      1.27   rmind 	 * 32->16 bit reduction is not necessary.
     94      1.27   rmind 	 */
     95      1.27   rmind 	sum = ~cksum & 0xffff;
     96      1.27   rmind 	sum += (~odatum & 0xffff) + (ndatum & 0xffff);
     97       1.1   rmind 
     98      1.27   rmind 	sum += (~odatum >> 16) + (ndatum >> 16);
     99      1.27   rmind 	sum = (sum >> 16) + (sum & 0xffff);
    100      1.27   rmind 	sum += (sum >> 16);
    101      1.27   rmind 	return ~sum & 0xffff;
    102       1.1   rmind }
    103       1.1   rmind 
    104       1.1   rmind /*
    105       1.4   rmind  * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
    106       1.4   rmind  */
    107       1.4   rmind uint16_t
    108      1.19   rmind npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
    109      1.19   rmind     const npf_addr_t *naddr)
    110       1.4   rmind {
    111      1.19   rmind 	const uint32_t *oip32 = (const uint32_t *)oaddr;
    112      1.19   rmind 	const uint32_t *nip32 = (const uint32_t *)naddr;
    113       1.4   rmind 
    114       1.4   rmind 	KASSERT(sz % sizeof(uint32_t) == 0);
    115       1.4   rmind 	do {
    116       1.4   rmind 		cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
    117       1.4   rmind 		sz -= sizeof(uint32_t);
    118       1.4   rmind 	} while (sz);
    119       1.4   rmind 
    120       1.4   rmind 	return cksum;
    121       1.4   rmind }
    122       1.4   rmind 
    123       1.4   rmind /*
    124      1.26   rmind  * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
    125       1.4   rmind  * Note: used for hash function.
    126       1.1   rmind  */
    127       1.4   rmind uint32_t
    128      1.26   rmind npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
    129       1.1   rmind {
    130       1.4   rmind 	uint32_t mix = 0;
    131       1.1   rmind 
    132       1.5   rmind 	KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
    133       1.5   rmind 
    134      1.26   rmind 	for (int i = 0; i < (sz >> 2); i++) {
    135      1.26   rmind 		mix ^= a1->s6_addr32[i];
    136      1.26   rmind 		mix ^= a2->s6_addr32[i];
    137       1.4   rmind 	}
    138       1.4   rmind 	return mix;
    139       1.4   rmind }
    140       1.1   rmind 
    141      1.13   rmind /*
    142      1.13   rmind  * npf_addr_mask: apply the mask to a given address and store the result.
    143      1.13   rmind  */
    144      1.13   rmind void
    145      1.13   rmind npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
    146      1.13   rmind     const int alen, npf_addr_t *out)
    147      1.12   rmind {
    148      1.13   rmind 	const int nwords = alen >> 2;
    149      1.12   rmind 	uint_fast8_t length = mask;
    150      1.12   rmind 
    151      1.12   rmind 	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
    152      1.12   rmind 	KASSERT(length <= NPF_MAX_NETMASK);
    153      1.12   rmind 
    154      1.13   rmind 	for (int i = 0; i < nwords; i++) {
    155      1.13   rmind 		uint32_t wordmask;
    156      1.13   rmind 
    157      1.12   rmind 		if (length >= 32) {
    158      1.13   rmind 			wordmask = htonl(0xffffffff);
    159      1.12   rmind 			length -= 32;
    160      1.13   rmind 		} else if (length) {
    161      1.13   rmind 			wordmask = htonl(0xffffffff << (32 - length));
    162      1.13   rmind 			length = 0;
    163      1.12   rmind 		} else {
    164      1.13   rmind 			wordmask = 0;
    165      1.12   rmind 		}
    166      1.13   rmind 		out->s6_addr32[i] = addr->s6_addr32[i] & wordmask;
    167      1.12   rmind 	}
    168      1.12   rmind }
    169      1.12   rmind 
    170      1.12   rmind /*
    171      1.12   rmind  * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
    172      1.12   rmind  *
    173      1.13   rmind  * => Return 0 if equal and negative/positive if less/greater accordingly.
    174      1.12   rmind  * => Ignore the mask, if NPF_NO_NETMASK is specified.
    175      1.12   rmind  */
    176      1.12   rmind int
    177      1.12   rmind npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
    178      1.13   rmind     const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
    179      1.12   rmind {
    180      1.13   rmind 	npf_addr_t realaddr1, realaddr2;
    181      1.12   rmind 
    182      1.12   rmind 	if (mask1 != NPF_NO_NETMASK) {
    183      1.13   rmind 		npf_addr_mask(addr1, mask1, alen, &realaddr1);
    184      1.13   rmind 		addr1 = &realaddr1;
    185      1.12   rmind 	}
    186      1.12   rmind 	if (mask2 != NPF_NO_NETMASK) {
    187      1.13   rmind 		npf_addr_mask(addr2, mask2, alen, &realaddr2);
    188      1.13   rmind 		addr2 = &realaddr2;
    189      1.12   rmind 	}
    190      1.13   rmind 	return memcmp(addr1, addr2, alen);
    191      1.12   rmind }
    192      1.12   rmind 
    193       1.4   rmind /*
    194       1.4   rmind  * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
    195      1.12   rmind  *
    196      1.12   rmind  * => Returns all values in host byte-order.
    197       1.4   rmind  */
    198       1.4   rmind int
    199      1.12   rmind npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
    200       1.4   rmind {
    201      1.19   rmind 	const struct tcphdr *th = npc->npc_l4.tcp;
    202       1.8   rmind 	u_int thlen;
    203       1.1   rmind 
    204       1.7  zoltan 	KASSERT(npf_iscached(npc, NPC_TCP));
    205       1.1   rmind 
    206       1.4   rmind 	*seq = ntohl(th->th_seq);
    207       1.4   rmind 	*ack = ntohl(th->th_ack);
    208       1.4   rmind 	*win = (uint32_t)ntohs(th->th_win);
    209       1.8   rmind 	thlen = th->th_off << 2;
    210       1.1   rmind 
    211       1.7  zoltan 	if (npf_iscached(npc, NPC_IP4)) {
    212      1.19   rmind 		const struct ip *ip = npc->npc_ip.v4;
    213      1.21   rmind 		return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
    214      1.12   rmind 	} else if (npf_iscached(npc, NPC_IP6)) {
    215      1.19   rmind 		const struct ip6_hdr *ip6 = npc->npc_ip.v6;
    216       1.8   rmind 		return ntohs(ip6->ip6_plen) - thlen;
    217       1.7  zoltan 	}
    218       1.7  zoltan 	return 0;
    219       1.1   rmind }
    220       1.1   rmind 
    221       1.1   rmind /*
    222       1.4   rmind  * npf_fetch_tcpopts: parse and return TCP options.
    223       1.1   rmind  */
    224       1.1   rmind bool
    225      1.32   rmind npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
    226       1.1   rmind {
    227      1.32   rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    228      1.19   rmind 	const struct tcphdr *th = npc->npc_l4.tcp;
    229       1.4   rmind 	int topts_len, step;
    230      1.19   rmind 	void *nptr;
    231       1.4   rmind 	uint8_t val;
    232      1.19   rmind 	bool ok;
    233       1.4   rmind 
    234       1.7  zoltan 	KASSERT(npf_iscached(npc, NPC_IP46));
    235       1.7  zoltan 	KASSERT(npf_iscached(npc, NPC_TCP));
    236      1.10   rmind 
    237       1.4   rmind 	/* Determine if there are any TCP options, get their length. */
    238       1.4   rmind 	topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
    239       1.4   rmind 	if (topts_len <= 0) {
    240       1.4   rmind 		/* No options. */
    241       1.1   rmind 		return false;
    242       1.4   rmind 	}
    243       1.4   rmind 	KASSERT(topts_len <= MAX_TCPOPTLEN);
    244       1.1   rmind 
    245       1.4   rmind 	/* First step: IP and TCP header up to options. */
    246      1.21   rmind 	step = npc->npc_hlen + sizeof(struct tcphdr);
    247      1.19   rmind 	nbuf_reset(nbuf);
    248       1.4   rmind next:
    249      1.19   rmind 	if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
    250      1.19   rmind 		ok = false;
    251      1.19   rmind 		goto done;
    252       1.4   rmind 	}
    253      1.19   rmind 	val = *(uint8_t *)nptr;
    254      1.12   rmind 
    255       1.4   rmind 	switch (val) {
    256       1.4   rmind 	case TCPOPT_EOL:
    257       1.4   rmind 		/* Done. */
    258      1.19   rmind 		ok = true;
    259      1.19   rmind 		goto done;
    260       1.4   rmind 	case TCPOPT_NOP:
    261       1.4   rmind 		topts_len--;
    262       1.4   rmind 		step = 1;
    263       1.4   rmind 		break;
    264       1.4   rmind 	case TCPOPT_MAXSEG:
    265      1.19   rmind 		if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) {
    266      1.19   rmind 			ok = false;
    267      1.19   rmind 			goto done;
    268       1.4   rmind 		}
    269       1.4   rmind 		if (mss) {
    270      1.19   rmind 			if (*mss) {
    271      1.19   rmind 				memcpy(nptr, mss, sizeof(uint16_t));
    272      1.19   rmind 			} else {
    273      1.19   rmind 				memcpy(mss, nptr, sizeof(uint16_t));
    274      1.19   rmind 			}
    275       1.4   rmind 		}
    276       1.4   rmind 		topts_len -= TCPOLEN_MAXSEG;
    277      1.19   rmind 		step = 2;
    278       1.4   rmind 		break;
    279       1.4   rmind 	case TCPOPT_WINDOW:
    280      1.10   rmind 		/* TCP Window Scaling (RFC 1323). */
    281      1.19   rmind 		if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) {
    282      1.19   rmind 			ok = false;
    283      1.19   rmind 			goto done;
    284       1.4   rmind 		}
    285      1.19   rmind 		val = *(uint8_t *)nptr;
    286       1.4   rmind 		*wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
    287       1.4   rmind 		topts_len -= TCPOLEN_WINDOW;
    288      1.19   rmind 		step = 1;
    289       1.4   rmind 		break;
    290       1.4   rmind 	default:
    291      1.19   rmind 		if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) {
    292      1.19   rmind 			ok = false;
    293      1.19   rmind 			goto done;
    294       1.4   rmind 		}
    295      1.19   rmind 		val = *(uint8_t *)nptr;
    296      1.16   rmind 		if (val < 2 || val > topts_len) {
    297      1.19   rmind 			ok = false;
    298      1.19   rmind 			goto done;
    299       1.4   rmind 		}
    300       1.4   rmind 		topts_len -= val;
    301       1.4   rmind 		step = val - 1;
    302       1.4   rmind 	}
    303      1.12   rmind 
    304       1.6   rmind 	/* Any options left? */
    305       1.4   rmind 	if (__predict_true(topts_len > 0)) {
    306       1.4   rmind 		goto next;
    307       1.4   rmind 	}
    308      1.19   rmind 	ok = true;
    309      1.19   rmind done:
    310      1.19   rmind 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    311      1.32   rmind 		npf_recache(npc);
    312      1.19   rmind 	}
    313      1.19   rmind 	return ok;
    314       1.1   rmind }
    315       1.1   rmind 
    316      1.19   rmind static int
    317      1.19   rmind npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
    318       1.1   rmind {
    319      1.19   rmind 	const void *nptr = nbuf_dataptr(nbuf);
    320      1.19   rmind 	const uint8_t ver = *(const uint8_t *)nptr;
    321      1.19   rmind 	int flags = 0;
    322      1.12   rmind 
    323       1.4   rmind 	switch (ver >> 4) {
    324      1.12   rmind 	case IPVERSION: {
    325      1.19   rmind 		struct ip *ip;
    326      1.12   rmind 
    327      1.19   rmind 		ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
    328      1.19   rmind 		if (ip == NULL) {
    329      1.19   rmind 			return 0;
    330       1.4   rmind 		}
    331      1.12   rmind 
    332       1.4   rmind 		/* Check header length and fragment offset. */
    333      1.10   rmind 		if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
    334      1.19   rmind 			return 0;
    335       1.4   rmind 		}
    336       1.4   rmind 		if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
    337       1.4   rmind 			/* Note fragmentation. */
    338      1.19   rmind 			flags |= NPC_IPFRAG;
    339       1.4   rmind 		}
    340      1.12   rmind 
    341       1.4   rmind 		/* Cache: layer 3 - IPv4. */
    342      1.14   rmind 		npc->npc_alen = sizeof(struct in_addr);
    343      1.28   rmind 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
    344      1.28   rmind 		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
    345       1.7  zoltan 		npc->npc_hlen = ip->ip_hl << 2;
    346      1.19   rmind 		npc->npc_proto = ip->ip_p;
    347      1.19   rmind 
    348      1.19   rmind 		npc->npc_ip.v4 = ip;
    349      1.19   rmind 		flags |= NPC_IP4;
    350       1.4   rmind 		break;
    351      1.12   rmind 	}
    352       1.4   rmind 
    353      1.12   rmind 	case (IPV6_VERSION >> 4): {
    354      1.19   rmind 		struct ip6_hdr *ip6;
    355      1.19   rmind 		struct ip6_ext *ip6e;
    356      1.19   rmind 		size_t off, hlen;
    357      1.19   rmind 
    358      1.19   rmind 		ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
    359      1.19   rmind 		if (ip6 == NULL) {
    360      1.19   rmind 			return 0;
    361       1.7  zoltan 		}
    362      1.19   rmind 
    363      1.19   rmind 		/* Set initial next-protocol value. */
    364      1.19   rmind 		hlen = sizeof(struct ip6_hdr);
    365      1.19   rmind 		npc->npc_proto = ip6->ip6_nxt;
    366      1.13   rmind 		npc->npc_hlen = hlen;
    367       1.7  zoltan 
    368      1.12   rmind 		/*
    369      1.19   rmind 		 * Advance by the length of the current header.
    370      1.12   rmind 		 */
    371      1.19   rmind 		off = nbuf_offset(nbuf);
    372      1.19   rmind 		while (nbuf_advance(nbuf, hlen, 0) != NULL) {
    373      1.19   rmind 			ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e));
    374      1.19   rmind 			if (ip6e == NULL) {
    375      1.19   rmind 				return 0;
    376      1.19   rmind 			}
    377      1.19   rmind 
    378      1.13   rmind 			/*
    379      1.13   rmind 			 * Determine whether we are going to continue.
    380      1.13   rmind 			 */
    381      1.19   rmind 			switch (npc->npc_proto) {
    382      1.13   rmind 			case IPPROTO_HOPOPTS:
    383       1.7  zoltan 			case IPPROTO_DSTOPTS:
    384       1.7  zoltan 			case IPPROTO_ROUTING:
    385      1.19   rmind 				hlen = (ip6e->ip6e_len + 1) << 3;
    386       1.7  zoltan 				break;
    387       1.7  zoltan 			case IPPROTO_FRAGMENT:
    388      1.13   rmind 				hlen = sizeof(struct ip6_frag);
    389      1.19   rmind 				flags |= NPC_IPFRAG;
    390       1.7  zoltan 				break;
    391       1.7  zoltan 			case IPPROTO_AH:
    392      1.19   rmind 				hlen = (ip6e->ip6e_len + 2) << 2;
    393       1.7  zoltan 				break;
    394       1.7  zoltan 			default:
    395      1.13   rmind 				hlen = 0;
    396      1.13   rmind 				break;
    397      1.13   rmind 			}
    398      1.13   rmind 
    399      1.13   rmind 			if (!hlen) {
    400       1.7  zoltan 				break;
    401       1.7  zoltan 			}
    402      1.19   rmind 			npc->npc_proto = ip6e->ip6e_nxt;
    403      1.13   rmind 			npc->npc_hlen += hlen;
    404      1.13   rmind 		}
    405       1.7  zoltan 
    406      1.23   rmind 		/*
    407      1.23   rmind 		 * Re-fetch the header pointers (nbufs might have been
    408      1.23   rmind 		 * reallocated).  Restore the original offset (if any).
    409      1.23   rmind 		 */
    410      1.19   rmind 		nbuf_reset(nbuf);
    411      1.23   rmind 		ip6 = nbuf_dataptr(nbuf);
    412      1.19   rmind 		if (off) {
    413      1.19   rmind 			nbuf_advance(nbuf, off, 0);
    414      1.19   rmind 		}
    415      1.19   rmind 
    416      1.12   rmind 		/* Cache: layer 3 - IPv6. */
    417      1.14   rmind 		npc->npc_alen = sizeof(struct in6_addr);
    418      1.28   rmind 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
    419      1.28   rmind 		npc->npc_ips[NPF_DST]= (npf_addr_t *)&ip6->ip6_dst;
    420      1.19   rmind 
    421      1.19   rmind 		npc->npc_ip.v6 = ip6;
    422      1.19   rmind 		flags |= NPC_IP6;
    423       1.7  zoltan 		break;
    424      1.12   rmind 	}
    425       1.4   rmind 	default:
    426      1.19   rmind 		break;
    427       1.4   rmind 	}
    428      1.19   rmind 	return flags;
    429       1.1   rmind }
    430       1.1   rmind 
    431       1.1   rmind /*
    432       1.4   rmind  * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
    433      1.12   rmind  * and TCP, UDP or ICMP headers.
    434      1.19   rmind  *
    435      1.19   rmind  * => nbuf offset shall be set accordingly.
    436       1.1   rmind  */
    437      1.10   rmind int
    438      1.32   rmind npf_cache_all(npf_cache_t *npc)
    439       1.1   rmind {
    440      1.32   rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    441      1.19   rmind 	int flags, l4flags;
    442      1.19   rmind 	u_int hlen;
    443      1.19   rmind 
    444      1.19   rmind 	/*
    445      1.19   rmind 	 * This routine is a main point where the references are cached,
    446      1.19   rmind 	 * therefore clear the flag as we reset.
    447      1.19   rmind 	 */
    448      1.19   rmind again:
    449      1.19   rmind 	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
    450       1.1   rmind 
    451      1.19   rmind 	/*
    452      1.19   rmind 	 * First, cache the L3 header (IPv4 or IPv6).  If IP packet is
    453      1.19   rmind 	 * fragmented, then we cannot look into L4.
    454      1.19   rmind 	 */
    455      1.19   rmind 	flags = npf_cache_ip(npc, nbuf);
    456      1.19   rmind 	if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) {
    457      1.23   rmind 		nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
    458      1.19   rmind 		npc->npc_info |= flags;
    459      1.19   rmind 		return flags;
    460       1.1   rmind 	}
    461      1.19   rmind 	hlen = npc->npc_hlen;
    462      1.19   rmind 
    463  1.32.2.3  martin 	/*
    464  1.32.2.3  martin 	 * Note: we guarantee that the potential "Query Id" field of the
    465  1.32.2.3  martin 	 * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
    466  1.32.2.3  martin 	 * ICMP ALG.
    467  1.32.2.3  martin 	 */
    468      1.19   rmind 	switch (npc->npc_proto) {
    469       1.1   rmind 	case IPPROTO_TCP:
    470      1.19   rmind 		/* Cache: layer 4 - TCP. */
    471      1.19   rmind 		npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
    472      1.19   rmind 		    sizeof(struct tcphdr));
    473      1.19   rmind 		l4flags = NPC_LAYER4 | NPC_TCP;
    474      1.10   rmind 		break;
    475       1.1   rmind 	case IPPROTO_UDP:
    476      1.19   rmind 		/* Cache: layer 4 - UDP. */
    477      1.19   rmind 		npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
    478      1.19   rmind 		    sizeof(struct udphdr));
    479      1.19   rmind 		l4flags = NPC_LAYER4 | NPC_UDP;
    480      1.10   rmind 		break;
    481       1.1   rmind 	case IPPROTO_ICMP:
    482      1.19   rmind 		/* Cache: layer 4 - ICMPv4. */
    483      1.19   rmind 		npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
    484  1.32.2.3  martin 		    ICMP_MINLEN);
    485      1.19   rmind 		l4flags = NPC_LAYER4 | NPC_ICMP;
    486      1.19   rmind 		break;
    487      1.15     spz 	case IPPROTO_ICMPV6:
    488      1.19   rmind 		/* Cache: layer 4 - ICMPv6. */
    489      1.19   rmind 		npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
    490  1.32.2.3  martin 		    sizeof(struct icmp6_hdr));
    491      1.19   rmind 		l4flags = NPC_LAYER4 | NPC_ICMP;
    492      1.19   rmind 		break;
    493      1.19   rmind 	default:
    494      1.19   rmind 		l4flags = 0;
    495      1.10   rmind 		break;
    496       1.1   rmind 	}
    497      1.19   rmind 
    498      1.19   rmind 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    499      1.19   rmind 		goto again;
    500      1.19   rmind 	}
    501      1.19   rmind 
    502      1.19   rmind 	/* Add the L4 flags if nbuf_advance() succeeded. */
    503      1.19   rmind 	if (l4flags && npc->npc_l4.hdr) {
    504      1.19   rmind 		flags |= l4flags;
    505      1.19   rmind 	}
    506      1.19   rmind 	npc->npc_info |= flags;
    507      1.19   rmind 	return flags;
    508      1.19   rmind }
    509      1.19   rmind 
    510      1.19   rmind void
    511      1.32   rmind npf_recache(npf_cache_t *npc)
    512      1.19   rmind {
    513      1.32   rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    514      1.24  martin 	const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
    515      1.25     mrg 	int flags __diagused;
    516      1.19   rmind 
    517      1.19   rmind 	nbuf_reset(nbuf);
    518      1.19   rmind 	npc->npc_info = 0;
    519      1.32   rmind 	flags = npf_cache_all(npc);
    520      1.32   rmind 
    521      1.19   rmind 	KASSERT((flags & mflags) == mflags);
    522      1.19   rmind 	KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
    523       1.1   rmind }
    524       1.1   rmind 
    525       1.1   rmind /*
    526      1.19   rmind  * npf_rwrip: rewrite required IP address.
    527       1.4   rmind  */
    528       1.4   rmind bool
    529      1.28   rmind npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
    530       1.4   rmind {
    531       1.4   rmind 	KASSERT(npf_iscached(npc, NPC_IP46));
    532      1.28   rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    533       1.4   rmind 
    534      1.28   rmind 	memcpy(npc->npc_ips[which], addr, npc->npc_alen);
    535       1.4   rmind 	return true;
    536       1.4   rmind }
    537       1.4   rmind 
    538       1.4   rmind /*
    539      1.19   rmind  * npf_rwrport: rewrite required TCP/UDP port.
    540       1.1   rmind  */
    541       1.1   rmind bool
    542      1.28   rmind npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
    543       1.1   rmind {
    544      1.21   rmind 	const int proto = npc->npc_proto;
    545       1.4   rmind 	in_port_t *oport;
    546       1.1   rmind 
    547       1.4   rmind 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    548       1.1   rmind 	KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
    549      1.28   rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    550       1.1   rmind 
    551      1.19   rmind 	/* Get the offset and store the port in it. */
    552       1.4   rmind 	if (proto == IPPROTO_TCP) {
    553      1.19   rmind 		struct tcphdr *th = npc->npc_l4.tcp;
    554      1.28   rmind 		oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
    555       1.1   rmind 	} else {
    556      1.19   rmind 		struct udphdr *uh = npc->npc_l4.udp;
    557      1.28   rmind 		oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
    558       1.1   rmind 	}
    559      1.19   rmind 	memcpy(oport, &port, sizeof(in_port_t));
    560       1.1   rmind 	return true;
    561       1.1   rmind }
    562       1.1   rmind 
    563       1.1   rmind /*
    564      1.19   rmind  * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
    565       1.1   rmind  */
    566       1.1   rmind bool
    567      1.28   rmind npf_rwrcksum(const npf_cache_t *npc, u_int which,
    568      1.19   rmind     const npf_addr_t *addr, const in_port_t port)
    569       1.1   rmind {
    570      1.28   rmind 	const npf_addr_t *oaddr = npc->npc_ips[which];
    571      1.21   rmind 	const int proto = npc->npc_proto;
    572      1.19   rmind 	const int alen = npc->npc_alen;
    573      1.18   rmind 	uint16_t *ocksum;
    574      1.18   rmind 	in_port_t oport;
    575      1.18   rmind 
    576      1.19   rmind 	KASSERT(npf_iscached(npc, NPC_LAYER4));
    577      1.28   rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    578      1.18   rmind 
    579       1.4   rmind 	if (npf_iscached(npc, NPC_IP4)) {
    580      1.19   rmind 		struct ip *ip = npc->npc_ip.v4;
    581      1.19   rmind 		uint16_t ipsum = ip->ip_sum;
    582       1.4   rmind 
    583      1.19   rmind 		/* Recalculate IPv4 checksum and rewrite. */
    584      1.19   rmind 		ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
    585       1.4   rmind 	} else {
    586       1.4   rmind 		/* No checksum for IPv6. */
    587       1.4   rmind 		KASSERT(npf_iscached(npc, NPC_IP6));
    588       1.4   rmind 	}
    589       1.4   rmind 
    590      1.18   rmind 	/* Nothing else to do for ICMP. */
    591      1.30   rmind 	if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
    592       1.4   rmind 		return true;
    593       1.4   rmind 	}
    594       1.7  zoltan 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    595       1.4   rmind 
    596      1.18   rmind 	/*
    597      1.18   rmind 	 * Calculate TCP/UDP checksum:
    598      1.18   rmind 	 * - Skip if UDP and the current checksum is zero.
    599      1.18   rmind 	 * - Fixup the IP address change.
    600      1.18   rmind 	 * - Fixup the port change, if required (non-zero).
    601      1.18   rmind 	 */
    602       1.4   rmind 	if (proto == IPPROTO_TCP) {
    603      1.19   rmind 		struct tcphdr *th = npc->npc_l4.tcp;
    604       1.4   rmind 
    605      1.18   rmind 		ocksum = &th->th_sum;
    606      1.28   rmind 		oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
    607       1.4   rmind 	} else {
    608      1.19   rmind 		struct udphdr *uh = npc->npc_l4.udp;
    609       1.4   rmind 
    610       1.4   rmind 		KASSERT(proto == IPPROTO_UDP);
    611      1.18   rmind 		ocksum = &uh->uh_sum;
    612      1.18   rmind 		if (*ocksum == 0) {
    613       1.4   rmind 			/* No need to update. */
    614       1.4   rmind 			return true;
    615       1.4   rmind 		}
    616      1.28   rmind 		oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
    617      1.18   rmind 	}
    618      1.18   rmind 
    619      1.19   rmind 	uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
    620      1.18   rmind 	if (port) {
    621      1.18   rmind 		cksum = npf_fixup16_cksum(cksum, oport, port);
    622       1.4   rmind 	}
    623       1.1   rmind 
    624      1.19   rmind 	/* Rewrite TCP/UDP checksum. */
    625      1.19   rmind 	memcpy(ocksum, &cksum, sizeof(uint16_t));
    626       1.4   rmind 	return true;
    627       1.4   rmind }
    628       1.4   rmind 
    629      1.29   rmind /*
    630      1.30   rmind  * npf_napt_rwr: perform address and/or port translation.
    631      1.30   rmind  */
    632      1.30   rmind int
    633      1.30   rmind npf_napt_rwr(const npf_cache_t *npc, u_int which,
    634      1.30   rmind     const npf_addr_t *addr, const in_addr_t port)
    635      1.30   rmind {
    636      1.30   rmind 	const unsigned proto = npc->npc_proto;
    637      1.30   rmind 
    638      1.30   rmind 	/*
    639      1.30   rmind 	 * Rewrite IP and/or TCP/UDP checksums first, since we need the
    640      1.30   rmind 	 * current (old) address/port for the calculations.  Then perform
    641      1.30   rmind 	 * the address translation i.e. rewrite source or destination.
    642      1.30   rmind 	 */
    643      1.30   rmind 	if (!npf_rwrcksum(npc, which, addr, port)) {
    644      1.30   rmind 		return EINVAL;
    645      1.30   rmind 	}
    646      1.30   rmind 	if (!npf_rwrip(npc, which, addr)) {
    647      1.30   rmind 		return EINVAL;
    648      1.30   rmind 	}
    649      1.30   rmind 	if (port == 0) {
    650      1.30   rmind 		/* Done. */
    651      1.30   rmind 		return 0;
    652      1.30   rmind 	}
    653      1.30   rmind 
    654      1.30   rmind 	switch (proto) {
    655      1.30   rmind 	case IPPROTO_TCP:
    656      1.30   rmind 	case IPPROTO_UDP:
    657      1.30   rmind 		/* Rewrite source/destination port. */
    658      1.30   rmind 		if (!npf_rwrport(npc, which, port)) {
    659      1.30   rmind 			return EINVAL;
    660      1.30   rmind 		}
    661      1.30   rmind 		break;
    662      1.30   rmind 	case IPPROTO_ICMP:
    663  1.32.2.1     snj #ifdef INET6
    664      1.30   rmind 	case IPPROTO_ICMPV6:
    665  1.32.2.1     snj #endif
    666      1.30   rmind 		KASSERT(npf_iscached(npc, NPC_ICMP));
    667      1.30   rmind 		/* Nothing. */
    668      1.30   rmind 		break;
    669      1.30   rmind 	default:
    670      1.30   rmind 		return ENOTSUP;
    671      1.30   rmind 	}
    672      1.30   rmind 	return 0;
    673      1.30   rmind }
    674      1.30   rmind 
    675      1.30   rmind /*
    676      1.29   rmind  * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
    677      1.29   rmind  */
    678      1.29   rmind 
    679  1.32.2.1     snj #ifdef INET6
    680      1.29   rmind int
    681      1.29   rmind npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
    682      1.29   rmind     npf_netmask_t len, uint16_t adj)
    683      1.29   rmind {
    684      1.29   rmind 	npf_addr_t *addr = npc->npc_ips[which];
    685      1.29   rmind 	unsigned remnant, word, preflen = len >> 4;
    686      1.29   rmind 	uint32_t sum;
    687      1.29   rmind 
    688      1.29   rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    689      1.29   rmind 
    690      1.29   rmind 	if (!npf_iscached(npc, NPC_IP6)) {
    691      1.29   rmind 		return EINVAL;
    692      1.29   rmind 	}
    693      1.29   rmind 	if (len <= 48) {
    694      1.29   rmind 		/*
    695      1.29   rmind 		 * The word to adjust.  Cannot translate the 0xffff
    696      1.29   rmind 		 * subnet if /48 or shorter.
    697      1.29   rmind 		 */
    698      1.29   rmind 		word = 3;
    699      1.29   rmind 		if (addr->s6_addr16[word] == 0xffff) {
    700      1.29   rmind 			return EINVAL;
    701      1.29   rmind 		}
    702      1.29   rmind 	} else {
    703      1.29   rmind 		/*
    704      1.29   rmind 		 * Also, all 0s or 1s in the host part are disallowed for
    705      1.29   rmind 		 * longer than /48 prefixes.
    706      1.29   rmind 		 */
    707      1.29   rmind 		if ((addr->s6_addr32[2] == 0 && addr->s6_addr32[3] == 0) ||
    708      1.29   rmind 		    (addr->s6_addr32[2] == ~0U && addr->s6_addr32[3] == ~0U))
    709      1.29   rmind 			return EINVAL;
    710      1.29   rmind 
    711      1.29   rmind 		/* Determine the 16-bit word to adjust. */
    712      1.29   rmind 		for (word = 4; word < 8; word++)
    713      1.29   rmind 			if (addr->s6_addr16[word] != 0xffff)
    714      1.29   rmind 				break;
    715      1.29   rmind 	}
    716      1.29   rmind 
    717      1.29   rmind 	/* Rewrite the prefix. */
    718      1.29   rmind 	for (unsigned i = 0; i < preflen; i++) {
    719      1.29   rmind 		addr->s6_addr16[i] = pref->s6_addr16[i];
    720      1.29   rmind 	}
    721      1.29   rmind 
    722      1.29   rmind 	/*
    723      1.29   rmind 	 * If prefix length is within a 16-bit word (not dividable by 16),
    724      1.29   rmind 	 * then prepare a mask, determine the word and adjust it.
    725      1.29   rmind 	 */
    726      1.29   rmind 	if ((remnant = len - (preflen << 4)) != 0) {
    727      1.29   rmind 		const uint16_t wordmask = (1U << remnant) - 1;
    728      1.29   rmind 		const unsigned i = preflen;
    729      1.29   rmind 
    730      1.29   rmind 		addr->s6_addr16[i] = (pref->s6_addr16[i] & wordmask) |
    731      1.29   rmind 		    (addr->s6_addr16[i] & ~wordmask);
    732      1.29   rmind 	}
    733      1.29   rmind 
    734      1.29   rmind 	/*
    735      1.29   rmind 	 * Performing 1's complement sum/difference.
    736      1.29   rmind 	 */
    737      1.29   rmind 	sum = addr->s6_addr16[word] + adj;
    738      1.29   rmind 	while (sum >> 16) {
    739      1.29   rmind 		sum = (sum >> 16) + (sum & 0xffff);
    740      1.29   rmind 	}
    741      1.29   rmind 	if (sum == 0xffff) {
    742      1.29   rmind 		/* RFC 1071. */
    743      1.29   rmind 		sum = 0x0000;
    744      1.29   rmind 	}
    745      1.29   rmind 	addr->s6_addr16[word] = sum;
    746      1.29   rmind 	return 0;
    747      1.29   rmind }
    748  1.32.2.1     snj #endif
    749      1.29   rmind 
    750      1.13   rmind #if defined(DDB) || defined(_NPF_TESTING)
    751      1.13   rmind 
    752      1.31   rmind const char *
    753      1.31   rmind npf_addr_dump(const npf_addr_t *addr, int alen)
    754      1.13   rmind {
    755  1.32.2.1     snj #ifdef INET6
    756      1.31   rmind 	if (alen == sizeof(struct in_addr)) {
    757  1.32.2.1     snj #else
    758  1.32.2.1     snj 		KASSERT(alen == sizeof(struct in_addr));
    759  1.32.2.1     snj #endif
    760      1.31   rmind 		struct in_addr ip;
    761      1.31   rmind 		memcpy(&ip, addr, alen);
    762      1.31   rmind 		return inet_ntoa(ip);
    763  1.32.2.1     snj #ifdef INET6
    764      1.31   rmind 	}
    765  1.32.2.1     snj 	return ip6_sprintf(addr);
    766  1.32.2.1     snj #endif
    767      1.13   rmind }
    768      1.13   rmind 
    769      1.13   rmind #endif
    770