npf_inet.c revision 1.37.12.7 1 1.1 rmind /*-
2 1.29 rmind * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
3 1.1 rmind * All rights reserved.
4 1.1 rmind *
5 1.1 rmind * This material is based upon work partially supported by The
6 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
7 1.1 rmind *
8 1.1 rmind * Redistribution and use in source and binary forms, with or without
9 1.1 rmind * modification, are permitted provided that the following conditions
10 1.1 rmind * are met:
11 1.1 rmind * 1. Redistributions of source code must retain the above copyright
12 1.1 rmind * notice, this list of conditions and the following disclaimer.
13 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer in the
15 1.1 rmind * documentation and/or other materials provided with the distribution.
16 1.1 rmind *
17 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
28 1.1 rmind */
29 1.1 rmind
30 1.1 rmind /*
31 1.22 rmind * Various protocol related helper routines.
32 1.12 rmind *
33 1.12 rmind * This layer manipulates npf_cache_t structure i.e. caches requested headers
34 1.12 rmind * and stores which information was cached in the information bit field.
35 1.12 rmind * It is also responsibility of this layer to update or invalidate the cache
36 1.12 rmind * on rewrites (e.g. by translation routines).
37 1.1 rmind */
38 1.1 rmind
39 1.36 christos #ifdef _KERNEL
40 1.1 rmind #include <sys/cdefs.h>
41 1.37.12.7 pgoyette __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.37.12.7 2018/09/30 01:45:56 pgoyette Exp $");
42 1.1 rmind
43 1.1 rmind #include <sys/param.h>
44 1.11 rmind #include <sys/types.h>
45 1.1 rmind
46 1.4 rmind #include <net/pfil.h>
47 1.4 rmind #include <net/if.h>
48 1.4 rmind #include <net/ethertypes.h>
49 1.4 rmind #include <net/if_ether.h>
50 1.4 rmind
51 1.1 rmind #include <netinet/in_systm.h>
52 1.1 rmind #include <netinet/in.h>
53 1.33 mlelstv #include <netinet6/in6_var.h>
54 1.1 rmind #include <netinet/ip.h>
55 1.4 rmind #include <netinet/ip6.h>
56 1.1 rmind #include <netinet/tcp.h>
57 1.1 rmind #include <netinet/udp.h>
58 1.1 rmind #include <netinet/ip_icmp.h>
59 1.36 christos #endif
60 1.1 rmind
61 1.1 rmind #include "npf_impl.h"
62 1.1 rmind
63 1.1 rmind /*
64 1.27 rmind * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
65 1.1 rmind */
66 1.1 rmind
67 1.1 rmind uint16_t
68 1.1 rmind npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
69 1.1 rmind {
70 1.1 rmind uint32_t sum;
71 1.1 rmind
72 1.1 rmind /*
73 1.1 rmind * RFC 1624:
74 1.1 rmind * HC' = ~(~HC + ~m + m')
75 1.27 rmind *
76 1.27 rmind * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
77 1.1 rmind */
78 1.27 rmind sum = ~cksum & 0xffff;
79 1.27 rmind sum += (~odatum & 0xffff) + ndatum;
80 1.1 rmind sum = (sum >> 16) + (sum & 0xffff);
81 1.1 rmind sum += (sum >> 16);
82 1.1 rmind
83 1.27 rmind return ~sum & 0xffff;
84 1.1 rmind }
85 1.1 rmind
86 1.1 rmind uint16_t
87 1.1 rmind npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
88 1.1 rmind {
89 1.27 rmind uint32_t sum;
90 1.27 rmind
91 1.27 rmind /*
92 1.27 rmind * Checksum 32-bit datum as as two 16-bit. Note, the first
93 1.27 rmind * 32->16 bit reduction is not necessary.
94 1.27 rmind */
95 1.27 rmind sum = ~cksum & 0xffff;
96 1.27 rmind sum += (~odatum & 0xffff) + (ndatum & 0xffff);
97 1.1 rmind
98 1.27 rmind sum += (~odatum >> 16) + (ndatum >> 16);
99 1.27 rmind sum = (sum >> 16) + (sum & 0xffff);
100 1.27 rmind sum += (sum >> 16);
101 1.27 rmind return ~sum & 0xffff;
102 1.1 rmind }
103 1.1 rmind
104 1.1 rmind /*
105 1.4 rmind * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
106 1.4 rmind */
107 1.4 rmind uint16_t
108 1.19 rmind npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
109 1.19 rmind const npf_addr_t *naddr)
110 1.4 rmind {
111 1.19 rmind const uint32_t *oip32 = (const uint32_t *)oaddr;
112 1.19 rmind const uint32_t *nip32 = (const uint32_t *)naddr;
113 1.4 rmind
114 1.4 rmind KASSERT(sz % sizeof(uint32_t) == 0);
115 1.4 rmind do {
116 1.4 rmind cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
117 1.4 rmind sz -= sizeof(uint32_t);
118 1.4 rmind } while (sz);
119 1.4 rmind
120 1.4 rmind return cksum;
121 1.4 rmind }
122 1.4 rmind
123 1.4 rmind /*
124 1.26 rmind * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
125 1.4 rmind * Note: used for hash function.
126 1.1 rmind */
127 1.4 rmind uint32_t
128 1.26 rmind npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
129 1.1 rmind {
130 1.4 rmind uint32_t mix = 0;
131 1.1 rmind
132 1.5 rmind KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
133 1.5 rmind
134 1.26 rmind for (int i = 0; i < (sz >> 2); i++) {
135 1.36 christos mix ^= a1->word32[i];
136 1.36 christos mix ^= a2->word32[i];
137 1.4 rmind }
138 1.4 rmind return mix;
139 1.4 rmind }
140 1.1 rmind
141 1.13 rmind /*
142 1.13 rmind * npf_addr_mask: apply the mask to a given address and store the result.
143 1.13 rmind */
144 1.13 rmind void
145 1.13 rmind npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
146 1.13 rmind const int alen, npf_addr_t *out)
147 1.12 rmind {
148 1.13 rmind const int nwords = alen >> 2;
149 1.12 rmind uint_fast8_t length = mask;
150 1.12 rmind
151 1.12 rmind /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
152 1.12 rmind KASSERT(length <= NPF_MAX_NETMASK);
153 1.12 rmind
154 1.13 rmind for (int i = 0; i < nwords; i++) {
155 1.13 rmind uint32_t wordmask;
156 1.13 rmind
157 1.12 rmind if (length >= 32) {
158 1.13 rmind wordmask = htonl(0xffffffff);
159 1.12 rmind length -= 32;
160 1.13 rmind } else if (length) {
161 1.13 rmind wordmask = htonl(0xffffffff << (32 - length));
162 1.13 rmind length = 0;
163 1.12 rmind } else {
164 1.13 rmind wordmask = 0;
165 1.12 rmind }
166 1.36 christos out->word32[i] = addr->word32[i] & wordmask;
167 1.12 rmind }
168 1.12 rmind }
169 1.12 rmind
170 1.12 rmind /*
171 1.12 rmind * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
172 1.12 rmind *
173 1.13 rmind * => Return 0 if equal and negative/positive if less/greater accordingly.
174 1.12 rmind * => Ignore the mask, if NPF_NO_NETMASK is specified.
175 1.12 rmind */
176 1.12 rmind int
177 1.12 rmind npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
178 1.13 rmind const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
179 1.12 rmind {
180 1.13 rmind npf_addr_t realaddr1, realaddr2;
181 1.12 rmind
182 1.12 rmind if (mask1 != NPF_NO_NETMASK) {
183 1.13 rmind npf_addr_mask(addr1, mask1, alen, &realaddr1);
184 1.13 rmind addr1 = &realaddr1;
185 1.12 rmind }
186 1.12 rmind if (mask2 != NPF_NO_NETMASK) {
187 1.13 rmind npf_addr_mask(addr2, mask2, alen, &realaddr2);
188 1.13 rmind addr2 = &realaddr2;
189 1.12 rmind }
190 1.13 rmind return memcmp(addr1, addr2, alen);
191 1.12 rmind }
192 1.12 rmind
193 1.4 rmind /*
194 1.4 rmind * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
195 1.12 rmind *
196 1.12 rmind * => Returns all values in host byte-order.
197 1.4 rmind */
198 1.4 rmind int
199 1.12 rmind npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
200 1.4 rmind {
201 1.19 rmind const struct tcphdr *th = npc->npc_l4.tcp;
202 1.8 rmind u_int thlen;
203 1.1 rmind
204 1.7 zoltan KASSERT(npf_iscached(npc, NPC_TCP));
205 1.1 rmind
206 1.4 rmind *seq = ntohl(th->th_seq);
207 1.4 rmind *ack = ntohl(th->th_ack);
208 1.4 rmind *win = (uint32_t)ntohs(th->th_win);
209 1.8 rmind thlen = th->th_off << 2;
210 1.1 rmind
211 1.7 zoltan if (npf_iscached(npc, NPC_IP4)) {
212 1.19 rmind const struct ip *ip = npc->npc_ip.v4;
213 1.21 rmind return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
214 1.12 rmind } else if (npf_iscached(npc, NPC_IP6)) {
215 1.19 rmind const struct ip6_hdr *ip6 = npc->npc_ip.v6;
216 1.37.12.2 pgoyette return ntohs(ip6->ip6_plen) -
217 1.37.12.2 pgoyette (npc->npc_hlen - sizeof(*ip6)) - thlen;
218 1.7 zoltan }
219 1.7 zoltan return 0;
220 1.1 rmind }
221 1.1 rmind
222 1.1 rmind /*
223 1.4 rmind * npf_fetch_tcpopts: parse and return TCP options.
224 1.1 rmind */
225 1.1 rmind bool
226 1.32 rmind npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
227 1.1 rmind {
228 1.32 rmind nbuf_t *nbuf = npc->npc_nbuf;
229 1.19 rmind const struct tcphdr *th = npc->npc_l4.tcp;
230 1.37.12.5 pgoyette int cnt, optlen = 0;
231 1.37.12.5 pgoyette uint8_t *cp, opt;
232 1.4 rmind uint8_t val;
233 1.19 rmind bool ok;
234 1.4 rmind
235 1.7 zoltan KASSERT(npf_iscached(npc, NPC_IP46));
236 1.7 zoltan KASSERT(npf_iscached(npc, NPC_TCP));
237 1.10 rmind
238 1.4 rmind /* Determine if there are any TCP options, get their length. */
239 1.37.12.5 pgoyette cnt = (th->th_off << 2) - sizeof(struct tcphdr);
240 1.37.12.5 pgoyette if (cnt <= 0) {
241 1.4 rmind /* No options. */
242 1.1 rmind return false;
243 1.4 rmind }
244 1.37.12.5 pgoyette KASSERT(cnt <= MAX_TCPOPTLEN);
245 1.1 rmind
246 1.37.12.5 pgoyette /* Fetch all the options at once. */
247 1.19 rmind nbuf_reset(nbuf);
248 1.37.12.5 pgoyette const int step = npc->npc_hlen + sizeof(struct tcphdr);
249 1.37.12.5 pgoyette if ((cp = nbuf_advance(nbuf, step, cnt)) == NULL) {
250 1.19 rmind ok = false;
251 1.19 rmind goto done;
252 1.4 rmind }
253 1.12 rmind
254 1.37.12.5 pgoyette /* Scan the options. */
255 1.37.12.5 pgoyette for (; cnt > 0; cnt -= optlen, cp += optlen) {
256 1.37.12.5 pgoyette opt = cp[0];
257 1.37.12.5 pgoyette if (opt == TCPOPT_EOL)
258 1.37.12.5 pgoyette break;
259 1.37.12.5 pgoyette if (opt == TCPOPT_NOP)
260 1.37.12.5 pgoyette optlen = 1;
261 1.37.12.5 pgoyette else {
262 1.37.12.5 pgoyette if (cnt < 2)
263 1.37.12.5 pgoyette break;
264 1.37.12.5 pgoyette optlen = cp[1];
265 1.37.12.5 pgoyette if (optlen < 2 || optlen > cnt)
266 1.37.12.5 pgoyette break;
267 1.37.12.5 pgoyette }
268 1.37.12.5 pgoyette
269 1.37.12.5 pgoyette switch (opt) {
270 1.37.12.5 pgoyette case TCPOPT_MAXSEG:
271 1.37.12.5 pgoyette if (optlen != TCPOLEN_MAXSEG)
272 1.37.12.5 pgoyette continue;
273 1.37.12.5 pgoyette if (mss) {
274 1.37.12.6 pgoyette memcpy(mss, cp + 2, sizeof(uint16_t));
275 1.19 rmind }
276 1.37.12.5 pgoyette break;
277 1.37.12.5 pgoyette case TCPOPT_WINDOW:
278 1.37.12.5 pgoyette if (optlen != TCPOLEN_WINDOW)
279 1.37.12.5 pgoyette continue;
280 1.37.12.5 pgoyette val = *(cp + 2);
281 1.37.12.5 pgoyette *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
282 1.37.12.5 pgoyette break;
283 1.37.12.5 pgoyette default:
284 1.37.12.5 pgoyette break;
285 1.4 rmind }
286 1.4 rmind }
287 1.37.12.5 pgoyette
288 1.19 rmind ok = true;
289 1.19 rmind done:
290 1.19 rmind if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
291 1.32 rmind npf_recache(npc);
292 1.19 rmind }
293 1.19 rmind return ok;
294 1.1 rmind }
295 1.1 rmind
296 1.37.12.6 pgoyette /*
297 1.37.12.6 pgoyette * npf_set_mss: set the MSS.
298 1.37.12.6 pgoyette */
299 1.37.12.6 pgoyette bool
300 1.37.12.6 pgoyette npf_set_mss(npf_cache_t *npc, uint16_t mss, uint16_t *old, uint16_t *new,
301 1.37.12.6 pgoyette bool *mid)
302 1.37.12.6 pgoyette {
303 1.37.12.6 pgoyette nbuf_t *nbuf = npc->npc_nbuf;
304 1.37.12.6 pgoyette const struct tcphdr *th = npc->npc_l4.tcp;
305 1.37.12.6 pgoyette int cnt, optlen = 0;
306 1.37.12.6 pgoyette uint8_t *cp, *base, opt;
307 1.37.12.6 pgoyette bool ok;
308 1.37.12.6 pgoyette
309 1.37.12.6 pgoyette KASSERT(npf_iscached(npc, NPC_IP46));
310 1.37.12.6 pgoyette KASSERT(npf_iscached(npc, NPC_TCP));
311 1.37.12.6 pgoyette
312 1.37.12.6 pgoyette /* Determine if there are any TCP options, get their length. */
313 1.37.12.6 pgoyette cnt = (th->th_off << 2) - sizeof(struct tcphdr);
314 1.37.12.6 pgoyette if (cnt <= 0) {
315 1.37.12.6 pgoyette /* No options. */
316 1.37.12.6 pgoyette return false;
317 1.37.12.6 pgoyette }
318 1.37.12.6 pgoyette KASSERT(cnt <= MAX_TCPOPTLEN);
319 1.37.12.6 pgoyette
320 1.37.12.6 pgoyette /* Fetch all the options at once. */
321 1.37.12.6 pgoyette nbuf_reset(nbuf);
322 1.37.12.6 pgoyette const int step = npc->npc_hlen + sizeof(struct tcphdr);
323 1.37.12.6 pgoyette if ((base = nbuf_advance(nbuf, step, cnt)) == NULL) {
324 1.37.12.6 pgoyette ok = false;
325 1.37.12.6 pgoyette goto done;
326 1.37.12.6 pgoyette }
327 1.37.12.6 pgoyette
328 1.37.12.6 pgoyette /* Scan the options. */
329 1.37.12.6 pgoyette for (cp = base; cnt > 0; cnt -= optlen, cp += optlen) {
330 1.37.12.6 pgoyette opt = cp[0];
331 1.37.12.6 pgoyette if (opt == TCPOPT_EOL)
332 1.37.12.6 pgoyette break;
333 1.37.12.6 pgoyette if (opt == TCPOPT_NOP)
334 1.37.12.6 pgoyette optlen = 1;
335 1.37.12.6 pgoyette else {
336 1.37.12.6 pgoyette if (cnt < 2)
337 1.37.12.6 pgoyette break;
338 1.37.12.6 pgoyette optlen = cp[1];
339 1.37.12.6 pgoyette if (optlen < 2 || optlen > cnt)
340 1.37.12.6 pgoyette break;
341 1.37.12.6 pgoyette }
342 1.37.12.6 pgoyette
343 1.37.12.6 pgoyette switch (opt) {
344 1.37.12.6 pgoyette case TCPOPT_MAXSEG:
345 1.37.12.6 pgoyette if (optlen != TCPOLEN_MAXSEG)
346 1.37.12.6 pgoyette continue;
347 1.37.12.6 pgoyette if (((cp + 2) - base) % sizeof(uint16_t) != 0) {
348 1.37.12.6 pgoyette *mid = true;
349 1.37.12.6 pgoyette memcpy(&old[0], cp + 1, sizeof(uint16_t));
350 1.37.12.6 pgoyette memcpy(&old[1], cp + 3, sizeof(uint16_t));
351 1.37.12.6 pgoyette memcpy(cp + 2, &mss, sizeof(uint16_t));
352 1.37.12.6 pgoyette memcpy(&new[0], cp + 1, sizeof(uint16_t));
353 1.37.12.6 pgoyette memcpy(&new[1], cp + 3, sizeof(uint16_t));
354 1.37.12.6 pgoyette } else {
355 1.37.12.6 pgoyette *mid = false;
356 1.37.12.6 pgoyette memcpy(cp + 2, &mss, sizeof(uint16_t));
357 1.37.12.6 pgoyette }
358 1.37.12.6 pgoyette break;
359 1.37.12.6 pgoyette default:
360 1.37.12.6 pgoyette break;
361 1.37.12.6 pgoyette }
362 1.37.12.6 pgoyette }
363 1.37.12.6 pgoyette
364 1.37.12.6 pgoyette ok = true;
365 1.37.12.6 pgoyette done:
366 1.37.12.6 pgoyette if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
367 1.37.12.6 pgoyette npf_recache(npc);
368 1.37.12.6 pgoyette }
369 1.37.12.6 pgoyette return ok;
370 1.37.12.6 pgoyette }
371 1.37.12.6 pgoyette
372 1.19 rmind static int
373 1.19 rmind npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
374 1.1 rmind {
375 1.19 rmind const void *nptr = nbuf_dataptr(nbuf);
376 1.19 rmind const uint8_t ver = *(const uint8_t *)nptr;
377 1.19 rmind int flags = 0;
378 1.12 rmind
379 1.37.12.2 pgoyette /*
380 1.37.12.2 pgoyette * We intentionally don't read the L4 payload after IPPROTO_AH.
381 1.37.12.2 pgoyette */
382 1.37.12.2 pgoyette
383 1.4 rmind switch (ver >> 4) {
384 1.12 rmind case IPVERSION: {
385 1.19 rmind struct ip *ip;
386 1.12 rmind
387 1.19 rmind ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
388 1.19 rmind if (ip == NULL) {
389 1.37.12.1 pgoyette return NPC_FMTERR;
390 1.4 rmind }
391 1.12 rmind
392 1.37.12.3 pgoyette /* Retrieve the complete header. */
393 1.10 rmind if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
394 1.37.12.1 pgoyette return NPC_FMTERR;
395 1.4 rmind }
396 1.37.12.3 pgoyette ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
397 1.37.12.3 pgoyette if (ip == NULL) {
398 1.37.12.3 pgoyette return NPC_FMTERR;
399 1.37.12.3 pgoyette }
400 1.37.12.3 pgoyette
401 1.4 rmind if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
402 1.4 rmind /* Note fragmentation. */
403 1.19 rmind flags |= NPC_IPFRAG;
404 1.4 rmind }
405 1.12 rmind
406 1.4 rmind /* Cache: layer 3 - IPv4. */
407 1.14 rmind npc->npc_alen = sizeof(struct in_addr);
408 1.28 rmind npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
409 1.28 rmind npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
410 1.7 zoltan npc->npc_hlen = ip->ip_hl << 2;
411 1.19 rmind npc->npc_proto = ip->ip_p;
412 1.19 rmind
413 1.19 rmind npc->npc_ip.v4 = ip;
414 1.19 rmind flags |= NPC_IP4;
415 1.4 rmind break;
416 1.12 rmind }
417 1.4 rmind
418 1.12 rmind case (IPV6_VERSION >> 4): {
419 1.19 rmind struct ip6_hdr *ip6;
420 1.19 rmind struct ip6_ext *ip6e;
421 1.37 christos struct ip6_frag *ip6f;
422 1.19 rmind size_t off, hlen;
423 1.37.12.1 pgoyette int frag_present;
424 1.19 rmind
425 1.19 rmind ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
426 1.19 rmind if (ip6 == NULL) {
427 1.37.12.1 pgoyette return NPC_FMTERR;
428 1.7 zoltan }
429 1.19 rmind
430 1.37.12.2 pgoyette /*
431 1.37.12.2 pgoyette * XXX: We don't handle IPv6 Jumbograms.
432 1.37.12.2 pgoyette */
433 1.37.12.2 pgoyette
434 1.19 rmind /* Set initial next-protocol value. */
435 1.19 rmind hlen = sizeof(struct ip6_hdr);
436 1.19 rmind npc->npc_proto = ip6->ip6_nxt;
437 1.13 rmind npc->npc_hlen = hlen;
438 1.7 zoltan
439 1.37.12.1 pgoyette frag_present = 0;
440 1.37.12.1 pgoyette
441 1.12 rmind /*
442 1.19 rmind * Advance by the length of the current header.
443 1.12 rmind */
444 1.19 rmind off = nbuf_offset(nbuf);
445 1.37.12.1 pgoyette while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
446 1.13 rmind /*
447 1.13 rmind * Determine whether we are going to continue.
448 1.13 rmind */
449 1.19 rmind switch (npc->npc_proto) {
450 1.13 rmind case IPPROTO_HOPOPTS:
451 1.7 zoltan case IPPROTO_DSTOPTS:
452 1.7 zoltan case IPPROTO_ROUTING:
453 1.19 rmind hlen = (ip6e->ip6e_len + 1) << 3;
454 1.7 zoltan break;
455 1.7 zoltan case IPPROTO_FRAGMENT:
456 1.37.12.1 pgoyette if (frag_present++)
457 1.37.12.1 pgoyette return NPC_FMTERR;
458 1.37 christos ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
459 1.37 christos if (ip6f == NULL)
460 1.37.12.1 pgoyette return NPC_FMTERR;
461 1.37.12.1 pgoyette
462 1.37.12.1 pgoyette /* RFC6946: Skip dummy fragments. */
463 1.37.12.1 pgoyette if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
464 1.37.12.1 pgoyette !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
465 1.37.12.1 pgoyette hlen = sizeof(struct ip6_frag);
466 1.37.12.1 pgoyette break;
467 1.37.12.1 pgoyette }
468 1.37.12.1 pgoyette
469 1.37.12.1 pgoyette hlen = 0;
470 1.37.12.1 pgoyette flags |= NPC_IPFRAG;
471 1.37 christos
472 1.7 zoltan break;
473 1.7 zoltan default:
474 1.13 rmind hlen = 0;
475 1.13 rmind break;
476 1.13 rmind }
477 1.13 rmind
478 1.13 rmind if (!hlen) {
479 1.7 zoltan break;
480 1.7 zoltan }
481 1.19 rmind npc->npc_proto = ip6e->ip6e_nxt;
482 1.13 rmind npc->npc_hlen += hlen;
483 1.13 rmind }
484 1.7 zoltan
485 1.37.12.3 pgoyette if (ip6e == NULL) {
486 1.37.12.3 pgoyette return NPC_FMTERR;
487 1.37.12.3 pgoyette }
488 1.37.12.3 pgoyette
489 1.23 rmind /*
490 1.23 rmind * Re-fetch the header pointers (nbufs might have been
491 1.23 rmind * reallocated). Restore the original offset (if any).
492 1.23 rmind */
493 1.19 rmind nbuf_reset(nbuf);
494 1.23 rmind ip6 = nbuf_dataptr(nbuf);
495 1.19 rmind if (off) {
496 1.19 rmind nbuf_advance(nbuf, off, 0);
497 1.19 rmind }
498 1.19 rmind
499 1.12 rmind /* Cache: layer 3 - IPv6. */
500 1.14 rmind npc->npc_alen = sizeof(struct in6_addr);
501 1.28 rmind npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
502 1.37.12.2 pgoyette npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;
503 1.19 rmind
504 1.19 rmind npc->npc_ip.v6 = ip6;
505 1.19 rmind flags |= NPC_IP6;
506 1.7 zoltan break;
507 1.12 rmind }
508 1.4 rmind default:
509 1.19 rmind break;
510 1.4 rmind }
511 1.19 rmind return flags;
512 1.1 rmind }
513 1.1 rmind
514 1.1 rmind /*
515 1.4 rmind * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
516 1.12 rmind * and TCP, UDP or ICMP headers.
517 1.19 rmind *
518 1.19 rmind * => nbuf offset shall be set accordingly.
519 1.1 rmind */
520 1.10 rmind int
521 1.32 rmind npf_cache_all(npf_cache_t *npc)
522 1.1 rmind {
523 1.32 rmind nbuf_t *nbuf = npc->npc_nbuf;
524 1.19 rmind int flags, l4flags;
525 1.19 rmind u_int hlen;
526 1.19 rmind
527 1.19 rmind /*
528 1.19 rmind * This routine is a main point where the references are cached,
529 1.19 rmind * therefore clear the flag as we reset.
530 1.19 rmind */
531 1.19 rmind again:
532 1.19 rmind nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
533 1.1 rmind
534 1.19 rmind /*
535 1.19 rmind * First, cache the L3 header (IPv4 or IPv6). If IP packet is
536 1.19 rmind * fragmented, then we cannot look into L4.
537 1.19 rmind */
538 1.19 rmind flags = npf_cache_ip(npc, nbuf);
539 1.37.12.1 pgoyette if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
540 1.37.12.1 pgoyette (flags & NPC_FMTERR) != 0) {
541 1.37.12.3 pgoyette goto out;
542 1.1 rmind }
543 1.19 rmind hlen = npc->npc_hlen;
544 1.19 rmind
545 1.37.12.3 pgoyette /*
546 1.37.12.3 pgoyette * Note: we guarantee that the potential "Query Id" field of the
547 1.37.12.3 pgoyette * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
548 1.37.12.3 pgoyette * ICMP ALG.
549 1.37.12.3 pgoyette */
550 1.19 rmind switch (npc->npc_proto) {
551 1.1 rmind case IPPROTO_TCP:
552 1.19 rmind /* Cache: layer 4 - TCP. */
553 1.19 rmind npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
554 1.19 rmind sizeof(struct tcphdr));
555 1.19 rmind l4flags = NPC_LAYER4 | NPC_TCP;
556 1.10 rmind break;
557 1.1 rmind case IPPROTO_UDP:
558 1.19 rmind /* Cache: layer 4 - UDP. */
559 1.19 rmind npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
560 1.19 rmind sizeof(struct udphdr));
561 1.19 rmind l4flags = NPC_LAYER4 | NPC_UDP;
562 1.10 rmind break;
563 1.1 rmind case IPPROTO_ICMP:
564 1.19 rmind /* Cache: layer 4 - ICMPv4. */
565 1.19 rmind npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
566 1.37.12.3 pgoyette ICMP_MINLEN);
567 1.19 rmind l4flags = NPC_LAYER4 | NPC_ICMP;
568 1.19 rmind break;
569 1.15 spz case IPPROTO_ICMPV6:
570 1.19 rmind /* Cache: layer 4 - ICMPv6. */
571 1.19 rmind npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
572 1.37.12.3 pgoyette sizeof(struct icmp6_hdr));
573 1.19 rmind l4flags = NPC_LAYER4 | NPC_ICMP;
574 1.19 rmind break;
575 1.19 rmind default:
576 1.19 rmind l4flags = 0;
577 1.10 rmind break;
578 1.1 rmind }
579 1.19 rmind
580 1.37.12.3 pgoyette /* Error out if nbuf_advance failed. */
581 1.37.12.3 pgoyette if (l4flags && npc->npc_l4.hdr == NULL) {
582 1.37.12.3 pgoyette goto err;
583 1.37.12.3 pgoyette }
584 1.37.12.3 pgoyette
585 1.19 rmind if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
586 1.19 rmind goto again;
587 1.19 rmind }
588 1.19 rmind
589 1.37.12.3 pgoyette flags |= l4flags;
590 1.37.12.3 pgoyette npc->npc_info |= flags;
591 1.37.12.3 pgoyette return flags;
592 1.37.12.3 pgoyette
593 1.37.12.3 pgoyette err:
594 1.37.12.3 pgoyette flags = NPC_FMTERR;
595 1.37.12.3 pgoyette out:
596 1.37.12.3 pgoyette nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
597 1.19 rmind npc->npc_info |= flags;
598 1.19 rmind return flags;
599 1.19 rmind }
600 1.19 rmind
601 1.19 rmind void
602 1.32 rmind npf_recache(npf_cache_t *npc)
603 1.19 rmind {
604 1.32 rmind nbuf_t *nbuf = npc->npc_nbuf;
605 1.24 martin const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
606 1.25 mrg int flags __diagused;
607 1.19 rmind
608 1.19 rmind nbuf_reset(nbuf);
609 1.19 rmind npc->npc_info = 0;
610 1.32 rmind flags = npf_cache_all(npc);
611 1.32 rmind
612 1.19 rmind KASSERT((flags & mflags) == mflags);
613 1.19 rmind KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
614 1.1 rmind }
615 1.1 rmind
616 1.1 rmind /*
617 1.19 rmind * npf_rwrip: rewrite required IP address.
618 1.4 rmind */
619 1.4 rmind bool
620 1.28 rmind npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
621 1.4 rmind {
622 1.4 rmind KASSERT(npf_iscached(npc, NPC_IP46));
623 1.28 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
624 1.4 rmind
625 1.28 rmind memcpy(npc->npc_ips[which], addr, npc->npc_alen);
626 1.4 rmind return true;
627 1.4 rmind }
628 1.4 rmind
629 1.4 rmind /*
630 1.19 rmind * npf_rwrport: rewrite required TCP/UDP port.
631 1.1 rmind */
632 1.1 rmind bool
633 1.28 rmind npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
634 1.1 rmind {
635 1.21 rmind const int proto = npc->npc_proto;
636 1.4 rmind in_port_t *oport;
637 1.1 rmind
638 1.4 rmind KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
639 1.1 rmind KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
640 1.28 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
641 1.1 rmind
642 1.19 rmind /* Get the offset and store the port in it. */
643 1.4 rmind if (proto == IPPROTO_TCP) {
644 1.19 rmind struct tcphdr *th = npc->npc_l4.tcp;
645 1.28 rmind oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
646 1.1 rmind } else {
647 1.19 rmind struct udphdr *uh = npc->npc_l4.udp;
648 1.28 rmind oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
649 1.1 rmind }
650 1.19 rmind memcpy(oport, &port, sizeof(in_port_t));
651 1.1 rmind return true;
652 1.1 rmind }
653 1.1 rmind
654 1.1 rmind /*
655 1.19 rmind * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
656 1.1 rmind */
657 1.1 rmind bool
658 1.28 rmind npf_rwrcksum(const npf_cache_t *npc, u_int which,
659 1.19 rmind const npf_addr_t *addr, const in_port_t port)
660 1.1 rmind {
661 1.28 rmind const npf_addr_t *oaddr = npc->npc_ips[which];
662 1.21 rmind const int proto = npc->npc_proto;
663 1.19 rmind const int alen = npc->npc_alen;
664 1.18 rmind uint16_t *ocksum;
665 1.18 rmind in_port_t oport;
666 1.18 rmind
667 1.19 rmind KASSERT(npf_iscached(npc, NPC_LAYER4));
668 1.28 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
669 1.18 rmind
670 1.4 rmind if (npf_iscached(npc, NPC_IP4)) {
671 1.19 rmind struct ip *ip = npc->npc_ip.v4;
672 1.19 rmind uint16_t ipsum = ip->ip_sum;
673 1.4 rmind
674 1.19 rmind /* Recalculate IPv4 checksum and rewrite. */
675 1.19 rmind ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
676 1.4 rmind } else {
677 1.4 rmind /* No checksum for IPv6. */
678 1.4 rmind KASSERT(npf_iscached(npc, NPC_IP6));
679 1.4 rmind }
680 1.4 rmind
681 1.18 rmind /* Nothing else to do for ICMP. */
682 1.30 rmind if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
683 1.4 rmind return true;
684 1.4 rmind }
685 1.7 zoltan KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
686 1.4 rmind
687 1.18 rmind /*
688 1.18 rmind * Calculate TCP/UDP checksum:
689 1.18 rmind * - Skip if UDP and the current checksum is zero.
690 1.18 rmind * - Fixup the IP address change.
691 1.18 rmind * - Fixup the port change, if required (non-zero).
692 1.18 rmind */
693 1.4 rmind if (proto == IPPROTO_TCP) {
694 1.19 rmind struct tcphdr *th = npc->npc_l4.tcp;
695 1.4 rmind
696 1.18 rmind ocksum = &th->th_sum;
697 1.28 rmind oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
698 1.4 rmind } else {
699 1.19 rmind struct udphdr *uh = npc->npc_l4.udp;
700 1.4 rmind
701 1.4 rmind KASSERT(proto == IPPROTO_UDP);
702 1.18 rmind ocksum = &uh->uh_sum;
703 1.18 rmind if (*ocksum == 0) {
704 1.4 rmind /* No need to update. */
705 1.4 rmind return true;
706 1.4 rmind }
707 1.28 rmind oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
708 1.18 rmind }
709 1.18 rmind
710 1.19 rmind uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
711 1.18 rmind if (port) {
712 1.18 rmind cksum = npf_fixup16_cksum(cksum, oport, port);
713 1.4 rmind }
714 1.1 rmind
715 1.19 rmind /* Rewrite TCP/UDP checksum. */
716 1.19 rmind memcpy(ocksum, &cksum, sizeof(uint16_t));
717 1.4 rmind return true;
718 1.4 rmind }
719 1.4 rmind
720 1.29 rmind /*
721 1.30 rmind * npf_napt_rwr: perform address and/or port translation.
722 1.30 rmind */
723 1.30 rmind int
724 1.30 rmind npf_napt_rwr(const npf_cache_t *npc, u_int which,
725 1.30 rmind const npf_addr_t *addr, const in_addr_t port)
726 1.30 rmind {
727 1.30 rmind const unsigned proto = npc->npc_proto;
728 1.30 rmind
729 1.30 rmind /*
730 1.30 rmind * Rewrite IP and/or TCP/UDP checksums first, since we need the
731 1.30 rmind * current (old) address/port for the calculations. Then perform
732 1.30 rmind * the address translation i.e. rewrite source or destination.
733 1.30 rmind */
734 1.30 rmind if (!npf_rwrcksum(npc, which, addr, port)) {
735 1.30 rmind return EINVAL;
736 1.30 rmind }
737 1.30 rmind if (!npf_rwrip(npc, which, addr)) {
738 1.30 rmind return EINVAL;
739 1.30 rmind }
740 1.30 rmind if (port == 0) {
741 1.30 rmind /* Done. */
742 1.30 rmind return 0;
743 1.30 rmind }
744 1.30 rmind
745 1.30 rmind switch (proto) {
746 1.30 rmind case IPPROTO_TCP:
747 1.30 rmind case IPPROTO_UDP:
748 1.30 rmind /* Rewrite source/destination port. */
749 1.30 rmind if (!npf_rwrport(npc, which, port)) {
750 1.30 rmind return EINVAL;
751 1.30 rmind }
752 1.30 rmind break;
753 1.30 rmind case IPPROTO_ICMP:
754 1.30 rmind case IPPROTO_ICMPV6:
755 1.30 rmind KASSERT(npf_iscached(npc, NPC_ICMP));
756 1.30 rmind /* Nothing. */
757 1.30 rmind break;
758 1.30 rmind default:
759 1.30 rmind return ENOTSUP;
760 1.30 rmind }
761 1.30 rmind return 0;
762 1.30 rmind }
763 1.30 rmind
764 1.30 rmind /*
765 1.29 rmind * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
766 1.29 rmind */
767 1.29 rmind
768 1.29 rmind int
769 1.29 rmind npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
770 1.29 rmind npf_netmask_t len, uint16_t adj)
771 1.29 rmind {
772 1.29 rmind npf_addr_t *addr = npc->npc_ips[which];
773 1.29 rmind unsigned remnant, word, preflen = len >> 4;
774 1.29 rmind uint32_t sum;
775 1.29 rmind
776 1.29 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
777 1.29 rmind
778 1.29 rmind if (!npf_iscached(npc, NPC_IP6)) {
779 1.29 rmind return EINVAL;
780 1.29 rmind }
781 1.29 rmind if (len <= 48) {
782 1.29 rmind /*
783 1.29 rmind * The word to adjust. Cannot translate the 0xffff
784 1.29 rmind * subnet if /48 or shorter.
785 1.29 rmind */
786 1.29 rmind word = 3;
787 1.36 christos if (addr->word16[word] == 0xffff) {
788 1.29 rmind return EINVAL;
789 1.29 rmind }
790 1.29 rmind } else {
791 1.29 rmind /*
792 1.29 rmind * Also, all 0s or 1s in the host part are disallowed for
793 1.29 rmind * longer than /48 prefixes.
794 1.29 rmind */
795 1.36 christos if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
796 1.36 christos (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
797 1.29 rmind return EINVAL;
798 1.29 rmind
799 1.29 rmind /* Determine the 16-bit word to adjust. */
800 1.29 rmind for (word = 4; word < 8; word++)
801 1.36 christos if (addr->word16[word] != 0xffff)
802 1.29 rmind break;
803 1.29 rmind }
804 1.29 rmind
805 1.29 rmind /* Rewrite the prefix. */
806 1.29 rmind for (unsigned i = 0; i < preflen; i++) {
807 1.36 christos addr->word16[i] = pref->word16[i];
808 1.29 rmind }
809 1.29 rmind
810 1.29 rmind /*
811 1.29 rmind * If prefix length is within a 16-bit word (not dividable by 16),
812 1.29 rmind * then prepare a mask, determine the word and adjust it.
813 1.29 rmind */
814 1.29 rmind if ((remnant = len - (preflen << 4)) != 0) {
815 1.29 rmind const uint16_t wordmask = (1U << remnant) - 1;
816 1.29 rmind const unsigned i = preflen;
817 1.29 rmind
818 1.36 christos addr->word16[i] = (pref->word16[i] & wordmask) |
819 1.36 christos (addr->word16[i] & ~wordmask);
820 1.29 rmind }
821 1.29 rmind
822 1.29 rmind /*
823 1.29 rmind * Performing 1's complement sum/difference.
824 1.29 rmind */
825 1.36 christos sum = addr->word16[word] + adj;
826 1.29 rmind while (sum >> 16) {
827 1.29 rmind sum = (sum >> 16) + (sum & 0xffff);
828 1.29 rmind }
829 1.29 rmind if (sum == 0xffff) {
830 1.29 rmind /* RFC 1071. */
831 1.29 rmind sum = 0x0000;
832 1.29 rmind }
833 1.36 christos addr->word16[word] = sum;
834 1.29 rmind return 0;
835 1.29 rmind }
836 1.29 rmind
837 1.13 rmind #if defined(DDB) || defined(_NPF_TESTING)
838 1.13 rmind
839 1.31 rmind const char *
840 1.31 rmind npf_addr_dump(const npf_addr_t *addr, int alen)
841 1.13 rmind {
842 1.31 rmind if (alen == sizeof(struct in_addr)) {
843 1.31 rmind struct in_addr ip;
844 1.31 rmind memcpy(&ip, addr, alen);
845 1.31 rmind return inet_ntoa(ip);
846 1.31 rmind }
847 1.36 christos return "[IPv6]";
848 1.13 rmind }
849 1.13 rmind
850 1.13 rmind #endif
851