Home | History | Annotate | Line # | Download | only in npf
npf_inet.c revision 1.37.12.8
      1        1.1     rmind /*-
      2       1.29     rmind  * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
      3        1.1     rmind  * All rights reserved.
      4        1.1     rmind  *
      5        1.1     rmind  * This material is based upon work partially supported by The
      6        1.1     rmind  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      7        1.1     rmind  *
      8        1.1     rmind  * Redistribution and use in source and binary forms, with or without
      9        1.1     rmind  * modification, are permitted provided that the following conditions
     10        1.1     rmind  * are met:
     11        1.1     rmind  * 1. Redistributions of source code must retain the above copyright
     12        1.1     rmind  *    notice, this list of conditions and the following disclaimer.
     13        1.1     rmind  * 2. Redistributions in binary form must reproduce the above copyright
     14        1.1     rmind  *    notice, this list of conditions and the following disclaimer in the
     15        1.1     rmind  *    documentation and/or other materials provided with the distribution.
     16        1.1     rmind  *
     17        1.1     rmind  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     18        1.1     rmind  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19        1.1     rmind  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20        1.1     rmind  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     21        1.1     rmind  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22        1.1     rmind  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23        1.1     rmind  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24        1.1     rmind  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25        1.1     rmind  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26        1.1     rmind  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27        1.1     rmind  * POSSIBILITY OF SUCH DAMAGE.
     28        1.1     rmind  */
     29        1.1     rmind 
     30        1.1     rmind /*
     31       1.22     rmind  * Various protocol related helper routines.
     32       1.12     rmind  *
     33       1.12     rmind  * This layer manipulates npf_cache_t structure i.e. caches requested headers
     34       1.12     rmind  * and stores which information was cached in the information bit field.
     35       1.12     rmind  * It is also responsibility of this layer to update or invalidate the cache
     36       1.12     rmind  * on rewrites (e.g. by translation routines).
     37        1.1     rmind  */
     38        1.1     rmind 
     39       1.36  christos #ifdef _KERNEL
     40        1.1     rmind #include <sys/cdefs.h>
     41  1.37.12.8  pgoyette __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.37.12.8 2019/01/26 22:00:37 pgoyette Exp $");
     42        1.1     rmind 
     43        1.1     rmind #include <sys/param.h>
     44       1.11     rmind #include <sys/types.h>
     45        1.1     rmind 
     46        1.4     rmind #include <net/pfil.h>
     47        1.4     rmind #include <net/if.h>
     48        1.4     rmind #include <net/ethertypes.h>
     49        1.4     rmind #include <net/if_ether.h>
     50        1.4     rmind 
     51        1.1     rmind #include <netinet/in_systm.h>
     52        1.1     rmind #include <netinet/in.h>
     53       1.33   mlelstv #include <netinet6/in6_var.h>
     54        1.1     rmind #include <netinet/ip.h>
     55        1.4     rmind #include <netinet/ip6.h>
     56        1.1     rmind #include <netinet/tcp.h>
     57        1.1     rmind #include <netinet/udp.h>
     58        1.1     rmind #include <netinet/ip_icmp.h>
     59       1.36  christos #endif
     60        1.1     rmind 
     61        1.1     rmind #include "npf_impl.h"
     62        1.1     rmind 
     63        1.1     rmind /*
     64       1.27     rmind  * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
     65        1.1     rmind  */
     66        1.1     rmind 
     67        1.1     rmind uint16_t
     68        1.1     rmind npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
     69        1.1     rmind {
     70        1.1     rmind 	uint32_t sum;
     71        1.1     rmind 
     72        1.1     rmind 	/*
     73        1.1     rmind 	 * RFC 1624:
     74        1.1     rmind 	 *	HC' = ~(~HC + ~m + m')
     75       1.27     rmind 	 *
     76       1.27     rmind 	 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
     77        1.1     rmind 	 */
     78       1.27     rmind 	sum = ~cksum & 0xffff;
     79       1.27     rmind 	sum += (~odatum & 0xffff) + ndatum;
     80        1.1     rmind 	sum = (sum >> 16) + (sum & 0xffff);
     81        1.1     rmind 	sum += (sum >> 16);
     82        1.1     rmind 
     83       1.27     rmind 	return ~sum & 0xffff;
     84        1.1     rmind }
     85        1.1     rmind 
     86        1.1     rmind uint16_t
     87        1.1     rmind npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
     88        1.1     rmind {
     89       1.27     rmind 	uint32_t sum;
     90       1.27     rmind 
     91       1.27     rmind 	/*
     92       1.27     rmind 	 * Checksum 32-bit datum as as two 16-bit.  Note, the first
     93       1.27     rmind 	 * 32->16 bit reduction is not necessary.
     94       1.27     rmind 	 */
     95       1.27     rmind 	sum = ~cksum & 0xffff;
     96       1.27     rmind 	sum += (~odatum & 0xffff) + (ndatum & 0xffff);
     97        1.1     rmind 
     98       1.27     rmind 	sum += (~odatum >> 16) + (ndatum >> 16);
     99       1.27     rmind 	sum = (sum >> 16) + (sum & 0xffff);
    100       1.27     rmind 	sum += (sum >> 16);
    101       1.27     rmind 	return ~sum & 0xffff;
    102        1.1     rmind }
    103        1.1     rmind 
    104        1.1     rmind /*
    105        1.4     rmind  * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
    106        1.4     rmind  */
    107        1.4     rmind uint16_t
    108       1.19     rmind npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
    109       1.19     rmind     const npf_addr_t *naddr)
    110        1.4     rmind {
    111       1.19     rmind 	const uint32_t *oip32 = (const uint32_t *)oaddr;
    112       1.19     rmind 	const uint32_t *nip32 = (const uint32_t *)naddr;
    113        1.4     rmind 
    114        1.4     rmind 	KASSERT(sz % sizeof(uint32_t) == 0);
    115        1.4     rmind 	do {
    116        1.4     rmind 		cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
    117        1.4     rmind 		sz -= sizeof(uint32_t);
    118        1.4     rmind 	} while (sz);
    119        1.4     rmind 
    120        1.4     rmind 	return cksum;
    121        1.4     rmind }
    122        1.4     rmind 
    123        1.4     rmind /*
    124       1.26     rmind  * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
    125        1.4     rmind  * Note: used for hash function.
    126        1.1     rmind  */
    127        1.4     rmind uint32_t
    128  1.37.12.8  pgoyette npf_addr_mix(const int alen, const npf_addr_t *a1, const npf_addr_t *a2)
    129        1.1     rmind {
    130  1.37.12.8  pgoyette 	const int nwords = alen >> 2;
    131        1.4     rmind 	uint32_t mix = 0;
    132        1.1     rmind 
    133  1.37.12.8  pgoyette 	KASSERT(alen > 0 && a1 != NULL && a2 != NULL);
    134        1.5     rmind 
    135  1.37.12.8  pgoyette 	for (int i = 0; i < nwords; i++) {
    136       1.36  christos 		mix ^= a1->word32[i];
    137       1.36  christos 		mix ^= a2->word32[i];
    138        1.4     rmind 	}
    139        1.4     rmind 	return mix;
    140        1.4     rmind }
    141        1.1     rmind 
    142       1.13     rmind /*
    143       1.13     rmind  * npf_addr_mask: apply the mask to a given address and store the result.
    144       1.13     rmind  */
    145       1.13     rmind void
    146       1.13     rmind npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
    147       1.13     rmind     const int alen, npf_addr_t *out)
    148       1.12     rmind {
    149       1.13     rmind 	const int nwords = alen >> 2;
    150       1.12     rmind 	uint_fast8_t length = mask;
    151       1.12     rmind 
    152       1.12     rmind 	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
    153       1.12     rmind 	KASSERT(length <= NPF_MAX_NETMASK);
    154       1.12     rmind 
    155       1.13     rmind 	for (int i = 0; i < nwords; i++) {
    156       1.13     rmind 		uint32_t wordmask;
    157       1.13     rmind 
    158       1.12     rmind 		if (length >= 32) {
    159       1.13     rmind 			wordmask = htonl(0xffffffff);
    160       1.12     rmind 			length -= 32;
    161       1.13     rmind 		} else if (length) {
    162       1.13     rmind 			wordmask = htonl(0xffffffff << (32 - length));
    163       1.13     rmind 			length = 0;
    164       1.12     rmind 		} else {
    165       1.13     rmind 			wordmask = 0;
    166       1.12     rmind 		}
    167       1.36  christos 		out->word32[i] = addr->word32[i] & wordmask;
    168       1.12     rmind 	}
    169       1.12     rmind }
    170       1.12     rmind 
    171       1.12     rmind /*
    172  1.37.12.8  pgoyette  * npf_addr_bitor: bitwise OR the host part (given the netmask).
    173  1.37.12.8  pgoyette  * Zero mask can be used to OR the entire address.
    174  1.37.12.8  pgoyette  */
    175  1.37.12.8  pgoyette void
    176  1.37.12.8  pgoyette npf_addr_bitor(const npf_addr_t *addr, const npf_netmask_t mask,
    177  1.37.12.8  pgoyette     const int alen, npf_addr_t *out)
    178  1.37.12.8  pgoyette {
    179  1.37.12.8  pgoyette 	const int nwords = alen >> 2;
    180  1.37.12.8  pgoyette 	uint_fast8_t length = mask;
    181  1.37.12.8  pgoyette 
    182  1.37.12.8  pgoyette 	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
    183  1.37.12.8  pgoyette 	KASSERT(length <= NPF_MAX_NETMASK);
    184  1.37.12.8  pgoyette 
    185  1.37.12.8  pgoyette 	for (int i = 0; i < nwords; i++) {
    186  1.37.12.8  pgoyette 		uint32_t wordmask;
    187  1.37.12.8  pgoyette 
    188  1.37.12.8  pgoyette 		if (length >= 32) {
    189  1.37.12.8  pgoyette 			wordmask = htonl(0xffffffff);
    190  1.37.12.8  pgoyette 			length -= 32;
    191  1.37.12.8  pgoyette 		} else if (length) {
    192  1.37.12.8  pgoyette 			wordmask = htonl(0xffffffff << (32 - length));
    193  1.37.12.8  pgoyette 			length = 0;
    194  1.37.12.8  pgoyette 		} else {
    195  1.37.12.8  pgoyette 			wordmask = 0;
    196  1.37.12.8  pgoyette 		}
    197  1.37.12.8  pgoyette 		out->word32[i] |= addr->word32[i] & ~wordmask;
    198  1.37.12.8  pgoyette 	}
    199  1.37.12.8  pgoyette }
    200  1.37.12.8  pgoyette 
    201  1.37.12.8  pgoyette /*
    202       1.12     rmind  * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
    203       1.12     rmind  *
    204       1.13     rmind  * => Return 0 if equal and negative/positive if less/greater accordingly.
    205       1.12     rmind  * => Ignore the mask, if NPF_NO_NETMASK is specified.
    206       1.12     rmind  */
    207       1.12     rmind int
    208       1.12     rmind npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
    209       1.13     rmind     const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
    210       1.12     rmind {
    211       1.13     rmind 	npf_addr_t realaddr1, realaddr2;
    212       1.12     rmind 
    213       1.12     rmind 	if (mask1 != NPF_NO_NETMASK) {
    214       1.13     rmind 		npf_addr_mask(addr1, mask1, alen, &realaddr1);
    215       1.13     rmind 		addr1 = &realaddr1;
    216       1.12     rmind 	}
    217       1.12     rmind 	if (mask2 != NPF_NO_NETMASK) {
    218       1.13     rmind 		npf_addr_mask(addr2, mask2, alen, &realaddr2);
    219       1.13     rmind 		addr2 = &realaddr2;
    220       1.12     rmind 	}
    221       1.13     rmind 	return memcmp(addr1, addr2, alen);
    222       1.12     rmind }
    223       1.12     rmind 
    224        1.4     rmind /*
    225        1.4     rmind  * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
    226       1.12     rmind  *
    227       1.12     rmind  * => Returns all values in host byte-order.
    228        1.4     rmind  */
    229        1.4     rmind int
    230       1.12     rmind npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
    231        1.4     rmind {
    232       1.19     rmind 	const struct tcphdr *th = npc->npc_l4.tcp;
    233        1.8     rmind 	u_int thlen;
    234        1.1     rmind 
    235        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_TCP));
    236        1.1     rmind 
    237        1.4     rmind 	*seq = ntohl(th->th_seq);
    238        1.4     rmind 	*ack = ntohl(th->th_ack);
    239        1.4     rmind 	*win = (uint32_t)ntohs(th->th_win);
    240        1.8     rmind 	thlen = th->th_off << 2;
    241        1.1     rmind 
    242        1.7    zoltan 	if (npf_iscached(npc, NPC_IP4)) {
    243       1.19     rmind 		const struct ip *ip = npc->npc_ip.v4;
    244       1.21     rmind 		return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
    245       1.12     rmind 	} else if (npf_iscached(npc, NPC_IP6)) {
    246       1.19     rmind 		const struct ip6_hdr *ip6 = npc->npc_ip.v6;
    247  1.37.12.2  pgoyette 		return ntohs(ip6->ip6_plen) -
    248  1.37.12.2  pgoyette 		    (npc->npc_hlen - sizeof(*ip6)) - thlen;
    249        1.7    zoltan 	}
    250        1.7    zoltan 	return 0;
    251        1.1     rmind }
    252        1.1     rmind 
    253        1.1     rmind /*
    254        1.4     rmind  * npf_fetch_tcpopts: parse and return TCP options.
    255        1.1     rmind  */
    256        1.1     rmind bool
    257       1.32     rmind npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
    258        1.1     rmind {
    259       1.32     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    260       1.19     rmind 	const struct tcphdr *th = npc->npc_l4.tcp;
    261  1.37.12.5  pgoyette 	int cnt, optlen = 0;
    262  1.37.12.5  pgoyette 	uint8_t *cp, opt;
    263        1.4     rmind 	uint8_t val;
    264       1.19     rmind 	bool ok;
    265        1.4     rmind 
    266        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_IP46));
    267        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_TCP));
    268       1.10     rmind 
    269        1.4     rmind 	/* Determine if there are any TCP options, get their length. */
    270  1.37.12.5  pgoyette 	cnt = (th->th_off << 2) - sizeof(struct tcphdr);
    271  1.37.12.5  pgoyette 	if (cnt <= 0) {
    272        1.4     rmind 		/* No options. */
    273        1.1     rmind 		return false;
    274        1.4     rmind 	}
    275  1.37.12.5  pgoyette 	KASSERT(cnt <= MAX_TCPOPTLEN);
    276        1.1     rmind 
    277  1.37.12.5  pgoyette 	/* Fetch all the options at once. */
    278       1.19     rmind 	nbuf_reset(nbuf);
    279  1.37.12.5  pgoyette 	const int step = npc->npc_hlen + sizeof(struct tcphdr);
    280  1.37.12.5  pgoyette 	if ((cp = nbuf_advance(nbuf, step, cnt)) == NULL) {
    281       1.19     rmind 		ok = false;
    282       1.19     rmind 		goto done;
    283        1.4     rmind 	}
    284       1.12     rmind 
    285  1.37.12.5  pgoyette 	/* Scan the options. */
    286  1.37.12.5  pgoyette 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    287  1.37.12.5  pgoyette 		opt = cp[0];
    288  1.37.12.5  pgoyette 		if (opt == TCPOPT_EOL)
    289  1.37.12.5  pgoyette 			break;
    290  1.37.12.5  pgoyette 		if (opt == TCPOPT_NOP)
    291  1.37.12.5  pgoyette 			optlen = 1;
    292  1.37.12.5  pgoyette 		else {
    293  1.37.12.5  pgoyette 			if (cnt < 2)
    294  1.37.12.5  pgoyette 				break;
    295  1.37.12.5  pgoyette 			optlen = cp[1];
    296  1.37.12.5  pgoyette 			if (optlen < 2 || optlen > cnt)
    297  1.37.12.5  pgoyette 				break;
    298  1.37.12.5  pgoyette 		}
    299  1.37.12.5  pgoyette 
    300  1.37.12.5  pgoyette 		switch (opt) {
    301  1.37.12.5  pgoyette 		case TCPOPT_MAXSEG:
    302  1.37.12.5  pgoyette 			if (optlen != TCPOLEN_MAXSEG)
    303  1.37.12.5  pgoyette 				continue;
    304  1.37.12.5  pgoyette 			if (mss) {
    305  1.37.12.6  pgoyette 				memcpy(mss, cp + 2, sizeof(uint16_t));
    306       1.19     rmind 			}
    307  1.37.12.5  pgoyette 			break;
    308  1.37.12.5  pgoyette 		case TCPOPT_WINDOW:
    309  1.37.12.5  pgoyette 			if (optlen != TCPOLEN_WINDOW)
    310  1.37.12.5  pgoyette 				continue;
    311  1.37.12.5  pgoyette 			val = *(cp + 2);
    312  1.37.12.5  pgoyette 			*wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
    313  1.37.12.5  pgoyette 			break;
    314  1.37.12.5  pgoyette 		default:
    315  1.37.12.5  pgoyette 			break;
    316        1.4     rmind 		}
    317        1.4     rmind 	}
    318  1.37.12.5  pgoyette 
    319       1.19     rmind 	ok = true;
    320       1.19     rmind done:
    321       1.19     rmind 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    322       1.32     rmind 		npf_recache(npc);
    323       1.19     rmind 	}
    324       1.19     rmind 	return ok;
    325        1.1     rmind }
    326        1.1     rmind 
    327  1.37.12.6  pgoyette /*
    328  1.37.12.6  pgoyette  * npf_set_mss: set the MSS.
    329  1.37.12.6  pgoyette  */
    330  1.37.12.6  pgoyette bool
    331  1.37.12.6  pgoyette npf_set_mss(npf_cache_t *npc, uint16_t mss, uint16_t *old, uint16_t *new,
    332  1.37.12.6  pgoyette     bool *mid)
    333  1.37.12.6  pgoyette {
    334  1.37.12.6  pgoyette 	nbuf_t *nbuf = npc->npc_nbuf;
    335  1.37.12.6  pgoyette 	const struct tcphdr *th = npc->npc_l4.tcp;
    336  1.37.12.6  pgoyette 	int cnt, optlen = 0;
    337  1.37.12.6  pgoyette 	uint8_t *cp, *base, opt;
    338  1.37.12.6  pgoyette 	bool ok;
    339  1.37.12.6  pgoyette 
    340  1.37.12.6  pgoyette 	KASSERT(npf_iscached(npc, NPC_IP46));
    341  1.37.12.6  pgoyette 	KASSERT(npf_iscached(npc, NPC_TCP));
    342  1.37.12.6  pgoyette 
    343  1.37.12.6  pgoyette 	/* Determine if there are any TCP options, get their length. */
    344  1.37.12.6  pgoyette 	cnt = (th->th_off << 2) - sizeof(struct tcphdr);
    345  1.37.12.6  pgoyette 	if (cnt <= 0) {
    346  1.37.12.6  pgoyette 		/* No options. */
    347  1.37.12.6  pgoyette 		return false;
    348  1.37.12.6  pgoyette 	}
    349  1.37.12.6  pgoyette 	KASSERT(cnt <= MAX_TCPOPTLEN);
    350  1.37.12.6  pgoyette 
    351  1.37.12.6  pgoyette 	/* Fetch all the options at once. */
    352  1.37.12.6  pgoyette 	nbuf_reset(nbuf);
    353  1.37.12.6  pgoyette 	const int step = npc->npc_hlen + sizeof(struct tcphdr);
    354  1.37.12.6  pgoyette 	if ((base = nbuf_advance(nbuf, step, cnt)) == NULL) {
    355  1.37.12.6  pgoyette 		ok = false;
    356  1.37.12.6  pgoyette 		goto done;
    357  1.37.12.6  pgoyette 	}
    358  1.37.12.6  pgoyette 
    359  1.37.12.6  pgoyette 	/* Scan the options. */
    360  1.37.12.6  pgoyette 	for (cp = base; cnt > 0; cnt -= optlen, cp += optlen) {
    361  1.37.12.6  pgoyette 		opt = cp[0];
    362  1.37.12.6  pgoyette 		if (opt == TCPOPT_EOL)
    363  1.37.12.6  pgoyette 			break;
    364  1.37.12.6  pgoyette 		if (opt == TCPOPT_NOP)
    365  1.37.12.6  pgoyette 			optlen = 1;
    366  1.37.12.6  pgoyette 		else {
    367  1.37.12.6  pgoyette 			if (cnt < 2)
    368  1.37.12.6  pgoyette 				break;
    369  1.37.12.6  pgoyette 			optlen = cp[1];
    370  1.37.12.6  pgoyette 			if (optlen < 2 || optlen > cnt)
    371  1.37.12.6  pgoyette 				break;
    372  1.37.12.6  pgoyette 		}
    373  1.37.12.6  pgoyette 
    374  1.37.12.6  pgoyette 		switch (opt) {
    375  1.37.12.6  pgoyette 		case TCPOPT_MAXSEG:
    376  1.37.12.6  pgoyette 			if (optlen != TCPOLEN_MAXSEG)
    377  1.37.12.6  pgoyette 				continue;
    378  1.37.12.6  pgoyette 			if (((cp + 2) - base) % sizeof(uint16_t) != 0) {
    379  1.37.12.6  pgoyette 				*mid = true;
    380  1.37.12.6  pgoyette 				memcpy(&old[0], cp + 1, sizeof(uint16_t));
    381  1.37.12.6  pgoyette 				memcpy(&old[1], cp + 3, sizeof(uint16_t));
    382  1.37.12.6  pgoyette 				memcpy(cp + 2, &mss, sizeof(uint16_t));
    383  1.37.12.6  pgoyette 				memcpy(&new[0], cp + 1, sizeof(uint16_t));
    384  1.37.12.6  pgoyette 				memcpy(&new[1], cp + 3, sizeof(uint16_t));
    385  1.37.12.6  pgoyette 			} else {
    386  1.37.12.6  pgoyette 				*mid = false;
    387  1.37.12.6  pgoyette 				memcpy(cp + 2, &mss, sizeof(uint16_t));
    388  1.37.12.6  pgoyette 			}
    389  1.37.12.6  pgoyette 			break;
    390  1.37.12.6  pgoyette 		default:
    391  1.37.12.6  pgoyette 			break;
    392  1.37.12.6  pgoyette 		}
    393  1.37.12.6  pgoyette 	}
    394  1.37.12.6  pgoyette 
    395  1.37.12.6  pgoyette 	ok = true;
    396  1.37.12.6  pgoyette done:
    397  1.37.12.6  pgoyette 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    398  1.37.12.6  pgoyette 		npf_recache(npc);
    399  1.37.12.6  pgoyette 	}
    400  1.37.12.6  pgoyette 	return ok;
    401  1.37.12.6  pgoyette }
    402  1.37.12.6  pgoyette 
    403       1.19     rmind static int
    404       1.19     rmind npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
    405        1.1     rmind {
    406       1.19     rmind 	const void *nptr = nbuf_dataptr(nbuf);
    407       1.19     rmind 	const uint8_t ver = *(const uint8_t *)nptr;
    408       1.19     rmind 	int flags = 0;
    409       1.12     rmind 
    410  1.37.12.2  pgoyette 	/*
    411  1.37.12.2  pgoyette 	 * We intentionally don't read the L4 payload after IPPROTO_AH.
    412  1.37.12.2  pgoyette 	 */
    413  1.37.12.2  pgoyette 
    414        1.4     rmind 	switch (ver >> 4) {
    415       1.12     rmind 	case IPVERSION: {
    416       1.19     rmind 		struct ip *ip;
    417       1.12     rmind 
    418       1.19     rmind 		ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
    419       1.19     rmind 		if (ip == NULL) {
    420  1.37.12.1  pgoyette 			return NPC_FMTERR;
    421        1.4     rmind 		}
    422       1.12     rmind 
    423  1.37.12.3  pgoyette 		/* Retrieve the complete header. */
    424       1.10     rmind 		if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
    425  1.37.12.1  pgoyette 			return NPC_FMTERR;
    426        1.4     rmind 		}
    427  1.37.12.3  pgoyette 		ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
    428  1.37.12.3  pgoyette 		if (ip == NULL) {
    429  1.37.12.3  pgoyette 			return NPC_FMTERR;
    430  1.37.12.3  pgoyette 		}
    431  1.37.12.3  pgoyette 
    432        1.4     rmind 		if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
    433        1.4     rmind 			/* Note fragmentation. */
    434       1.19     rmind 			flags |= NPC_IPFRAG;
    435        1.4     rmind 		}
    436       1.12     rmind 
    437        1.4     rmind 		/* Cache: layer 3 - IPv4. */
    438       1.14     rmind 		npc->npc_alen = sizeof(struct in_addr);
    439       1.28     rmind 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
    440       1.28     rmind 		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
    441        1.7    zoltan 		npc->npc_hlen = ip->ip_hl << 2;
    442       1.19     rmind 		npc->npc_proto = ip->ip_p;
    443       1.19     rmind 
    444       1.19     rmind 		npc->npc_ip.v4 = ip;
    445       1.19     rmind 		flags |= NPC_IP4;
    446        1.4     rmind 		break;
    447       1.12     rmind 	}
    448        1.4     rmind 
    449       1.12     rmind 	case (IPV6_VERSION >> 4): {
    450       1.19     rmind 		struct ip6_hdr *ip6;
    451       1.19     rmind 		struct ip6_ext *ip6e;
    452       1.37  christos 		struct ip6_frag *ip6f;
    453       1.19     rmind 		size_t off, hlen;
    454  1.37.12.1  pgoyette 		int frag_present;
    455       1.19     rmind 
    456       1.19     rmind 		ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
    457       1.19     rmind 		if (ip6 == NULL) {
    458  1.37.12.1  pgoyette 			return NPC_FMTERR;
    459        1.7    zoltan 		}
    460       1.19     rmind 
    461  1.37.12.2  pgoyette 		/*
    462  1.37.12.2  pgoyette 		 * XXX: We don't handle IPv6 Jumbograms.
    463  1.37.12.2  pgoyette 		 */
    464  1.37.12.2  pgoyette 
    465       1.19     rmind 		/* Set initial next-protocol value. */
    466       1.19     rmind 		hlen = sizeof(struct ip6_hdr);
    467       1.19     rmind 		npc->npc_proto = ip6->ip6_nxt;
    468       1.13     rmind 		npc->npc_hlen = hlen;
    469        1.7    zoltan 
    470  1.37.12.1  pgoyette 		frag_present = 0;
    471  1.37.12.1  pgoyette 
    472       1.12     rmind 		/*
    473       1.19     rmind 		 * Advance by the length of the current header.
    474       1.12     rmind 		 */
    475       1.19     rmind 		off = nbuf_offset(nbuf);
    476  1.37.12.1  pgoyette 		while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
    477       1.13     rmind 			/*
    478       1.13     rmind 			 * Determine whether we are going to continue.
    479       1.13     rmind 			 */
    480       1.19     rmind 			switch (npc->npc_proto) {
    481       1.13     rmind 			case IPPROTO_HOPOPTS:
    482        1.7    zoltan 			case IPPROTO_DSTOPTS:
    483        1.7    zoltan 			case IPPROTO_ROUTING:
    484       1.19     rmind 				hlen = (ip6e->ip6e_len + 1) << 3;
    485        1.7    zoltan 				break;
    486        1.7    zoltan 			case IPPROTO_FRAGMENT:
    487  1.37.12.1  pgoyette 				if (frag_present++)
    488  1.37.12.1  pgoyette 					return NPC_FMTERR;
    489       1.37  christos 				ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
    490       1.37  christos 				if (ip6f == NULL)
    491  1.37.12.1  pgoyette 					return NPC_FMTERR;
    492  1.37.12.1  pgoyette 
    493  1.37.12.1  pgoyette 				/* RFC6946: Skip dummy fragments. */
    494  1.37.12.1  pgoyette 				if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
    495  1.37.12.1  pgoyette 				    !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
    496  1.37.12.1  pgoyette 					hlen = sizeof(struct ip6_frag);
    497  1.37.12.1  pgoyette 					break;
    498  1.37.12.1  pgoyette 				}
    499  1.37.12.1  pgoyette 
    500  1.37.12.1  pgoyette 				hlen = 0;
    501  1.37.12.1  pgoyette 				flags |= NPC_IPFRAG;
    502       1.37  christos 
    503        1.7    zoltan 				break;
    504        1.7    zoltan 			default:
    505       1.13     rmind 				hlen = 0;
    506       1.13     rmind 				break;
    507       1.13     rmind 			}
    508       1.13     rmind 
    509       1.13     rmind 			if (!hlen) {
    510        1.7    zoltan 				break;
    511        1.7    zoltan 			}
    512       1.19     rmind 			npc->npc_proto = ip6e->ip6e_nxt;
    513       1.13     rmind 			npc->npc_hlen += hlen;
    514       1.13     rmind 		}
    515        1.7    zoltan 
    516  1.37.12.3  pgoyette 		if (ip6e == NULL) {
    517  1.37.12.3  pgoyette 			return NPC_FMTERR;
    518  1.37.12.3  pgoyette 		}
    519  1.37.12.3  pgoyette 
    520       1.23     rmind 		/*
    521       1.23     rmind 		 * Re-fetch the header pointers (nbufs might have been
    522       1.23     rmind 		 * reallocated).  Restore the original offset (if any).
    523       1.23     rmind 		 */
    524       1.19     rmind 		nbuf_reset(nbuf);
    525       1.23     rmind 		ip6 = nbuf_dataptr(nbuf);
    526       1.19     rmind 		if (off) {
    527       1.19     rmind 			nbuf_advance(nbuf, off, 0);
    528       1.19     rmind 		}
    529       1.19     rmind 
    530       1.12     rmind 		/* Cache: layer 3 - IPv6. */
    531       1.14     rmind 		npc->npc_alen = sizeof(struct in6_addr);
    532       1.28     rmind 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
    533  1.37.12.2  pgoyette 		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;
    534       1.19     rmind 
    535       1.19     rmind 		npc->npc_ip.v6 = ip6;
    536       1.19     rmind 		flags |= NPC_IP6;
    537        1.7    zoltan 		break;
    538       1.12     rmind 	}
    539        1.4     rmind 	default:
    540       1.19     rmind 		break;
    541        1.4     rmind 	}
    542       1.19     rmind 	return flags;
    543        1.1     rmind }
    544        1.1     rmind 
    545        1.1     rmind /*
    546        1.4     rmind  * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
    547       1.12     rmind  * and TCP, UDP or ICMP headers.
    548       1.19     rmind  *
    549       1.19     rmind  * => nbuf offset shall be set accordingly.
    550        1.1     rmind  */
    551       1.10     rmind int
    552       1.32     rmind npf_cache_all(npf_cache_t *npc)
    553        1.1     rmind {
    554       1.32     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    555       1.19     rmind 	int flags, l4flags;
    556       1.19     rmind 	u_int hlen;
    557       1.19     rmind 
    558       1.19     rmind 	/*
    559       1.19     rmind 	 * This routine is a main point where the references are cached,
    560       1.19     rmind 	 * therefore clear the flag as we reset.
    561       1.19     rmind 	 */
    562       1.19     rmind again:
    563       1.19     rmind 	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
    564        1.1     rmind 
    565       1.19     rmind 	/*
    566       1.19     rmind 	 * First, cache the L3 header (IPv4 or IPv6).  If IP packet is
    567       1.19     rmind 	 * fragmented, then we cannot look into L4.
    568       1.19     rmind 	 */
    569       1.19     rmind 	flags = npf_cache_ip(npc, nbuf);
    570  1.37.12.1  pgoyette 	if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
    571  1.37.12.1  pgoyette 	    (flags & NPC_FMTERR) != 0) {
    572  1.37.12.3  pgoyette 		goto out;
    573        1.1     rmind 	}
    574       1.19     rmind 	hlen = npc->npc_hlen;
    575       1.19     rmind 
    576  1.37.12.3  pgoyette 	/*
    577  1.37.12.3  pgoyette 	 * Note: we guarantee that the potential "Query Id" field of the
    578  1.37.12.3  pgoyette 	 * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
    579  1.37.12.3  pgoyette 	 * ICMP ALG.
    580  1.37.12.3  pgoyette 	 */
    581       1.19     rmind 	switch (npc->npc_proto) {
    582        1.1     rmind 	case IPPROTO_TCP:
    583       1.19     rmind 		/* Cache: layer 4 - TCP. */
    584       1.19     rmind 		npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
    585       1.19     rmind 		    sizeof(struct tcphdr));
    586       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_TCP;
    587       1.10     rmind 		break;
    588        1.1     rmind 	case IPPROTO_UDP:
    589       1.19     rmind 		/* Cache: layer 4 - UDP. */
    590       1.19     rmind 		npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
    591       1.19     rmind 		    sizeof(struct udphdr));
    592       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_UDP;
    593       1.10     rmind 		break;
    594        1.1     rmind 	case IPPROTO_ICMP:
    595       1.19     rmind 		/* Cache: layer 4 - ICMPv4. */
    596       1.19     rmind 		npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
    597  1.37.12.3  pgoyette 		    ICMP_MINLEN);
    598       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_ICMP;
    599       1.19     rmind 		break;
    600       1.15       spz 	case IPPROTO_ICMPV6:
    601       1.19     rmind 		/* Cache: layer 4 - ICMPv6. */
    602       1.19     rmind 		npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
    603  1.37.12.3  pgoyette 		    sizeof(struct icmp6_hdr));
    604       1.19     rmind 		l4flags = NPC_LAYER4 | NPC_ICMP;
    605       1.19     rmind 		break;
    606       1.19     rmind 	default:
    607       1.19     rmind 		l4flags = 0;
    608       1.10     rmind 		break;
    609        1.1     rmind 	}
    610       1.19     rmind 
    611  1.37.12.3  pgoyette 	/* Error out if nbuf_advance failed. */
    612  1.37.12.3  pgoyette 	if (l4flags && npc->npc_l4.hdr == NULL) {
    613  1.37.12.3  pgoyette 		goto err;
    614  1.37.12.3  pgoyette 	}
    615  1.37.12.3  pgoyette 
    616       1.19     rmind 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    617       1.19     rmind 		goto again;
    618       1.19     rmind 	}
    619       1.19     rmind 
    620  1.37.12.3  pgoyette 	flags |= l4flags;
    621  1.37.12.3  pgoyette 	npc->npc_info |= flags;
    622  1.37.12.3  pgoyette 	return flags;
    623  1.37.12.3  pgoyette 
    624  1.37.12.3  pgoyette err:
    625  1.37.12.3  pgoyette 	flags = NPC_FMTERR;
    626  1.37.12.3  pgoyette out:
    627  1.37.12.3  pgoyette 	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
    628       1.19     rmind 	npc->npc_info |= flags;
    629       1.19     rmind 	return flags;
    630       1.19     rmind }
    631       1.19     rmind 
    632       1.19     rmind void
    633       1.32     rmind npf_recache(npf_cache_t *npc)
    634       1.19     rmind {
    635       1.32     rmind 	nbuf_t *nbuf = npc->npc_nbuf;
    636       1.24    martin 	const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
    637       1.25       mrg 	int flags __diagused;
    638       1.19     rmind 
    639       1.19     rmind 	nbuf_reset(nbuf);
    640       1.19     rmind 	npc->npc_info = 0;
    641       1.32     rmind 	flags = npf_cache_all(npc);
    642       1.32     rmind 
    643       1.19     rmind 	KASSERT((flags & mflags) == mflags);
    644       1.19     rmind 	KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
    645        1.1     rmind }
    646        1.1     rmind 
    647        1.1     rmind /*
    648       1.19     rmind  * npf_rwrip: rewrite required IP address.
    649        1.4     rmind  */
    650        1.4     rmind bool
    651       1.28     rmind npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
    652        1.4     rmind {
    653        1.4     rmind 	KASSERT(npf_iscached(npc, NPC_IP46));
    654       1.28     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    655        1.4     rmind 
    656       1.28     rmind 	memcpy(npc->npc_ips[which], addr, npc->npc_alen);
    657        1.4     rmind 	return true;
    658        1.4     rmind }
    659        1.4     rmind 
    660        1.4     rmind /*
    661       1.19     rmind  * npf_rwrport: rewrite required TCP/UDP port.
    662        1.1     rmind  */
    663        1.1     rmind bool
    664       1.28     rmind npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
    665        1.1     rmind {
    666       1.21     rmind 	const int proto = npc->npc_proto;
    667        1.4     rmind 	in_port_t *oport;
    668        1.1     rmind 
    669        1.4     rmind 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    670        1.1     rmind 	KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
    671       1.28     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    672        1.1     rmind 
    673       1.19     rmind 	/* Get the offset and store the port in it. */
    674        1.4     rmind 	if (proto == IPPROTO_TCP) {
    675       1.19     rmind 		struct tcphdr *th = npc->npc_l4.tcp;
    676       1.28     rmind 		oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
    677        1.1     rmind 	} else {
    678       1.19     rmind 		struct udphdr *uh = npc->npc_l4.udp;
    679       1.28     rmind 		oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
    680        1.1     rmind 	}
    681       1.19     rmind 	memcpy(oport, &port, sizeof(in_port_t));
    682        1.1     rmind 	return true;
    683        1.1     rmind }
    684        1.1     rmind 
    685        1.1     rmind /*
    686       1.19     rmind  * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
    687        1.1     rmind  */
    688        1.1     rmind bool
    689       1.28     rmind npf_rwrcksum(const npf_cache_t *npc, u_int which,
    690       1.19     rmind     const npf_addr_t *addr, const in_port_t port)
    691        1.1     rmind {
    692       1.28     rmind 	const npf_addr_t *oaddr = npc->npc_ips[which];
    693       1.21     rmind 	const int proto = npc->npc_proto;
    694       1.19     rmind 	const int alen = npc->npc_alen;
    695       1.18     rmind 	uint16_t *ocksum;
    696       1.18     rmind 	in_port_t oport;
    697       1.18     rmind 
    698       1.19     rmind 	KASSERT(npf_iscached(npc, NPC_LAYER4));
    699       1.28     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    700       1.18     rmind 
    701        1.4     rmind 	if (npf_iscached(npc, NPC_IP4)) {
    702       1.19     rmind 		struct ip *ip = npc->npc_ip.v4;
    703       1.19     rmind 		uint16_t ipsum = ip->ip_sum;
    704        1.4     rmind 
    705       1.19     rmind 		/* Recalculate IPv4 checksum and rewrite. */
    706       1.19     rmind 		ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
    707        1.4     rmind 	} else {
    708        1.4     rmind 		/* No checksum for IPv6. */
    709        1.4     rmind 		KASSERT(npf_iscached(npc, NPC_IP6));
    710        1.4     rmind 	}
    711        1.4     rmind 
    712       1.18     rmind 	/* Nothing else to do for ICMP. */
    713       1.30     rmind 	if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
    714        1.4     rmind 		return true;
    715        1.4     rmind 	}
    716        1.7    zoltan 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    717        1.4     rmind 
    718       1.18     rmind 	/*
    719       1.18     rmind 	 * Calculate TCP/UDP checksum:
    720       1.18     rmind 	 * - Skip if UDP and the current checksum is zero.
    721       1.18     rmind 	 * - Fixup the IP address change.
    722       1.18     rmind 	 * - Fixup the port change, if required (non-zero).
    723       1.18     rmind 	 */
    724        1.4     rmind 	if (proto == IPPROTO_TCP) {
    725       1.19     rmind 		struct tcphdr *th = npc->npc_l4.tcp;
    726        1.4     rmind 
    727       1.18     rmind 		ocksum = &th->th_sum;
    728       1.28     rmind 		oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
    729        1.4     rmind 	} else {
    730       1.19     rmind 		struct udphdr *uh = npc->npc_l4.udp;
    731        1.4     rmind 
    732        1.4     rmind 		KASSERT(proto == IPPROTO_UDP);
    733       1.18     rmind 		ocksum = &uh->uh_sum;
    734       1.18     rmind 		if (*ocksum == 0) {
    735        1.4     rmind 			/* No need to update. */
    736        1.4     rmind 			return true;
    737        1.4     rmind 		}
    738       1.28     rmind 		oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
    739       1.18     rmind 	}
    740       1.18     rmind 
    741       1.19     rmind 	uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
    742       1.18     rmind 	if (port) {
    743       1.18     rmind 		cksum = npf_fixup16_cksum(cksum, oport, port);
    744        1.4     rmind 	}
    745        1.1     rmind 
    746       1.19     rmind 	/* Rewrite TCP/UDP checksum. */
    747       1.19     rmind 	memcpy(ocksum, &cksum, sizeof(uint16_t));
    748        1.4     rmind 	return true;
    749        1.4     rmind }
    750        1.4     rmind 
    751       1.29     rmind /*
    752       1.30     rmind  * npf_napt_rwr: perform address and/or port translation.
    753       1.30     rmind  */
    754       1.30     rmind int
    755       1.30     rmind npf_napt_rwr(const npf_cache_t *npc, u_int which,
    756       1.30     rmind     const npf_addr_t *addr, const in_addr_t port)
    757       1.30     rmind {
    758       1.30     rmind 	const unsigned proto = npc->npc_proto;
    759       1.30     rmind 
    760       1.30     rmind 	/*
    761       1.30     rmind 	 * Rewrite IP and/or TCP/UDP checksums first, since we need the
    762       1.30     rmind 	 * current (old) address/port for the calculations.  Then perform
    763       1.30     rmind 	 * the address translation i.e. rewrite source or destination.
    764       1.30     rmind 	 */
    765       1.30     rmind 	if (!npf_rwrcksum(npc, which, addr, port)) {
    766       1.30     rmind 		return EINVAL;
    767       1.30     rmind 	}
    768       1.30     rmind 	if (!npf_rwrip(npc, which, addr)) {
    769       1.30     rmind 		return EINVAL;
    770       1.30     rmind 	}
    771       1.30     rmind 	if (port == 0) {
    772       1.30     rmind 		/* Done. */
    773       1.30     rmind 		return 0;
    774       1.30     rmind 	}
    775       1.30     rmind 
    776       1.30     rmind 	switch (proto) {
    777       1.30     rmind 	case IPPROTO_TCP:
    778       1.30     rmind 	case IPPROTO_UDP:
    779       1.30     rmind 		/* Rewrite source/destination port. */
    780       1.30     rmind 		if (!npf_rwrport(npc, which, port)) {
    781       1.30     rmind 			return EINVAL;
    782       1.30     rmind 		}
    783       1.30     rmind 		break;
    784       1.30     rmind 	case IPPROTO_ICMP:
    785       1.30     rmind 	case IPPROTO_ICMPV6:
    786       1.30     rmind 		KASSERT(npf_iscached(npc, NPC_ICMP));
    787       1.30     rmind 		/* Nothing. */
    788       1.30     rmind 		break;
    789       1.30     rmind 	default:
    790       1.30     rmind 		return ENOTSUP;
    791       1.30     rmind 	}
    792       1.30     rmind 	return 0;
    793       1.30     rmind }
    794       1.30     rmind 
    795       1.30     rmind /*
    796       1.29     rmind  * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
    797       1.29     rmind  */
    798       1.29     rmind int
    799       1.29     rmind npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
    800       1.29     rmind     npf_netmask_t len, uint16_t adj)
    801       1.29     rmind {
    802       1.29     rmind 	npf_addr_t *addr = npc->npc_ips[which];
    803       1.29     rmind 	unsigned remnant, word, preflen = len >> 4;
    804       1.29     rmind 	uint32_t sum;
    805       1.29     rmind 
    806       1.29     rmind 	KASSERT(which == NPF_SRC || which == NPF_DST);
    807       1.29     rmind 
    808       1.29     rmind 	if (!npf_iscached(npc, NPC_IP6)) {
    809       1.29     rmind 		return EINVAL;
    810       1.29     rmind 	}
    811       1.29     rmind 	if (len <= 48) {
    812       1.29     rmind 		/*
    813       1.29     rmind 		 * The word to adjust.  Cannot translate the 0xffff
    814       1.29     rmind 		 * subnet if /48 or shorter.
    815       1.29     rmind 		 */
    816       1.29     rmind 		word = 3;
    817       1.36  christos 		if (addr->word16[word] == 0xffff) {
    818       1.29     rmind 			return EINVAL;
    819       1.29     rmind 		}
    820       1.29     rmind 	} else {
    821       1.29     rmind 		/*
    822       1.29     rmind 		 * Also, all 0s or 1s in the host part are disallowed for
    823       1.29     rmind 		 * longer than /48 prefixes.
    824       1.29     rmind 		 */
    825       1.36  christos 		if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
    826       1.36  christos 		    (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
    827       1.29     rmind 			return EINVAL;
    828       1.29     rmind 
    829       1.29     rmind 		/* Determine the 16-bit word to adjust. */
    830       1.29     rmind 		for (word = 4; word < 8; word++)
    831       1.36  christos 			if (addr->word16[word] != 0xffff)
    832       1.29     rmind 				break;
    833       1.29     rmind 	}
    834       1.29     rmind 
    835       1.29     rmind 	/* Rewrite the prefix. */
    836       1.29     rmind 	for (unsigned i = 0; i < preflen; i++) {
    837       1.36  christos 		addr->word16[i] = pref->word16[i];
    838       1.29     rmind 	}
    839       1.29     rmind 
    840       1.29     rmind 	/*
    841       1.29     rmind 	 * If prefix length is within a 16-bit word (not dividable by 16),
    842       1.29     rmind 	 * then prepare a mask, determine the word and adjust it.
    843       1.29     rmind 	 */
    844       1.29     rmind 	if ((remnant = len - (preflen << 4)) != 0) {
    845       1.29     rmind 		const uint16_t wordmask = (1U << remnant) - 1;
    846       1.29     rmind 		const unsigned i = preflen;
    847       1.29     rmind 
    848       1.36  christos 		addr->word16[i] = (pref->word16[i] & wordmask) |
    849       1.36  christos 		    (addr->word16[i] & ~wordmask);
    850       1.29     rmind 	}
    851       1.29     rmind 
    852       1.29     rmind 	/*
    853       1.29     rmind 	 * Performing 1's complement sum/difference.
    854       1.29     rmind 	 */
    855       1.36  christos 	sum = addr->word16[word] + adj;
    856       1.29     rmind 	while (sum >> 16) {
    857       1.29     rmind 		sum = (sum >> 16) + (sum & 0xffff);
    858       1.29     rmind 	}
    859       1.29     rmind 	if (sum == 0xffff) {
    860       1.29     rmind 		/* RFC 1071. */
    861       1.29     rmind 		sum = 0x0000;
    862       1.29     rmind 	}
    863       1.36  christos 	addr->word16[word] = sum;
    864       1.29     rmind 	return 0;
    865       1.29     rmind }
    866       1.29     rmind 
    867       1.13     rmind #if defined(DDB) || defined(_NPF_TESTING)
    868       1.13     rmind 
    869       1.31     rmind const char *
    870       1.31     rmind npf_addr_dump(const npf_addr_t *addr, int alen)
    871       1.13     rmind {
    872       1.31     rmind 	if (alen == sizeof(struct in_addr)) {
    873       1.31     rmind 		struct in_addr ip;
    874       1.31     rmind 		memcpy(&ip, addr, alen);
    875       1.31     rmind 		return inet_ntoa(ip);
    876       1.31     rmind 	}
    877       1.36  christos 	return "[IPv6]";
    878       1.13     rmind }
    879       1.13     rmind 
    880       1.13     rmind #endif
    881