Home | History | Annotate | Line # | Download | only in npf
npf_inet.c revision 1.37.12.4
      1  1.37.12.4  pgoyette /*	$NetBSD: npf_inet.c,v 1.37.12.4 2018/04/07 04:12:19 pgoyette Exp $	*/
      2        1.1     rmind 
      3        1.1     rmind /*-
      4       1.29     rmind  * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
      5        1.1     rmind  * All rights reserved.
      6        1.1     rmind  *
      7        1.1     rmind  * This material is based upon work partially supported by The
      8        1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      9        1.1     rmind  *
     10        1.1     rmind  * Redistribution and use in source and binary forms, with or without
     11        1.1     rmind  * modification, are permitted provided that the following conditions
     12        1.1     rmind  * are met:
     13        1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     14        1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     15        1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     16        1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     17        1.1     rmind  *    documentation and/or other materials provided with the distribution.
     18        1.1     rmind  *
     19        1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20        1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21        1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22        1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23        1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24        1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25        1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26        1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27        1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28        1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29        1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     30        1.1     rmind  */
     31        1.1     rmind 
     32        1.1     rmind /*
     33       1.22     rmind  * Various protocol related helper routines.
     34       1.12     rmind  *
     35       1.12     rmind  * This layer manipulates npf_cache_t structure i.e. caches requested headers
     36       1.12     rmind  * and stores which information was cached in the information bit field.
     37       1.12     rmind  * It is also responsibility of this layer to update or invalidate the cache
     38       1.12     rmind  * on rewrites (e.g. by translation routines).
     39        1.1     rmind  */
     40        1.1     rmind 
     41       1.36  christos #ifdef _KERNEL
     42        1.1     rmind #include <sys/cdefs.h>
     43  1.37.12.4  pgoyette __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.37.12.4 2018/04/07 04:12:19 pgoyette Exp $");
     44        1.1     rmind 
     45        1.1     rmind #include <sys/param.h>
     46       1.11     rmind #include <sys/types.h>
     47        1.1     rmind 
     48        1.4     rmind #include <net/pfil.h>
     49        1.4     rmind #include <net/if.h>
     50        1.4     rmind #include <net/ethertypes.h>
     51        1.4     rmind #include <net/if_ether.h>
     52        1.4     rmind 
     53        1.1     rmind #include <netinet/in_systm.h>
     54        1.1     rmind #include <netinet/in.h>
     55       1.33   mlelstv #include <netinet6/in6_var.h>
     56        1.1     rmind #include <netinet/ip.h>
     57        1.4     rmind #include <netinet/ip6.h>
     58        1.1     rmind #include <netinet/tcp.h>
     59        1.1     rmind #include <netinet/udp.h>
     60        1.1     rmind #include <netinet/ip_icmp.h>
     61       1.36  christos #endif
     62        1.1     rmind 
     63        1.1     rmind #include "npf_impl.h"
     64        1.1     rmind 
     65        1.1     rmind /*
     66       1.27     rmind  * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
     67        1.1     rmind  */
     68        1.1     rmind 
     69        1.1     rmind uint16_t
     70        1.1     rmind npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
     71        1.1     rmind {
     72        1.1     rmind 	uint32_t sum;
     73        1.1     rmind 
     74        1.1     rmind 	/*
     75        1.1     rmind 	 * RFC 1624:
     76        1.1     rmind 	 *	HC' = ~(~HC + ~m + m')
     77       1.27     rmind 	 *
     78       1.27     rmind 	 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
     79        1.1     rmind 	 */
     80       1.27     rmind 	sum = ~cksum & 0xffff;
     81       1.27     rmind 	sum += (~odatum & 0xffff) + ndatum;
     82        1.1     rmind 	sum = (sum >> 16) + (sum & 0xffff);
     83        1.1     rmind 	sum += (sum >> 16);
     84        1.1     rmind 
     85       1.27     rmind 	return ~sum & 0xffff;
     86        1.1     rmind }
     87        1.1     rmind 
     88        1.1     rmind uint16_t
     89        1.1     rmind npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
     90        1.1     rmind {
     91       1.27     rmind 	uint32_t sum;
     92       1.27     rmind 
     93       1.27     rmind 	/*
     94       1.27     rmind 	 * Checksum 32-bit datum as as two 16-bit.  Note, the first
     95       1.27     rmind 	 * 32->16 bit reduction is not necessary.
     96       1.27     rmind 	 */
     97       1.27     rmind 	sum = ~cksum & 0xffff;
     98       1.27     rmind 	sum += (~odatum & 0xffff) + (ndatum & 0xffff);
     99        1.1     rmind 
    100       1.27     rmind 	sum += (~odatum >> 16) + (ndatum >> 16);
    101       1.27     rmind 	sum = (sum >> 16) + (sum & 0xffff);
    102       1.27     rmind 	sum += (sum >> 16);
    103       1.27     rmind 	return ~sum & 0xffff;
    104        1.1     rmind }
    105        1.1     rmind 
    106        1.1     rmind /*
    107        1.4     rmind  * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
    108        1.4     rmind  */
    109        1.4     rmind uint16_t
    110       1.19     rmind npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
    111       1.19     rmind     const npf_addr_t *naddr)
    112        1.4     rmind {
    113       1.19     rmind 	const uint32_t *oip32 = (const uint32_t *)oaddr;
    114       1.19     rmind 	const uint32_t *nip32 = (const uint32_t *)naddr;
    115        1.4     rmind 
    116        1.4     rmind 	KASSERT(sz % sizeof(uint32_t) == 0);
    117        1.4     rmind 	do {
    118        1.4     rmind 		cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
    119        1.4     rmind 		sz -= sizeof(uint32_t);
    120        1.4     rmind 	} while (sz);
    121        1.4     rmind 
    122        1.4     rmind 	return cksum;
    123        1.4     rmind }
    124        1.4     rmind 
    125        1.4     rmind /*
    126       1.26     rmind  * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
    127        1.4     rmind  * Note: used for hash function.
    128        1.1     rmind  */
    129        1.4     rmind uint32_t
    130       1.26     rmind npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
    131        1.1     rmind {
    132        1.4     rmind 	uint32_t mix = 0;
    133        1.1     rmind 
    134        1.5     rmind 	KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
    135        1.5     rmind 
    136       1.26     rmind 	for (int i = 0; i < (sz >> 2); i++) {
    137       1.36  christos 		mix ^= a1->word32[i];
    138       1.36  christos 		mix ^= a2->word32[i];
    139        1.4     rmind 	}
    140        1.4     rmind 	return mix;
    141        1.4     rmind }
    142        1.1     rmind 
    143       1.13     rmind /*
    144       1.13     rmind  * npf_addr_mask: apply the mask to a given address and store the result.
    145       1.13     rmind  */
    146       1.13     rmind void
    147       1.13     rmind npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
    148       1.13     rmind     const int alen, npf_addr_t *out)
    149       1.12     rmind {
    150       1.13     rmind 	const int nwords = alen >> 2;
    151       1.12     rmind 	uint_fast8_t length = mask;
    152       1.12     rmind 
    153       1.12     rmind 	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
    154       1.12     rmind 	KASSERT(length <= NPF_MAX_NETMASK);
    155       1.12     rmind 
    156       1.13     rmind 	for (int i = 0; i < nwords; i++) {
    157       1.13     rmind 		uint32_t wordmask;
    158       1.13     rmind 
    159       1.12     rmind 		if (length >= 32) {
    160       1.13     rmind 			wordmask = htonl(0xffffffff);
    161       1.12     rmind 			length -= 32;
    162       1.13     rmind 		} else if (length) {
    163       1.13     rmind 			wordmask = htonl(0xffffffff << (32 - length));
    164       1.13     rmind 			length = 0;
    165       1.12     rmind 		} else {
    166       1.13     rmind 			wordmask = 0;
    167       1.12     rmind 		}
    168       1.36  christos 		out->word32[i] = addr->word32[i] & wordmask;
    169       1.12     rmind 	}
    170       1.12     rmind }
    171       1.12     rmind 
    172       1.12     rmind /*
    173       1.12     rmind  * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
    174       1.12     rmind  *
    175       1.13     rmind  * => Return 0 if equal and negative/positive if less/greater accordingly.
    176       1.12     rmind  * => Ignore the mask, if NPF_NO_NETMASK is specified.
    177       1.12     rmind  */
    178       1.12     rmind int
    179       1.12     rmind npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
    180       1.13     rmind     const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
    181       1.12     rmind {
    182       1.13     rmind 	npf_addr_t realaddr1, realaddr2;
    183       1.12     rmind 
    184       1.12     rmind 	if (mask1 != NPF_NO_NETMASK) {
    185       1.13     rmind 		npf_addr_mask(addr1, mask1, alen, &realaddr1);
    186       1.13     rmind 		addr1 = &realaddr1;
    187       1.12     rmind 	}
    188       1.12     rmind 	if (mask2 != NPF_NO_NETMASK) {
    189       1.13     rmind 		npf_addr_mask(addr2, mask2, alen, &realaddr2);
    190       1.13     rmind 		addr2 = &realaddr2;
    191       1.12     rmind 	}
    192       1.13     rmind 	return memcmp(addr1, addr2, alen);
    193       1.12     rmind }
    194       1.12     rmind 
    195        1.4     rmind /*
    196        1.4     rmind  * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
    197       1.12     rmind  *
    198       1.12     rmind  * => Returns all values in host byte-order.
    199        1.4     rmind  */
    200        1.4     rmind int
    201       1.12     rmind npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
    202        1.4     rmind {
    203       1.19     rmind 	const struct tcphdr *th = npc->npc_l4.tcp;
    204        1.8     rmind 	u_int thlen;
    205        1.1     rmind 
    206        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_TCP));
    207        1.1     rmind 
    208        1.4     rmind 	*seq = ntohl(th->th_seq);
    209        1.4     rmind 	*ack = ntohl(th->th_ack);
    210        1.4     rmind 	*win = (uint32_t)ntohs(th->th_win);
    211        1.8     rmind 	thlen = th->th_off << 2;
    212        1.1     rmind 
    213        1.7    zoltan 	if (npf_iscached(npc, NPC_IP4)) {
    214       1.19     rmind 		const struct ip *ip = npc->npc_ip.v4;
    215       1.21     rmind 		return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
    216       1.12     rmind 	} else if (npf_iscached(npc, NPC_IP6)) {
    217       1.19     rmind 		const struct ip6_hdr *ip6 = npc->npc_ip.v6;
    218  1.37.12.2  pgoyette 		return ntohs(ip6->ip6_plen) -
    219  1.37.12.2  pgoyette 		    (npc->npc_hlen - sizeof(*ip6)) - thlen;
    220        1.7    zoltan 	}
    221        1.7    zoltan 	return 0;
    222        1.1     rmind }
    223        1.1     rmind 
    224        1.1     rmind /*
    225        1.4     rmind  * npf_fetch_tcpopts: parse and return TCP options.
    226        1.1     rmind  */
    227        1.1     rmind bool
    228       1.32     rmind npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
    229        1.1     rmind {
    230       1.32     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    231       1.19     rmind 	const struct tcphdr *th = npc->npc_l4.tcp;
    232        1.4     rmind 	int topts_len, step;
    233  1.37.12.4  pgoyette 	bool setmss = false;
    234  1.37.12.1  pgoyette 	uint8_t *nptr;
    235        1.4     rmind 	uint8_t val;
    236       1.19     rmind 	bool ok;
    237        1.4     rmind 
    238        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_IP46));
    239        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_TCP));
    240       1.10     rmind 
    241        1.4     rmind 	/* Determine if there are any TCP options, get their length. */
    242        1.4     rmind 	topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
    243        1.4     rmind 	if (topts_len <= 0) {
    244        1.4     rmind 		/* No options. */
    245        1.1     rmind 		return false;
    246        1.4     rmind 	}
    247        1.4     rmind 	KASSERT(topts_len <= MAX_TCPOPTLEN);
    248        1.1     rmind 
    249  1.37.12.4  pgoyette 	/* Determine if we want to set or get the mss. */
    250  1.37.12.4  pgoyette 	if (mss) {
    251  1.37.12.4  pgoyette 		setmss = (*mss != 0);
    252  1.37.12.4  pgoyette 	}
    253  1.37.12.4  pgoyette 
    254        1.4     rmind 	/* First step: IP and TCP header up to options. */
    255       1.21     rmind 	step = npc->npc_hlen + sizeof(struct tcphdr);
    256       1.19     rmind 	nbuf_reset(nbuf);
    257        1.4     rmind next:
    258       1.19     rmind 	if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
    259       1.19     rmind 		ok = false;
    260       1.19     rmind 		goto done;
    261        1.4     rmind 	}
    262  1.37.12.1  pgoyette 	val = *nptr;
    263       1.12     rmind 
    264        1.4     rmind 	switch (val) {
    265        1.4     rmind 	case TCPOPT_EOL:
    266        1.4     rmind 		/* Done. */
    267       1.19     rmind 		ok = true;
    268       1.19     rmind 		goto done;
    269        1.4     rmind 	case TCPOPT_NOP:
    270        1.4     rmind 		topts_len--;
    271        1.4     rmind 		step = 1;
    272        1.4     rmind 		break;
    273        1.4     rmind 	case TCPOPT_MAXSEG:
    274  1.37.12.1  pgoyette 		if ((nptr = nbuf_ensure_contig(nbuf, TCPOLEN_MAXSEG)) == NULL) {
    275       1.19     rmind 			ok = false;
    276       1.19     rmind 			goto done;
    277        1.4     rmind 		}
    278        1.4     rmind 		if (mss) {
    279  1.37.12.4  pgoyette 			if (setmss) {
    280  1.37.12.1  pgoyette 				memcpy(nptr + 2, mss, sizeof(uint16_t));
    281       1.19     rmind 			} else {
    282  1.37.12.1  pgoyette 				memcpy(mss, nptr + 2, sizeof(uint16_t));
    283       1.19     rmind 			}
    284        1.4     rmind 		}
    285        1.4     rmind 		topts_len -= TCPOLEN_MAXSEG;
    286  1.37.12.1  pgoyette 		step = TCPOLEN_MAXSEG;
    287        1.4     rmind 		break;
    288        1.4     rmind 	case TCPOPT_WINDOW:
    289       1.10     rmind 		/* TCP Window Scaling (RFC 1323). */
    290  1.37.12.1  pgoyette 		if ((nptr = nbuf_ensure_contig(nbuf, TCPOLEN_WINDOW)) == NULL) {
    291       1.19     rmind 			ok = false;
    292       1.19     rmind 			goto done;
    293        1.4     rmind 		}
    294  1.37.12.1  pgoyette 		val = *(nptr + 2);
    295        1.4     rmind 		*wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
    296        1.4     rmind 		topts_len -= TCPOLEN_WINDOW;
    297  1.37.12.1  pgoyette 		step = TCPOLEN_WINDOW;
    298        1.4     rmind 		break;
    299        1.4     rmind 	default:
    300  1.37.12.1  pgoyette 		if ((nptr = nbuf_ensure_contig(nbuf, 2)) == NULL) {
    301       1.19     rmind 			ok = false;
    302       1.19     rmind 			goto done;
    303        1.4     rmind 		}
    304  1.37.12.1  pgoyette 		val = *(nptr + 1);
    305       1.16     rmind 		if (val < 2 || val > topts_len) {
    306       1.19     rmind 			ok = false;
    307       1.19     rmind 			goto done;
    308        1.4     rmind 		}
    309        1.4     rmind 		topts_len -= val;
    310  1.37.12.1  pgoyette 		step = val;
    311        1.4     rmind 	}
    312       1.12     rmind 
    313        1.6     rmind 	/* Any options left? */
    314        1.4     rmind 	if (__predict_true(topts_len > 0)) {
    315        1.4     rmind 		goto next;
    316        1.4     rmind 	}
    317       1.19     rmind 	ok = true;
    318       1.19     rmind done:
    319       1.19     rmind 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    320       1.32     rmind 		npf_recache(npc);
    321       1.19     rmind 	}
    322       1.19     rmind 	return ok;
    323        1.1     rmind }
    324        1.1     rmind 
    325       1.19     rmind static int
    326       1.19     rmind npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
    327        1.1     rmind {
    328       1.19     rmind 	const void *nptr = nbuf_dataptr(nbuf);
    329       1.19     rmind 	const uint8_t ver = *(const uint8_t *)nptr;
    330       1.19     rmind 	int flags = 0;
    331       1.12     rmind 
    332  1.37.12.2  pgoyette 	/*
    333  1.37.12.2  pgoyette 	 * We intentionally don't read the L4 payload after IPPROTO_AH.
    334  1.37.12.2  pgoyette 	 */
    335  1.37.12.2  pgoyette 
    336        1.4     rmind 	switch (ver >> 4) {
    337       1.12     rmind 	case IPVERSION: {
    338       1.19     rmind 		struct ip *ip;
    339       1.12     rmind 
    340       1.19     rmind 		ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
    341       1.19     rmind 		if (ip == NULL) {
    342  1.37.12.1  pgoyette 			return NPC_FMTERR;
    343        1.4     rmind 		}
    344       1.12     rmind 
    345  1.37.12.3  pgoyette 		/* Retrieve the complete header. */
    346       1.10     rmind 		if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
    347  1.37.12.1  pgoyette 			return NPC_FMTERR;
    348        1.4     rmind 		}
    349  1.37.12.3  pgoyette 		ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
    350  1.37.12.3  pgoyette 		if (ip == NULL) {
    351  1.37.12.3  pgoyette 			return NPC_FMTERR;
    352  1.37.12.3  pgoyette 		}
    353  1.37.12.3  pgoyette 
    354        1.4     rmind 		if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
    355        1.4     rmind 			/* Note fragmentation. */
    356       1.19     rmind 			flags |= NPC_IPFRAG;
    357        1.4     rmind 		}
    358       1.12     rmind 
    359        1.4     rmind 		/* Cache: layer 3 - IPv4. */
    360       1.14     rmind 		npc->npc_alen = sizeof(struct in_addr);
    361       1.28     rmind 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
    362       1.28     rmind 		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
    363        1.7    zoltan 		npc->npc_hlen = ip->ip_hl << 2;
    364       1.19     rmind 		npc->npc_proto = ip->ip_p;
    365       1.19     rmind 
    366       1.19     rmind 		npc->npc_ip.v4 = ip;
    367       1.19     rmind 		flags |= NPC_IP4;
    368        1.4     rmind 		break;
    369       1.12     rmind 	}
    370        1.4     rmind 
    371       1.12     rmind 	case (IPV6_VERSION >> 4): {
    372       1.19     rmind 		struct ip6_hdr *ip6;
    373       1.19     rmind 		struct ip6_ext *ip6e;
    374       1.37  christos 		struct ip6_frag *ip6f;
    375       1.19     rmind 		size_t off, hlen;
    376  1.37.12.1  pgoyette 		int frag_present;
    377       1.19     rmind 
    378       1.19     rmind 		ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
    379       1.19     rmind 		if (ip6 == NULL) {
    380  1.37.12.1  pgoyette 			return NPC_FMTERR;
    381        1.7    zoltan 		}
    382       1.19     rmind 
    383  1.37.12.2  pgoyette 		/*
    384  1.37.12.2  pgoyette 		 * XXX: We don't handle IPv6 Jumbograms.
    385  1.37.12.2  pgoyette 		 */
    386  1.37.12.2  pgoyette 
    387       1.19     rmind 		/* Set initial next-protocol value. */
    388       1.19     rmind 		hlen = sizeof(struct ip6_hdr);
    389       1.19     rmind 		npc->npc_proto = ip6->ip6_nxt;
    390       1.13     rmind 		npc->npc_hlen = hlen;
    391        1.7    zoltan 
    392  1.37.12.1  pgoyette 		frag_present = 0;
    393  1.37.12.1  pgoyette 
    394       1.12     rmind 		/*
    395       1.19     rmind 		 * Advance by the length of the current header.
    396       1.12     rmind 		 */
    397       1.19     rmind 		off = nbuf_offset(nbuf);
    398  1.37.12.1  pgoyette 		while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
    399       1.13     rmind 			/*
    400       1.13     rmind 			 * Determine whether we are going to continue.
    401       1.13     rmind 			 */
    402       1.19     rmind 			switch (npc->npc_proto) {
    403       1.13     rmind 			case IPPROTO_HOPOPTS:
    404        1.7    zoltan 			case IPPROTO_DSTOPTS:
    405        1.7    zoltan 			case IPPROTO_ROUTING:
    406       1.19     rmind 				hlen = (ip6e->ip6e_len + 1) << 3;
    407        1.7    zoltan 				break;
    408        1.7    zoltan 			case IPPROTO_FRAGMENT:
    409  1.37.12.1  pgoyette 				if (frag_present++)
    410  1.37.12.1  pgoyette 					return NPC_FMTERR;
    411       1.37  christos 				ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
    412       1.37  christos 				if (ip6f == NULL)
    413  1.37.12.1  pgoyette 					return NPC_FMTERR;
    414  1.37.12.1  pgoyette 
    415  1.37.12.1  pgoyette 				/* RFC6946: Skip dummy fragments. */
    416  1.37.12.1  pgoyette 				if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
    417  1.37.12.1  pgoyette 				    !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
    418  1.37.12.1  pgoyette 					hlen = sizeof(struct ip6_frag);
    419  1.37.12.1  pgoyette 					break;
    420  1.37.12.1  pgoyette 				}
    421  1.37.12.1  pgoyette 
    422  1.37.12.1  pgoyette 				hlen = 0;
    423  1.37.12.1  pgoyette 				flags |= NPC_IPFRAG;
    424       1.37  christos 
    425        1.7    zoltan 				break;
    426        1.7    zoltan 			default:
    427       1.13     rmind 				hlen = 0;
    428       1.13     rmind 				break;
    429       1.13     rmind 			}
    430       1.13     rmind 
    431       1.13     rmind 			if (!hlen) {
    432        1.7    zoltan 				break;
    433        1.7    zoltan 			}
    434       1.19     rmind 			npc->npc_proto = ip6e->ip6e_nxt;
    435       1.13     rmind 			npc->npc_hlen += hlen;
    436       1.13     rmind 		}
    437        1.7    zoltan 
    438  1.37.12.3  pgoyette 		if (ip6e == NULL) {
    439  1.37.12.3  pgoyette 			return NPC_FMTERR;
    440  1.37.12.3  pgoyette 		}
    441  1.37.12.3  pgoyette 
    442       1.23     rmind 		/*
    443       1.23     rmind 		 * Re-fetch the header pointers (nbufs might have been
    444       1.23     rmind 		 * reallocated).  Restore the original offset (if any).
    445       1.23     rmind 		 */
    446       1.19     rmind 		nbuf_reset(nbuf);
    447       1.23     rmind 		ip6 = nbuf_dataptr(nbuf);
    448       1.19     rmind 		if (off) {
    449       1.19     rmind 			nbuf_advance(nbuf, off, 0);
    450       1.19     rmind 		}
    451       1.19     rmind 
    452       1.12     rmind 		/* Cache: layer 3 - IPv6. */
    453       1.14     rmind 		npc->npc_alen = sizeof(struct in6_addr);
    454       1.28     rmind 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
    455  1.37.12.2  pgoyette 		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;
    456       1.19     rmind 
    457       1.19     rmind 		npc->npc_ip.v6 = ip6;
    458       1.19     rmind 		flags |= NPC_IP6;
    459        1.7    zoltan 		break;
    460       1.12     rmind 	}
    461        1.4     rmind 	default:
    462       1.19     rmind 		break;
    463        1.4     rmind 	}
    464       1.19     rmind 	return flags;
    465        1.1     rmind }
    466        1.1     rmind 
    467        1.1     rmind /*
    468        1.4     rmind  * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
    469       1.12     rmind  * and TCP, UDP or ICMP headers.
    470       1.19     rmind  *
    471       1.19     rmind  * => nbuf offset shall be set accordingly.
    472        1.1     rmind  */
    473       1.10     rmind int
    474       1.32     rmind npf_cache_all(npf_cache_t *npc)
    475        1.1     rmind {
    476       1.32     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    477       1.19     rmind 	int flags, l4flags;
    478       1.19     rmind 	u_int hlen;
    479       1.19     rmind 
    480       1.19     rmind 	/*
    481       1.19     rmind 	 * This routine is a main point where the references are cached,
    482       1.19     rmind 	 * therefore clear the flag as we reset.
    483       1.19     rmind 	 */
    484       1.19     rmind again:
    485       1.19     rmind 	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
    486        1.1     rmind 
    487       1.19     rmind 	/*
    488       1.19     rmind 	 * First, cache the L3 header (IPv4 or IPv6).  If IP packet is
    489       1.19     rmind 	 * fragmented, then we cannot look into L4.
    490       1.19     rmind 	 */
    491       1.19     rmind 	flags = npf_cache_ip(npc, nbuf);
    492  1.37.12.1  pgoyette 	if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
    493  1.37.12.1  pgoyette 	    (flags & NPC_FMTERR) != 0) {
    494  1.37.12.3  pgoyette 		goto out;
    495        1.1     rmind 	}
    496       1.19     rmind 	hlen = npc->npc_hlen;
    497       1.19     rmind 
    498  1.37.12.3  pgoyette 	/*
    499  1.37.12.3  pgoyette 	 * Note: we guarantee that the potential "Query Id" field of the
    500  1.37.12.3  pgoyette 	 * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
    501  1.37.12.3  pgoyette 	 * ICMP ALG.
    502  1.37.12.3  pgoyette 	 */
    503       1.19     rmind 	switch (npc->npc_proto) {
    504        1.1     rmind 	case IPPROTO_TCP:
    505       1.19     rmind 		/* Cache: layer 4 - TCP. */
    506       1.19     rmind 		npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
    507       1.19     rmind 		    sizeof(struct tcphdr));
    508       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_TCP;
    509       1.10     rmind 		break;
    510        1.1     rmind 	case IPPROTO_UDP:
    511       1.19     rmind 		/* Cache: layer 4 - UDP. */
    512       1.19     rmind 		npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
    513       1.19     rmind 		    sizeof(struct udphdr));
    514       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_UDP;
    515       1.10     rmind 		break;
    516        1.1     rmind 	case IPPROTO_ICMP:
    517       1.19     rmind 		/* Cache: layer 4 - ICMPv4. */
    518       1.19     rmind 		npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
    519  1.37.12.3  pgoyette 		    ICMP_MINLEN);
    520       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_ICMP;
    521       1.19     rmind 		break;
    522       1.15       spz 	case IPPROTO_ICMPV6:
    523       1.19     rmind 		/* Cache: layer 4 - ICMPv6. */
    524       1.19     rmind 		npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
    525  1.37.12.3  pgoyette 		    sizeof(struct icmp6_hdr));
    526       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_ICMP;
    527       1.19     rmind 		break;
    528       1.19     rmind 	default:
    529       1.19     rmind 		l4flags = 0;
    530       1.10     rmind 		break;
    531        1.1     rmind 	}
    532       1.19     rmind 
    533  1.37.12.3  pgoyette 	/* Error out if nbuf_advance failed. */
    534  1.37.12.3  pgoyette 	if (l4flags && npc->npc_l4.hdr == NULL) {
    535  1.37.12.3  pgoyette 		goto err;
    536  1.37.12.3  pgoyette 	}
    537  1.37.12.3  pgoyette 
    538       1.19     rmind 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    539       1.19     rmind 		goto again;
    540       1.19     rmind 	}
    541       1.19     rmind 
    542  1.37.12.3  pgoyette 	flags |= l4flags;
    543  1.37.12.3  pgoyette 	npc->npc_info |= flags;
    544  1.37.12.3  pgoyette 	return flags;
    545  1.37.12.3  pgoyette 
    546  1.37.12.3  pgoyette err:
    547  1.37.12.3  pgoyette 	flags = NPC_FMTERR;
    548  1.37.12.3  pgoyette out:
    549  1.37.12.3  pgoyette 	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
    550       1.19     rmind 	npc->npc_info |= flags;
    551       1.19     rmind 	return flags;
    552       1.19     rmind }
    553       1.19     rmind 
    554       1.19     rmind void
    555       1.32     rmind npf_recache(npf_cache_t *npc)
    556       1.19     rmind {
    557       1.32     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    558       1.24    martin 	const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
    559       1.25       mrg 	int flags __diagused;
    560       1.19     rmind 
    561       1.19     rmind 	nbuf_reset(nbuf);
    562       1.19     rmind 	npc->npc_info = 0;
    563       1.32     rmind 	flags = npf_cache_all(npc);
    564       1.32     rmind 
    565       1.19     rmind 	KASSERT((flags & mflags) == mflags);
    566       1.19     rmind 	KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
    567        1.1     rmind }
    568        1.1     rmind 
    569        1.1     rmind /*
    570       1.19     rmind  * npf_rwrip: rewrite required IP address.
    571        1.4     rmind  */
    572        1.4     rmind bool
    573       1.28     rmind npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
    574        1.4     rmind {
    575        1.4     rmind 	KASSERT(npf_iscached(npc, NPC_IP46));
    576       1.28     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    577        1.4     rmind 
    578       1.28     rmind 	memcpy(npc->npc_ips[which], addr, npc->npc_alen);
    579        1.4     rmind 	return true;
    580        1.4     rmind }
    581        1.4     rmind 
    582        1.4     rmind /*
    583       1.19     rmind  * npf_rwrport: rewrite required TCP/UDP port.
    584        1.1     rmind  */
    585        1.1     rmind bool
    586       1.28     rmind npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
    587        1.1     rmind {
    588       1.21     rmind 	const int proto = npc->npc_proto;
    589        1.4     rmind 	in_port_t *oport;
    590        1.1     rmind 
    591        1.4     rmind 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    592        1.1     rmind 	KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
    593       1.28     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    594        1.1     rmind 
    595       1.19     rmind 	/* Get the offset and store the port in it. */
    596        1.4     rmind 	if (proto == IPPROTO_TCP) {
    597       1.19     rmind 		struct tcphdr *th = npc->npc_l4.tcp;
    598       1.28     rmind 		oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
    599        1.1     rmind 	} else {
    600       1.19     rmind 		struct udphdr *uh = npc->npc_l4.udp;
    601       1.28     rmind 		oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
    602        1.1     rmind 	}
    603       1.19     rmind 	memcpy(oport, &port, sizeof(in_port_t));
    604        1.1     rmind 	return true;
    605        1.1     rmind }
    606        1.1     rmind 
    607        1.1     rmind /*
    608       1.19     rmind  * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
    609        1.1     rmind  */
    610        1.1     rmind bool
    611       1.28     rmind npf_rwrcksum(const npf_cache_t *npc, u_int which,
    612       1.19     rmind     const npf_addr_t *addr, const in_port_t port)
    613        1.1     rmind {
    614       1.28     rmind 	const npf_addr_t *oaddr = npc->npc_ips[which];
    615       1.21     rmind 	const int proto = npc->npc_proto;
    616       1.19     rmind 	const int alen = npc->npc_alen;
    617       1.18     rmind 	uint16_t *ocksum;
    618       1.18     rmind 	in_port_t oport;
    619       1.18     rmind 
    620       1.19     rmind 	KASSERT(npf_iscached(npc, NPC_LAYER4));
    621       1.28     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    622       1.18     rmind 
    623        1.4     rmind 	if (npf_iscached(npc, NPC_IP4)) {
    624       1.19     rmind 		struct ip *ip = npc->npc_ip.v4;
    625       1.19     rmind 		uint16_t ipsum = ip->ip_sum;
    626        1.4     rmind 
    627       1.19     rmind 		/* Recalculate IPv4 checksum and rewrite. */
    628       1.19     rmind 		ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
    629        1.4     rmind 	} else {
    630        1.4     rmind 		/* No checksum for IPv6. */
    631        1.4     rmind 		KASSERT(npf_iscached(npc, NPC_IP6));
    632        1.4     rmind 	}
    633        1.4     rmind 
    634       1.18     rmind 	/* Nothing else to do for ICMP. */
    635       1.30     rmind 	if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
    636        1.4     rmind 		return true;
    637        1.4     rmind 	}
    638        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    639        1.4     rmind 
    640       1.18     rmind 	/*
    641       1.18     rmind 	 * Calculate TCP/UDP checksum:
    642       1.18     rmind 	 * - Skip if UDP and the current checksum is zero.
    643       1.18     rmind 	 * - Fixup the IP address change.
    644       1.18     rmind 	 * - Fixup the port change, if required (non-zero).
    645       1.18     rmind 	 */
    646        1.4     rmind 	if (proto == IPPROTO_TCP) {
    647       1.19     rmind 		struct tcphdr *th = npc->npc_l4.tcp;
    648        1.4     rmind 
    649       1.18     rmind 		ocksum = &th->th_sum;
    650       1.28     rmind 		oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
    651        1.4     rmind 	} else {
    652       1.19     rmind 		struct udphdr *uh = npc->npc_l4.udp;
    653        1.4     rmind 
    654        1.4     rmind 		KASSERT(proto == IPPROTO_UDP);
    655       1.18     rmind 		ocksum = &uh->uh_sum;
    656       1.18     rmind 		if (*ocksum == 0) {
    657        1.4     rmind 			/* No need to update. */
    658        1.4     rmind 			return true;
    659        1.4     rmind 		}
    660       1.28     rmind 		oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
    661       1.18     rmind 	}
    662       1.18     rmind 
    663       1.19     rmind 	uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
    664       1.18     rmind 	if (port) {
    665       1.18     rmind 		cksum = npf_fixup16_cksum(cksum, oport, port);
    666        1.4     rmind 	}
    667        1.1     rmind 
    668       1.19     rmind 	/* Rewrite TCP/UDP checksum. */
    669       1.19     rmind 	memcpy(ocksum, &cksum, sizeof(uint16_t));
    670        1.4     rmind 	return true;
    671        1.4     rmind }
    672        1.4     rmind 
    673       1.29     rmind /*
    674       1.30     rmind  * npf_napt_rwr: perform address and/or port translation.
    675       1.30     rmind  */
    676       1.30     rmind int
    677       1.30     rmind npf_napt_rwr(const npf_cache_t *npc, u_int which,
    678       1.30     rmind     const npf_addr_t *addr, const in_addr_t port)
    679       1.30     rmind {
    680       1.30     rmind 	const unsigned proto = npc->npc_proto;
    681       1.30     rmind 
    682       1.30     rmind 	/*
    683       1.30     rmind 	 * Rewrite IP and/or TCP/UDP checksums first, since we need the
    684       1.30     rmind 	 * current (old) address/port for the calculations.  Then perform
    685       1.30     rmind 	 * the address translation i.e. rewrite source or destination.
    686       1.30     rmind 	 */
    687       1.30     rmind 	if (!npf_rwrcksum(npc, which, addr, port)) {
    688       1.30     rmind 		return EINVAL;
    689       1.30     rmind 	}
    690       1.30     rmind 	if (!npf_rwrip(npc, which, addr)) {
    691       1.30     rmind 		return EINVAL;
    692       1.30     rmind 	}
    693       1.30     rmind 	if (port == 0) {
    694       1.30     rmind 		/* Done. */
    695       1.30     rmind 		return 0;
    696       1.30     rmind 	}
    697       1.30     rmind 
    698       1.30     rmind 	switch (proto) {
    699       1.30     rmind 	case IPPROTO_TCP:
    700       1.30     rmind 	case IPPROTO_UDP:
    701       1.30     rmind 		/* Rewrite source/destination port. */
    702       1.30     rmind 		if (!npf_rwrport(npc, which, port)) {
    703       1.30     rmind 			return EINVAL;
    704       1.30     rmind 		}
    705       1.30     rmind 		break;
    706       1.30     rmind 	case IPPROTO_ICMP:
    707       1.30     rmind 	case IPPROTO_ICMPV6:
    708       1.30     rmind 		KASSERT(npf_iscached(npc, NPC_ICMP));
    709       1.30     rmind 		/* Nothing. */
    710       1.30     rmind 		break;
    711       1.30     rmind 	default:
    712       1.30     rmind 		return ENOTSUP;
    713       1.30     rmind 	}
    714       1.30     rmind 	return 0;
    715       1.30     rmind }
    716       1.30     rmind 
    717       1.30     rmind /*
    718       1.29     rmind  * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
    719       1.29     rmind  */
    720       1.29     rmind 
    721       1.29     rmind int
    722       1.29     rmind npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
    723       1.29     rmind     npf_netmask_t len, uint16_t adj)
    724       1.29     rmind {
    725       1.29     rmind 	npf_addr_t *addr = npc->npc_ips[which];
    726       1.29     rmind 	unsigned remnant, word, preflen = len >> 4;
    727       1.29     rmind 	uint32_t sum;
    728       1.29     rmind 
    729       1.29     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    730       1.29     rmind 
    731       1.29     rmind 	if (!npf_iscached(npc, NPC_IP6)) {
    732       1.29     rmind 		return EINVAL;
    733       1.29     rmind 	}
    734       1.29     rmind 	if (len <= 48) {
    735       1.29     rmind 		/*
    736       1.29     rmind 		 * The word to adjust.  Cannot translate the 0xffff
    737       1.29     rmind 		 * subnet if /48 or shorter.
    738       1.29     rmind 		 */
    739       1.29     rmind 		word = 3;
    740       1.36  christos 		if (addr->word16[word] == 0xffff) {
    741       1.29     rmind 			return EINVAL;
    742       1.29     rmind 		}
    743       1.29     rmind 	} else {
    744       1.29     rmind 		/*
    745       1.29     rmind 		 * Also, all 0s or 1s in the host part are disallowed for
    746       1.29     rmind 		 * longer than /48 prefixes.
    747       1.29     rmind 		 */
    748       1.36  christos 		if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
    749       1.36  christos 		    (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
    750       1.29     rmind 			return EINVAL;
    751       1.29     rmind 
    752       1.29     rmind 		/* Determine the 16-bit word to adjust. */
    753       1.29     rmind 		for (word = 4; word < 8; word++)
    754       1.36  christos 			if (addr->word16[word] != 0xffff)
    755       1.29     rmind 				break;
    756       1.29     rmind 	}
    757       1.29     rmind 
    758       1.29     rmind 	/* Rewrite the prefix. */
    759       1.29     rmind 	for (unsigned i = 0; i < preflen; i++) {
    760       1.36  christos 		addr->word16[i] = pref->word16[i];
    761       1.29     rmind 	}
    762       1.29     rmind 
    763       1.29     rmind 	/*
    764       1.29     rmind 	 * If prefix length is within a 16-bit word (not dividable by 16),
    765       1.29     rmind 	 * then prepare a mask, determine the word and adjust it.
    766       1.29     rmind 	 */
    767       1.29     rmind 	if ((remnant = len - (preflen << 4)) != 0) {
    768       1.29     rmind 		const uint16_t wordmask = (1U << remnant) - 1;
    769       1.29     rmind 		const unsigned i = preflen;
    770       1.29     rmind 
    771       1.36  christos 		addr->word16[i] = (pref->word16[i] & wordmask) |
    772       1.36  christos 		    (addr->word16[i] & ~wordmask);
    773       1.29     rmind 	}
    774       1.29     rmind 
    775       1.29     rmind 	/*
    776       1.29     rmind 	 * Performing 1's complement sum/difference.
    777       1.29     rmind 	 */
    778       1.36  christos 	sum = addr->word16[word] + adj;
    779       1.29     rmind 	while (sum >> 16) {
    780       1.29     rmind 		sum = (sum >> 16) + (sum & 0xffff);
    781       1.29     rmind 	}
    782       1.29     rmind 	if (sum == 0xffff) {
    783       1.29     rmind 		/* RFC 1071. */
    784       1.29     rmind 		sum = 0x0000;
    785       1.29     rmind 	}
    786       1.36  christos 	addr->word16[word] = sum;
    787       1.29     rmind 	return 0;
    788       1.29     rmind }
    789       1.29     rmind 
    790       1.13     rmind #if defined(DDB) || defined(_NPF_TESTING)
    791       1.13     rmind 
    792       1.31     rmind const char *
    793       1.31     rmind npf_addr_dump(const npf_addr_t *addr, int alen)
    794       1.13     rmind {
    795       1.31     rmind 	if (alen == sizeof(struct in_addr)) {
    796       1.31     rmind 		struct in_addr ip;
    797       1.31     rmind 		memcpy(&ip, addr, alen);
    798       1.31     rmind 		return inet_ntoa(ip);
    799       1.31     rmind 	}
    800       1.36  christos 	return "[IPv6]";
    801       1.13     rmind }
    802       1.13     rmind 
    803       1.13     rmind #endif
    804