Home | History | Annotate | Line # | Download | only in npf
npf_inet.c revision 1.37.12.1
      1  1.37.12.1  pgoyette /*	$NetBSD: npf_inet.c,v 1.37.12.1 2018/03/15 09:12:06 pgoyette Exp $	*/
      2        1.1     rmind 
      3        1.1     rmind /*-
      4       1.29     rmind  * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
      5        1.1     rmind  * All rights reserved.
      6        1.1     rmind  *
      7        1.1     rmind  * This material is based upon work partially supported by The
      8        1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      9        1.1     rmind  *
     10        1.1     rmind  * Redistribution and use in source and binary forms, with or without
     11        1.1     rmind  * modification, are permitted provided that the following conditions
     12        1.1     rmind  * are met:
     13        1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     14        1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     15        1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     17        1.1     rmind  *    documentation and/or other materials provided with the distribution.
     18        1.1     rmind  *
     19        1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     30        1.1     rmind  */
     31        1.1     rmind 
     32        1.1     rmind /*
     33       1.22     rmind  * Various protocol related helper routines.
     34       1.12     rmind  *
     35       1.12     rmind  * This layer manipulates npf_cache_t structure i.e. caches requested headers
     36       1.12     rmind  * and stores which information was cached in the information bit field.
     37       1.12     rmind  * It is also responsibility of this layer to update or invalidate the cache
     38       1.12     rmind  * on rewrites (e.g. by translation routines).
     39        1.1     rmind  */
     40        1.1     rmind 
     41       1.36  christos #ifdef _KERNEL
     42        1.1     rmind #include <sys/cdefs.h>
     43  1.37.12.1  pgoyette __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.37.12.1 2018/03/15 09:12:06 pgoyette Exp $");
     44        1.1     rmind 
     45        1.1     rmind #include <sys/param.h>
     46       1.11     rmind #include <sys/types.h>
     47        1.1     rmind 
     48        1.4     rmind #include <net/pfil.h>
     49        1.4     rmind #include <net/if.h>
     50        1.4     rmind #include <net/ethertypes.h>
     51        1.4     rmind #include <net/if_ether.h>
     52        1.4     rmind 
     53        1.1     rmind #include <netinet/in_systm.h>
     54        1.1     rmind #include <netinet/in.h>
     55       1.33   mlelstv #include <netinet6/in6_var.h>
     56        1.1     rmind #include <netinet/ip.h>
     57        1.4     rmind #include <netinet/ip6.h>
     58        1.1     rmind #include <netinet/tcp.h>
     59        1.1     rmind #include <netinet/udp.h>
     60        1.1     rmind #include <netinet/ip_icmp.h>
     61       1.36  christos #endif
     62        1.1     rmind 
     63        1.1     rmind #include "npf_impl.h"
     64        1.1     rmind 
     65        1.1     rmind /*
     66       1.27     rmind  * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
     67        1.1     rmind  */
     68        1.1     rmind 
     69        1.1     rmind uint16_t
     70        1.1     rmind npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
     71        1.1     rmind {
     72        1.1     rmind 	uint32_t sum;
     73        1.1     rmind 
     74        1.1     rmind 	/*
     75        1.1     rmind 	 * RFC 1624:
     76        1.1     rmind 	 *	HC' = ~(~HC + ~m + m')
     77       1.27     rmind 	 *
     78       1.27     rmind 	 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
     79        1.1     rmind 	 */
     80       1.27     rmind 	sum = ~cksum & 0xffff;
     81       1.27     rmind 	sum += (~odatum & 0xffff) + ndatum;
     82        1.1     rmind 	sum = (sum >> 16) + (sum & 0xffff);
     83        1.1     rmind 	sum += (sum >> 16);
     84        1.1     rmind 
     85       1.27     rmind 	return ~sum & 0xffff;
     86        1.1     rmind }
     87        1.1     rmind 
     88        1.1     rmind uint16_t
     89        1.1     rmind npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
     90        1.1     rmind {
     91       1.27     rmind 	uint32_t sum;
     92       1.27     rmind 
     93       1.27     rmind 	/*
     94       1.27     rmind 	 * Checksum 32-bit datum as as two 16-bit.  Note, the first
     95       1.27     rmind 	 * 32->16 bit reduction is not necessary.
     96       1.27     rmind 	 */
     97       1.27     rmind 	sum = ~cksum & 0xffff;
     98       1.27     rmind 	sum += (~odatum & 0xffff) + (ndatum & 0xffff);
     99        1.1     rmind 
    100       1.27     rmind 	sum += (~odatum >> 16) + (ndatum >> 16);
    101       1.27     rmind 	sum = (sum >> 16) + (sum & 0xffff);
    102       1.27     rmind 	sum += (sum >> 16);
    103       1.27     rmind 	return ~sum & 0xffff;
    104        1.1     rmind }
    105        1.1     rmind 
    106        1.1     rmind /*
    107        1.4     rmind  * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
    108        1.4     rmind  */
    109        1.4     rmind uint16_t
    110       1.19     rmind npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
    111       1.19     rmind     const npf_addr_t *naddr)
    112        1.4     rmind {
    113       1.19     rmind 	const uint32_t *oip32 = (const uint32_t *)oaddr;
    114       1.19     rmind 	const uint32_t *nip32 = (const uint32_t *)naddr;
    115        1.4     rmind 
    116        1.4     rmind 	KASSERT(sz % sizeof(uint32_t) == 0);
    117        1.4     rmind 	do {
    118        1.4     rmind 		cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
    119        1.4     rmind 		sz -= sizeof(uint32_t);
    120        1.4     rmind 	} while (sz);
    121        1.4     rmind 
    122        1.4     rmind 	return cksum;
    123        1.4     rmind }
    124        1.4     rmind 
    125        1.4     rmind /*
    126       1.26     rmind  * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
    127        1.4     rmind  * Note: used for hash function.
    128        1.1     rmind  */
    129        1.4     rmind uint32_t
    130       1.26     rmind npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
    131        1.1     rmind {
    132        1.4     rmind 	uint32_t mix = 0;
    133        1.1     rmind 
    134        1.5     rmind 	KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
    135        1.5     rmind 
    136       1.26     rmind 	for (int i = 0; i < (sz >> 2); i++) {
    137       1.36  christos 		mix ^= a1->word32[i];
    138       1.36  christos 		mix ^= a2->word32[i];
    139        1.4     rmind 	}
    140        1.4     rmind 	return mix;
    141        1.4     rmind }
    142        1.1     rmind 
    143       1.13     rmind /*
    144       1.13     rmind  * npf_addr_mask: apply the mask to a given address and store the result.
    145       1.13     rmind  */
    146       1.13     rmind void
    147       1.13     rmind npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
    148       1.13     rmind     const int alen, npf_addr_t *out)
    149       1.12     rmind {
    150       1.13     rmind 	const int nwords = alen >> 2;
    151       1.12     rmind 	uint_fast8_t length = mask;
    152       1.12     rmind 
    153       1.12     rmind 	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
    154       1.12     rmind 	KASSERT(length <= NPF_MAX_NETMASK);
    155       1.12     rmind 
    156       1.13     rmind 	for (int i = 0; i < nwords; i++) {
    157       1.13     rmind 		uint32_t wordmask;
    158       1.13     rmind 
    159       1.12     rmind 		if (length >= 32) {
    160       1.13     rmind 			wordmask = htonl(0xffffffff);
    161       1.12     rmind 			length -= 32;
    162       1.13     rmind 		} else if (length) {
    163       1.13     rmind 			wordmask = htonl(0xffffffff << (32 - length));
    164       1.13     rmind 			length = 0;
    165       1.12     rmind 		} else {
    166       1.13     rmind 			wordmask = 0;
    167       1.12     rmind 		}
    168       1.36  christos 		out->word32[i] = addr->word32[i] & wordmask;
    169       1.12     rmind 	}
    170       1.12     rmind }
    171       1.12     rmind 
    172       1.12     rmind /*
    173       1.12     rmind  * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
    174       1.12     rmind  *
    175       1.13     rmind  * => Return 0 if equal and negative/positive if less/greater accordingly.
    176       1.12     rmind  * => Ignore the mask, if NPF_NO_NETMASK is specified.
    177       1.12     rmind  */
    178       1.12     rmind int
    179       1.12     rmind npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
    180       1.13     rmind     const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
    181       1.12     rmind {
    182       1.13     rmind 	npf_addr_t realaddr1, realaddr2;
    183       1.12     rmind 
    184       1.12     rmind 	if (mask1 != NPF_NO_NETMASK) {
    185       1.13     rmind 		npf_addr_mask(addr1, mask1, alen, &realaddr1);
    186       1.13     rmind 		addr1 = &realaddr1;
    187       1.12     rmind 	}
    188       1.12     rmind 	if (mask2 != NPF_NO_NETMASK) {
    189       1.13     rmind 		npf_addr_mask(addr2, mask2, alen, &realaddr2);
    190       1.13     rmind 		addr2 = &realaddr2;
    191       1.12     rmind 	}
    192       1.13     rmind 	return memcmp(addr1, addr2, alen);
    193       1.12     rmind }
    194       1.12     rmind 
    195        1.4     rmind /*
    196        1.4     rmind  * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
    197       1.12     rmind  *
    198       1.12     rmind  * => Returns all values in host byte-order.
    199        1.4     rmind  */
    200        1.4     rmind int
    201       1.12     rmind npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
    202        1.4     rmind {
    203       1.19     rmind 	const struct tcphdr *th = npc->npc_l4.tcp;
    204        1.8     rmind 	u_int thlen;
    205        1.1     rmind 
    206        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_TCP));
    207        1.1     rmind 
    208        1.4     rmind 	*seq = ntohl(th->th_seq);
    209        1.4     rmind 	*ack = ntohl(th->th_ack);
    210        1.4     rmind 	*win = (uint32_t)ntohs(th->th_win);
    211        1.8     rmind 	thlen = th->th_off << 2;
    212        1.1     rmind 
    213        1.7    zoltan 	if (npf_iscached(npc, NPC_IP4)) {
    214       1.19     rmind 		const struct ip *ip = npc->npc_ip.v4;
    215       1.21     rmind 		return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
    216       1.12     rmind 	} else if (npf_iscached(npc, NPC_IP6)) {
    217       1.19     rmind 		const struct ip6_hdr *ip6 = npc->npc_ip.v6;
    218        1.8     rmind 		return ntohs(ip6->ip6_plen) - thlen;
    219        1.7    zoltan 	}
    220        1.7    zoltan 	return 0;
    221        1.1     rmind }
    222        1.1     rmind 
    223        1.1     rmind /*
    224        1.4     rmind  * npf_fetch_tcpopts: parse and return TCP options.
    225        1.1     rmind  */
    226        1.1     rmind bool
    227       1.32     rmind npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
    228        1.1     rmind {
    229       1.32     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    230       1.19     rmind 	const struct tcphdr *th = npc->npc_l4.tcp;
    231        1.4     rmind 	int topts_len, step;
    232  1.37.12.1  pgoyette 	uint8_t *nptr;
    233        1.4     rmind 	uint8_t val;
    234       1.19     rmind 	bool ok;
    235        1.4     rmind 
    236        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_IP46));
    237        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_TCP));
    238       1.10     rmind 
    239        1.4     rmind 	/* Determine if there are any TCP options, get their length. */
    240        1.4     rmind 	topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
    241        1.4     rmind 	if (topts_len <= 0) {
    242        1.4     rmind 		/* No options. */
    243        1.1     rmind 		return false;
    244        1.4     rmind 	}
    245        1.4     rmind 	KASSERT(topts_len <= MAX_TCPOPTLEN);
    246        1.1     rmind 
    247        1.4     rmind 	/* First step: IP and TCP header up to options. */
    248       1.21     rmind 	step = npc->npc_hlen + sizeof(struct tcphdr);
    249       1.19     rmind 	nbuf_reset(nbuf);
    250        1.4     rmind next:
    251       1.19     rmind 	if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
    252       1.19     rmind 		ok = false;
    253       1.19     rmind 		goto done;
    254        1.4     rmind 	}
    255  1.37.12.1  pgoyette 	val = *nptr;
    256       1.12     rmind 
    257        1.4     rmind 	switch (val) {
    258        1.4     rmind 	case TCPOPT_EOL:
    259        1.4     rmind 		/* Done. */
    260       1.19     rmind 		ok = true;
    261       1.19     rmind 		goto done;
    262        1.4     rmind 	case TCPOPT_NOP:
    263        1.4     rmind 		topts_len--;
    264        1.4     rmind 		step = 1;
    265        1.4     rmind 		break;
    266        1.4     rmind 	case TCPOPT_MAXSEG:
    267  1.37.12.1  pgoyette 		if ((nptr = nbuf_ensure_contig(nbuf, TCPOLEN_MAXSEG)) == NULL) {
    268       1.19     rmind 			ok = false;
    269       1.19     rmind 			goto done;
    270        1.4     rmind 		}
    271        1.4     rmind 		if (mss) {
    272       1.19     rmind 			if (*mss) {
    273  1.37.12.1  pgoyette 				memcpy(nptr + 2, mss, sizeof(uint16_t));
    274       1.19     rmind 			} else {
    275  1.37.12.1  pgoyette 				memcpy(mss, nptr + 2, sizeof(uint16_t));
    276       1.19     rmind 			}
    277        1.4     rmind 		}
    278        1.4     rmind 		topts_len -= TCPOLEN_MAXSEG;
    279  1.37.12.1  pgoyette 		step = TCPOLEN_MAXSEG;
    280        1.4     rmind 		break;
    281        1.4     rmind 	case TCPOPT_WINDOW:
    282       1.10     rmind 		/* TCP Window Scaling (RFC 1323). */
    283  1.37.12.1  pgoyette 		if ((nptr = nbuf_ensure_contig(nbuf, TCPOLEN_WINDOW)) == NULL) {
    284       1.19     rmind 			ok = false;
    285       1.19     rmind 			goto done;
    286        1.4     rmind 		}
    287  1.37.12.1  pgoyette 		val = *(nptr + 2);
    288        1.4     rmind 		*wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
    289        1.4     rmind 		topts_len -= TCPOLEN_WINDOW;
    290  1.37.12.1  pgoyette 		step = TCPOLEN_WINDOW;
    291        1.4     rmind 		break;
    292        1.4     rmind 	default:
    293  1.37.12.1  pgoyette 		if ((nptr = nbuf_ensure_contig(nbuf, 2)) == NULL) {
    294       1.19     rmind 			ok = false;
    295       1.19     rmind 			goto done;
    296        1.4     rmind 		}
    297  1.37.12.1  pgoyette 		val = *(nptr + 1);
    298       1.16     rmind 		if (val < 2 || val > topts_len) {
    299       1.19     rmind 			ok = false;
    300       1.19     rmind 			goto done;
    301        1.4     rmind 		}
    302        1.4     rmind 		topts_len -= val;
    303  1.37.12.1  pgoyette 		step = val;
    304        1.4     rmind 	}
    305       1.12     rmind 
    306        1.6     rmind 	/* Any options left? */
    307        1.4     rmind 	if (__predict_true(topts_len > 0)) {
    308        1.4     rmind 		goto next;
    309        1.4     rmind 	}
    310       1.19     rmind 	ok = true;
    311       1.19     rmind done:
    312       1.19     rmind 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    313       1.32     rmind 		npf_recache(npc);
    314       1.19     rmind 	}
    315       1.19     rmind 	return ok;
    316        1.1     rmind }
    317        1.1     rmind 
    318       1.19     rmind static int
    319       1.19     rmind npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
    320        1.1     rmind {
    321       1.19     rmind 	const void *nptr = nbuf_dataptr(nbuf);
    322       1.19     rmind 	const uint8_t ver = *(const uint8_t *)nptr;
    323       1.19     rmind 	int flags = 0;
    324       1.12     rmind 
    325        1.4     rmind 	switch (ver >> 4) {
    326       1.12     rmind 	case IPVERSION: {
    327       1.19     rmind 		struct ip *ip;
    328       1.12     rmind 
    329       1.19     rmind 		ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
    330       1.19     rmind 		if (ip == NULL) {
    331  1.37.12.1  pgoyette 			return NPC_FMTERR;
    332        1.4     rmind 		}
    333       1.12     rmind 
    334        1.4     rmind 		/* Check header length and fragment offset. */
    335       1.10     rmind 		if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
    336  1.37.12.1  pgoyette 			return NPC_FMTERR;
    337        1.4     rmind 		}
    338        1.4     rmind 		if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
    339        1.4     rmind 			/* Note fragmentation. */
    340       1.19     rmind 			flags |= NPC_IPFRAG;
    341        1.4     rmind 		}
    342       1.12     rmind 
    343        1.4     rmind 		/* Cache: layer 3 - IPv4. */
    344       1.14     rmind 		npc->npc_alen = sizeof(struct in_addr);
    345       1.28     rmind 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
    346       1.28     rmind 		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
    347        1.7    zoltan 		npc->npc_hlen = ip->ip_hl << 2;
    348       1.19     rmind 		npc->npc_proto = ip->ip_p;
    349       1.19     rmind 
    350       1.19     rmind 		npc->npc_ip.v4 = ip;
    351       1.19     rmind 		flags |= NPC_IP4;
    352        1.4     rmind 		break;
    353       1.12     rmind 	}
    354        1.4     rmind 
    355       1.12     rmind 	case (IPV6_VERSION >> 4): {
    356       1.19     rmind 		struct ip6_hdr *ip6;
    357       1.19     rmind 		struct ip6_ext *ip6e;
    358       1.37  christos 		struct ip6_frag *ip6f;
    359       1.19     rmind 		size_t off, hlen;
    360  1.37.12.1  pgoyette 		int frag_present;
    361       1.19     rmind 
    362       1.19     rmind 		ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
    363       1.19     rmind 		if (ip6 == NULL) {
    364  1.37.12.1  pgoyette 			return NPC_FMTERR;
    365        1.7    zoltan 		}
    366       1.19     rmind 
    367       1.19     rmind 		/* Set initial next-protocol value. */
    368       1.19     rmind 		hlen = sizeof(struct ip6_hdr);
    369       1.19     rmind 		npc->npc_proto = ip6->ip6_nxt;
    370       1.13     rmind 		npc->npc_hlen = hlen;
    371        1.7    zoltan 
    372  1.37.12.1  pgoyette 		frag_present = 0;
    373  1.37.12.1  pgoyette 
    374       1.12     rmind 		/*
    375       1.19     rmind 		 * Advance by the length of the current header.
    376       1.12     rmind 		 */
    377       1.19     rmind 		off = nbuf_offset(nbuf);
    378  1.37.12.1  pgoyette 		while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
    379       1.13     rmind 			/*
    380       1.13     rmind 			 * Determine whether we are going to continue.
    381       1.13     rmind 			 */
    382       1.19     rmind 			switch (npc->npc_proto) {
    383       1.13     rmind 			case IPPROTO_HOPOPTS:
    384        1.7    zoltan 			case IPPROTO_DSTOPTS:
    385        1.7    zoltan 			case IPPROTO_ROUTING:
    386       1.19     rmind 				hlen = (ip6e->ip6e_len + 1) << 3;
    387        1.7    zoltan 				break;
    388        1.7    zoltan 			case IPPROTO_FRAGMENT:
    389  1.37.12.1  pgoyette 				if (frag_present++)
    390  1.37.12.1  pgoyette 					return NPC_FMTERR;
    391       1.37  christos 				ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
    392       1.37  christos 				if (ip6f == NULL)
    393  1.37.12.1  pgoyette 					return NPC_FMTERR;
    394  1.37.12.1  pgoyette 
    395  1.37.12.1  pgoyette 				/* RFC6946: Skip dummy fragments. */
    396  1.37.12.1  pgoyette 				if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
    397  1.37.12.1  pgoyette 				    !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
    398  1.37.12.1  pgoyette 					hlen = sizeof(struct ip6_frag);
    399  1.37.12.1  pgoyette 					break;
    400  1.37.12.1  pgoyette 				}
    401  1.37.12.1  pgoyette 
    402  1.37.12.1  pgoyette 				hlen = 0;
    403  1.37.12.1  pgoyette 				flags |= NPC_IPFRAG;
    404       1.37  christos 
    405        1.7    zoltan 				break;
    406        1.7    zoltan 			case IPPROTO_AH:
    407       1.19     rmind 				hlen = (ip6e->ip6e_len + 2) << 2;
    408        1.7    zoltan 				break;
    409        1.7    zoltan 			default:
    410       1.13     rmind 				hlen = 0;
    411       1.13     rmind 				break;
    412       1.13     rmind 			}
    413       1.13     rmind 
    414       1.13     rmind 			if (!hlen) {
    415        1.7    zoltan 				break;
    416        1.7    zoltan 			}
    417       1.19     rmind 			npc->npc_proto = ip6e->ip6e_nxt;
    418       1.13     rmind 			npc->npc_hlen += hlen;
    419       1.13     rmind 		}
    420        1.7    zoltan 
    421       1.23     rmind 		/*
    422       1.23     rmind 		 * Re-fetch the header pointers (nbufs might have been
    423       1.23     rmind 		 * reallocated).  Restore the original offset (if any).
    424       1.23     rmind 		 */
    425       1.19     rmind 		nbuf_reset(nbuf);
    426       1.23     rmind 		ip6 = nbuf_dataptr(nbuf);
    427       1.19     rmind 		if (off) {
    428       1.19     rmind 			nbuf_advance(nbuf, off, 0);
    429       1.19     rmind 		}
    430       1.19     rmind 
    431       1.12     rmind 		/* Cache: layer 3 - IPv6. */
    432       1.14     rmind 		npc->npc_alen = sizeof(struct in6_addr);
    433       1.28     rmind 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
    434       1.28     rmind 		npc->npc_ips[NPF_DST]= (npf_addr_t *)&ip6->ip6_dst;
    435       1.19     rmind 
    436       1.19     rmind 		npc->npc_ip.v6 = ip6;
    437       1.19     rmind 		flags |= NPC_IP6;
    438        1.7    zoltan 		break;
    439       1.12     rmind 	}
    440        1.4     rmind 	default:
    441       1.19     rmind 		break;
    442        1.4     rmind 	}
    443       1.19     rmind 	return flags;
    444        1.1     rmind }
    445        1.1     rmind 
    446        1.1     rmind /*
    447        1.4     rmind  * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
    448       1.12     rmind  * and TCP, UDP or ICMP headers.
    449       1.19     rmind  *
    450       1.19     rmind  * => nbuf offset shall be set accordingly.
    451        1.1     rmind  */
    452       1.10     rmind int
    453       1.32     rmind npf_cache_all(npf_cache_t *npc)
    454        1.1     rmind {
    455       1.32     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    456       1.19     rmind 	int flags, l4flags;
    457       1.19     rmind 	u_int hlen;
    458       1.19     rmind 
    459       1.19     rmind 	/*
    460       1.19     rmind 	 * This routine is a main point where the references are cached,
    461       1.19     rmind 	 * therefore clear the flag as we reset.
    462       1.19     rmind 	 */
    463       1.19     rmind again:
    464       1.19     rmind 	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
    465        1.1     rmind 
    466       1.19     rmind 	/*
    467       1.19     rmind 	 * First, cache the L3 header (IPv4 or IPv6).  If IP packet is
    468       1.19     rmind 	 * fragmented, then we cannot look into L4.
    469       1.19     rmind 	 */
    470       1.19     rmind 	flags = npf_cache_ip(npc, nbuf);
    471  1.37.12.1  pgoyette 	if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
    472  1.37.12.1  pgoyette 	    (flags & NPC_FMTERR) != 0) {
    473       1.23     rmind 		nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
    474       1.19     rmind 		npc->npc_info |= flags;
    475       1.19     rmind 		return flags;
    476        1.1     rmind 	}
    477       1.19     rmind 	hlen = npc->npc_hlen;
    478       1.19     rmind 
    479       1.19     rmind 	switch (npc->npc_proto) {
    480        1.1     rmind 	case IPPROTO_TCP:
    481       1.19     rmind 		/* Cache: layer 4 - TCP. */
    482       1.19     rmind 		npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
    483       1.19     rmind 		    sizeof(struct tcphdr));
    484       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_TCP;
    485       1.10     rmind 		break;
    486        1.1     rmind 	case IPPROTO_UDP:
    487       1.19     rmind 		/* Cache: layer 4 - UDP. */
    488       1.19     rmind 		npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
    489       1.19     rmind 		    sizeof(struct udphdr));
    490       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_UDP;
    491       1.10     rmind 		break;
    492        1.1     rmind 	case IPPROTO_ICMP:
    493       1.19     rmind 		/* Cache: layer 4 - ICMPv4. */
    494       1.19     rmind 		npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
    495       1.19     rmind 		    offsetof(struct icmp, icmp_void));
    496       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_ICMP;
    497       1.19     rmind 		break;
    498       1.15       spz 	case IPPROTO_ICMPV6:
    499       1.19     rmind 		/* Cache: layer 4 - ICMPv6. */
    500       1.19     rmind 		npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
    501       1.19     rmind 		    offsetof(struct icmp6_hdr, icmp6_data32));
    502       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_ICMP;
    503       1.19     rmind 		break;
    504       1.19     rmind 	default:
    505       1.19     rmind 		l4flags = 0;
    506       1.10     rmind 		break;
    507        1.1     rmind 	}
    508       1.19     rmind 
    509       1.19     rmind 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    510       1.19     rmind 		goto again;
    511       1.19     rmind 	}
    512       1.19     rmind 
    513       1.19     rmind 	/* Add the L4 flags if nbuf_advance() succeeded. */
    514       1.19     rmind 	if (l4flags && npc->npc_l4.hdr) {
    515       1.19     rmind 		flags |= l4flags;
    516       1.19     rmind 	}
    517       1.19     rmind 	npc->npc_info |= flags;
    518       1.19     rmind 	return flags;
    519       1.19     rmind }
    520       1.19     rmind 
    521       1.19     rmind void
    522       1.32     rmind npf_recache(npf_cache_t *npc)
    523       1.19     rmind {
    524       1.32     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    525       1.24    martin 	const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
    526       1.25       mrg 	int flags __diagused;
    527       1.19     rmind 
    528       1.19     rmind 	nbuf_reset(nbuf);
    529       1.19     rmind 	npc->npc_info = 0;
    530       1.32     rmind 	flags = npf_cache_all(npc);
    531       1.32     rmind 
    532       1.19     rmind 	KASSERT((flags & mflags) == mflags);
    533       1.19     rmind 	KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
    534        1.1     rmind }
    535        1.1     rmind 
    536        1.1     rmind /*
    537       1.19     rmind  * npf_rwrip: rewrite required IP address.
    538        1.4     rmind  */
    539        1.4     rmind bool
    540       1.28     rmind npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
    541        1.4     rmind {
    542        1.4     rmind 	KASSERT(npf_iscached(npc, NPC_IP46));
    543       1.28     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    544        1.4     rmind 
    545       1.28     rmind 	memcpy(npc->npc_ips[which], addr, npc->npc_alen);
    546        1.4     rmind 	return true;
    547        1.4     rmind }
    548        1.4     rmind 
    549        1.4     rmind /*
    550       1.19     rmind  * npf_rwrport: rewrite required TCP/UDP port.
    551        1.1     rmind  */
    552        1.1     rmind bool
    553       1.28     rmind npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
    554        1.1     rmind {
    555       1.21     rmind 	const int proto = npc->npc_proto;
    556        1.4     rmind 	in_port_t *oport;
    557        1.1     rmind 
    558        1.4     rmind 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    559        1.1     rmind 	KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
    560       1.28     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    561        1.1     rmind 
    562       1.19     rmind 	/* Get the offset and store the port in it. */
    563        1.4     rmind 	if (proto == IPPROTO_TCP) {
    564       1.19     rmind 		struct tcphdr *th = npc->npc_l4.tcp;
    565       1.28     rmind 		oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
    566        1.1     rmind 	} else {
    567       1.19     rmind 		struct udphdr *uh = npc->npc_l4.udp;
    568       1.28     rmind 		oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
    569        1.1     rmind 	}
    570       1.19     rmind 	memcpy(oport, &port, sizeof(in_port_t));
    571        1.1     rmind 	return true;
    572        1.1     rmind }
    573        1.1     rmind 
    574        1.1     rmind /*
    575       1.19     rmind  * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
    576        1.1     rmind  */
    577        1.1     rmind bool
    578       1.28     rmind npf_rwrcksum(const npf_cache_t *npc, u_int which,
    579       1.19     rmind     const npf_addr_t *addr, const in_port_t port)
    580        1.1     rmind {
    581       1.28     rmind 	const npf_addr_t *oaddr = npc->npc_ips[which];
    582       1.21     rmind 	const int proto = npc->npc_proto;
    583       1.19     rmind 	const int alen = npc->npc_alen;
    584       1.18     rmind 	uint16_t *ocksum;
    585       1.18     rmind 	in_port_t oport;
    586       1.18     rmind 
    587       1.19     rmind 	KASSERT(npf_iscached(npc, NPC_LAYER4));
    588       1.28     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    589       1.18     rmind 
    590        1.4     rmind 	if (npf_iscached(npc, NPC_IP4)) {
    591       1.19     rmind 		struct ip *ip = npc->npc_ip.v4;
    592       1.19     rmind 		uint16_t ipsum = ip->ip_sum;
    593        1.4     rmind 
    594       1.19     rmind 		/* Recalculate IPv4 checksum and rewrite. */
    595       1.19     rmind 		ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
    596        1.4     rmind 	} else {
    597        1.4     rmind 		/* No checksum for IPv6. */
    598        1.4     rmind 		KASSERT(npf_iscached(npc, NPC_IP6));
    599        1.4     rmind 	}
    600        1.4     rmind 
    601       1.18     rmind 	/* Nothing else to do for ICMP. */
    602       1.30     rmind 	if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
    603        1.4     rmind 		return true;
    604        1.4     rmind 	}
    605        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    606        1.4     rmind 
    607       1.18     rmind 	/*
    608       1.18     rmind 	 * Calculate TCP/UDP checksum:
    609       1.18     rmind 	 * - Skip if UDP and the current checksum is zero.
    610       1.18     rmind 	 * - Fixup the IP address change.
    611       1.18     rmind 	 * - Fixup the port change, if required (non-zero).
    612       1.18     rmind 	 */
    613        1.4     rmind 	if (proto == IPPROTO_TCP) {
    614       1.19     rmind 		struct tcphdr *th = npc->npc_l4.tcp;
    615        1.4     rmind 
    616       1.18     rmind 		ocksum = &th->th_sum;
    617       1.28     rmind 		oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
    618        1.4     rmind 	} else {
    619       1.19     rmind 		struct udphdr *uh = npc->npc_l4.udp;
    620        1.4     rmind 
    621        1.4     rmind 		KASSERT(proto == IPPROTO_UDP);
    622       1.18     rmind 		ocksum = &uh->uh_sum;
    623       1.18     rmind 		if (*ocksum == 0) {
    624        1.4     rmind 			/* No need to update. */
    625        1.4     rmind 			return true;
    626        1.4     rmind 		}
    627       1.28     rmind 		oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
    628       1.18     rmind 	}
    629       1.18     rmind 
    630       1.19     rmind 	uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
    631       1.18     rmind 	if (port) {
    632       1.18     rmind 		cksum = npf_fixup16_cksum(cksum, oport, port);
    633        1.4     rmind 	}
    634        1.1     rmind 
    635       1.19     rmind 	/* Rewrite TCP/UDP checksum. */
    636       1.19     rmind 	memcpy(ocksum, &cksum, sizeof(uint16_t));
    637        1.4     rmind 	return true;
    638        1.4     rmind }
    639        1.4     rmind 
    640       1.29     rmind /*
    641       1.30     rmind  * npf_napt_rwr: perform address and/or port translation.
    642       1.30     rmind  */
    643       1.30     rmind int
    644       1.30     rmind npf_napt_rwr(const npf_cache_t *npc, u_int which,
    645       1.30     rmind     const npf_addr_t *addr, const in_addr_t port)
    646       1.30     rmind {
    647       1.30     rmind 	const unsigned proto = npc->npc_proto;
    648       1.30     rmind 
    649       1.30     rmind 	/*
    650       1.30     rmind 	 * Rewrite IP and/or TCP/UDP checksums first, since we need the
    651       1.30     rmind 	 * current (old) address/port for the calculations.  Then perform
    652       1.30     rmind 	 * the address translation i.e. rewrite source or destination.
    653       1.30     rmind 	 */
    654       1.30     rmind 	if (!npf_rwrcksum(npc, which, addr, port)) {
    655       1.30     rmind 		return EINVAL;
    656       1.30     rmind 	}
    657       1.30     rmind 	if (!npf_rwrip(npc, which, addr)) {
    658       1.30     rmind 		return EINVAL;
    659       1.30     rmind 	}
    660       1.30     rmind 	if (port == 0) {
    661       1.30     rmind 		/* Done. */
    662       1.30     rmind 		return 0;
    663       1.30     rmind 	}
    664       1.30     rmind 
    665       1.30     rmind 	switch (proto) {
    666       1.30     rmind 	case IPPROTO_TCP:
    667       1.30     rmind 	case IPPROTO_UDP:
    668       1.30     rmind 		/* Rewrite source/destination port. */
    669       1.30     rmind 		if (!npf_rwrport(npc, which, port)) {
    670       1.30     rmind 			return EINVAL;
    671       1.30     rmind 		}
    672       1.30     rmind 		break;
    673       1.30     rmind 	case IPPROTO_ICMP:
    674       1.30     rmind 	case IPPROTO_ICMPV6:
    675       1.30     rmind 		KASSERT(npf_iscached(npc, NPC_ICMP));
    676       1.30     rmind 		/* Nothing. */
    677       1.30     rmind 		break;
    678       1.30     rmind 	default:
    679       1.30     rmind 		return ENOTSUP;
    680       1.30     rmind 	}
    681       1.30     rmind 	return 0;
    682       1.30     rmind }
    683       1.30     rmind 
    684       1.30     rmind /*
    685       1.29     rmind  * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
    686       1.29     rmind  */
    687       1.29     rmind 
    688       1.29     rmind int
    689       1.29     rmind npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
    690       1.29     rmind     npf_netmask_t len, uint16_t adj)
    691       1.29     rmind {
    692       1.29     rmind 	npf_addr_t *addr = npc->npc_ips[which];
    693       1.29     rmind 	unsigned remnant, word, preflen = len >> 4;
    694       1.29     rmind 	uint32_t sum;
    695       1.29     rmind 
    696       1.29     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    697       1.29     rmind 
    698       1.29     rmind 	if (!npf_iscached(npc, NPC_IP6)) {
    699       1.29     rmind 		return EINVAL;
    700       1.29     rmind 	}
    701       1.29     rmind 	if (len <= 48) {
    702       1.29     rmind 		/*
    703       1.29     rmind 		 * The word to adjust.  Cannot translate the 0xffff
    704       1.29     rmind 		 * subnet if /48 or shorter.
    705       1.29     rmind 		 */
    706       1.29     rmind 		word = 3;
    707       1.36  christos 		if (addr->word16[word] == 0xffff) {
    708       1.29     rmind 			return EINVAL;
    709       1.29     rmind 		}
    710       1.29     rmind 	} else {
    711       1.29     rmind 		/*
    712       1.29     rmind 		 * Also, all 0s or 1s in the host part are disallowed for
    713       1.29     rmind 		 * longer than /48 prefixes.
    714       1.29     rmind 		 */
    715       1.36  christos 		if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
    716       1.36  christos 		    (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
    717       1.29     rmind 			return EINVAL;
    718       1.29     rmind 
    719       1.29     rmind 		/* Determine the 16-bit word to adjust. */
    720       1.29     rmind 		for (word = 4; word < 8; word++)
    721       1.36  christos 			if (addr->word16[word] != 0xffff)
    722       1.29     rmind 				break;
    723       1.29     rmind 	}
    724       1.29     rmind 
    725       1.29     rmind 	/* Rewrite the prefix. */
    726       1.29     rmind 	for (unsigned i = 0; i < preflen; i++) {
    727       1.36  christos 		addr->word16[i] = pref->word16[i];
    728       1.29     rmind 	}
    729       1.29     rmind 
    730       1.29     rmind 	/*
    731       1.29     rmind 	 * If prefix length is within a 16-bit word (not dividable by 16),
    732       1.29     rmind 	 * then prepare a mask, determine the word and adjust it.
    733       1.29     rmind 	 */
    734       1.29     rmind 	if ((remnant = len - (preflen << 4)) != 0) {
    735       1.29     rmind 		const uint16_t wordmask = (1U << remnant) - 1;
    736       1.29     rmind 		const unsigned i = preflen;
    737       1.29     rmind 
    738       1.36  christos 		addr->word16[i] = (pref->word16[i] & wordmask) |
    739       1.36  christos 		    (addr->word16[i] & ~wordmask);
    740       1.29     rmind 	}
    741       1.29     rmind 
    742       1.29     rmind 	/*
    743       1.29     rmind 	 * Performing 1's complement sum/difference.
    744       1.29     rmind 	 */
    745       1.36  christos 	sum = addr->word16[word] + adj;
    746       1.29     rmind 	while (sum >> 16) {
    747       1.29     rmind 		sum = (sum >> 16) + (sum & 0xffff);
    748       1.29     rmind 	}
    749       1.29     rmind 	if (sum == 0xffff) {
    750       1.29     rmind 		/* RFC 1071. */
    751       1.29     rmind 		sum = 0x0000;
    752       1.29     rmind 	}
    753       1.36  christos 	addr->word16[word] = sum;
    754       1.29     rmind 	return 0;
    755       1.29     rmind }
    756       1.29     rmind 
    757       1.13     rmind #if defined(DDB) || defined(_NPF_TESTING)
    758       1.13     rmind 
    759       1.31     rmind const char *
    760       1.31     rmind npf_addr_dump(const npf_addr_t *addr, int alen)
    761       1.13     rmind {
    762       1.31     rmind 	if (alen == sizeof(struct in_addr)) {
    763       1.31     rmind 		struct in_addr ip;
    764       1.31     rmind 		memcpy(&ip, addr, alen);
    765       1.31     rmind 		return inet_ntoa(ip);
    766       1.31     rmind 	}
    767       1.36  christos 	return "[IPv6]";
    768       1.13     rmind }
    769       1.13     rmind 
    770       1.13     rmind #endif
    771