npf_inet.c revision 1.53 1 1.1 rmind /*-
2 1.29 rmind * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
3 1.1 rmind * All rights reserved.
4 1.1 rmind *
5 1.1 rmind * This material is based upon work partially supported by The
6 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
7 1.1 rmind *
8 1.1 rmind * Redistribution and use in source and binary forms, with or without
9 1.1 rmind * modification, are permitted provided that the following conditions
10 1.1 rmind * are met:
11 1.1 rmind * 1. Redistributions of source code must retain the above copyright
12 1.1 rmind * notice, this list of conditions and the following disclaimer.
13 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer in the
15 1.1 rmind * documentation and/or other materials provided with the distribution.
16 1.1 rmind *
17 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
28 1.1 rmind */
29 1.1 rmind
30 1.1 rmind /*
31 1.22 rmind * Various protocol related helper routines.
32 1.12 rmind *
33 1.12 rmind * This layer manipulates npf_cache_t structure i.e. caches requested headers
34 1.12 rmind * and stores which information was cached in the information bit field.
35 1.12 rmind * It is also responsibility of this layer to update or invalidate the cache
36 1.12 rmind * on rewrites (e.g. by translation routines).
37 1.1 rmind */
38 1.1 rmind
39 1.36 christos #ifdef _KERNEL
40 1.1 rmind #include <sys/cdefs.h>
41 1.53 rmind __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.53 2019/01/19 21:19:32 rmind Exp $");
42 1.1 rmind
43 1.1 rmind #include <sys/param.h>
44 1.11 rmind #include <sys/types.h>
45 1.1 rmind
46 1.4 rmind #include <net/pfil.h>
47 1.4 rmind #include <net/if.h>
48 1.4 rmind #include <net/ethertypes.h>
49 1.4 rmind #include <net/if_ether.h>
50 1.4 rmind
51 1.1 rmind #include <netinet/in_systm.h>
52 1.1 rmind #include <netinet/in.h>
53 1.33 mlelstv #include <netinet6/in6_var.h>
54 1.1 rmind #include <netinet/ip.h>
55 1.4 rmind #include <netinet/ip6.h>
56 1.1 rmind #include <netinet/tcp.h>
57 1.1 rmind #include <netinet/udp.h>
58 1.1 rmind #include <netinet/ip_icmp.h>
59 1.36 christos #endif
60 1.1 rmind
61 1.1 rmind #include "npf_impl.h"
62 1.1 rmind
63 1.1 rmind /*
64 1.27 rmind * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
65 1.1 rmind */
66 1.1 rmind
67 1.1 rmind uint16_t
68 1.1 rmind npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
69 1.1 rmind {
70 1.1 rmind uint32_t sum;
71 1.1 rmind
72 1.1 rmind /*
73 1.1 rmind * RFC 1624:
74 1.1 rmind * HC' = ~(~HC + ~m + m')
75 1.27 rmind *
76 1.27 rmind * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
77 1.1 rmind */
78 1.27 rmind sum = ~cksum & 0xffff;
79 1.27 rmind sum += (~odatum & 0xffff) + ndatum;
80 1.1 rmind sum = (sum >> 16) + (sum & 0xffff);
81 1.1 rmind sum += (sum >> 16);
82 1.1 rmind
83 1.27 rmind return ~sum & 0xffff;
84 1.1 rmind }
85 1.1 rmind
86 1.1 rmind uint16_t
87 1.1 rmind npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
88 1.1 rmind {
89 1.27 rmind uint32_t sum;
90 1.27 rmind
91 1.27 rmind /*
92 1.27 rmind * Checksum 32-bit datum as as two 16-bit. Note, the first
93 1.27 rmind * 32->16 bit reduction is not necessary.
94 1.27 rmind */
95 1.27 rmind sum = ~cksum & 0xffff;
96 1.27 rmind sum += (~odatum & 0xffff) + (ndatum & 0xffff);
97 1.1 rmind
98 1.27 rmind sum += (~odatum >> 16) + (ndatum >> 16);
99 1.27 rmind sum = (sum >> 16) + (sum & 0xffff);
100 1.27 rmind sum += (sum >> 16);
101 1.27 rmind return ~sum & 0xffff;
102 1.1 rmind }
103 1.1 rmind
104 1.1 rmind /*
105 1.4 rmind * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
106 1.4 rmind */
107 1.4 rmind uint16_t
108 1.19 rmind npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
109 1.19 rmind const npf_addr_t *naddr)
110 1.4 rmind {
111 1.19 rmind const uint32_t *oip32 = (const uint32_t *)oaddr;
112 1.19 rmind const uint32_t *nip32 = (const uint32_t *)naddr;
113 1.4 rmind
114 1.4 rmind KASSERT(sz % sizeof(uint32_t) == 0);
115 1.4 rmind do {
116 1.4 rmind cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
117 1.4 rmind sz -= sizeof(uint32_t);
118 1.4 rmind } while (sz);
119 1.4 rmind
120 1.4 rmind return cksum;
121 1.4 rmind }
122 1.4 rmind
123 1.4 rmind /*
124 1.26 rmind * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
125 1.4 rmind * Note: used for hash function.
126 1.1 rmind */
127 1.4 rmind uint32_t
128 1.53 rmind npf_addr_mix(const int alen, const npf_addr_t *a1, const npf_addr_t *a2)
129 1.1 rmind {
130 1.53 rmind const int nwords = alen >> 2;
131 1.4 rmind uint32_t mix = 0;
132 1.1 rmind
133 1.53 rmind KASSERT(alen > 0 && a1 != NULL && a2 != NULL);
134 1.5 rmind
135 1.53 rmind for (int i = 0; i < nwords; i++) {
136 1.36 christos mix ^= a1->word32[i];
137 1.36 christos mix ^= a2->word32[i];
138 1.4 rmind }
139 1.4 rmind return mix;
140 1.4 rmind }
141 1.1 rmind
142 1.13 rmind /*
143 1.13 rmind * npf_addr_mask: apply the mask to a given address and store the result.
144 1.13 rmind */
145 1.13 rmind void
146 1.13 rmind npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
147 1.13 rmind const int alen, npf_addr_t *out)
148 1.12 rmind {
149 1.13 rmind const int nwords = alen >> 2;
150 1.12 rmind uint_fast8_t length = mask;
151 1.12 rmind
152 1.12 rmind /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
153 1.12 rmind KASSERT(length <= NPF_MAX_NETMASK);
154 1.12 rmind
155 1.13 rmind for (int i = 0; i < nwords; i++) {
156 1.13 rmind uint32_t wordmask;
157 1.13 rmind
158 1.12 rmind if (length >= 32) {
159 1.13 rmind wordmask = htonl(0xffffffff);
160 1.12 rmind length -= 32;
161 1.13 rmind } else if (length) {
162 1.13 rmind wordmask = htonl(0xffffffff << (32 - length));
163 1.13 rmind length = 0;
164 1.12 rmind } else {
165 1.13 rmind wordmask = 0;
166 1.12 rmind }
167 1.36 christos out->word32[i] = addr->word32[i] & wordmask;
168 1.12 rmind }
169 1.12 rmind }
170 1.12 rmind
171 1.12 rmind /*
172 1.53 rmind * npf_addr_bitor: bitwise OR the host part (given the netmask).
173 1.53 rmind * Zero mask can be used to OR the entire address.
174 1.53 rmind */
175 1.53 rmind void
176 1.53 rmind npf_addr_bitor(const npf_addr_t *addr, const npf_netmask_t mask,
177 1.53 rmind const int alen, npf_addr_t *out)
178 1.53 rmind {
179 1.53 rmind const int nwords = alen >> 2;
180 1.53 rmind uint_fast8_t length = mask;
181 1.53 rmind
182 1.53 rmind /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
183 1.53 rmind KASSERT(length <= NPF_MAX_NETMASK);
184 1.53 rmind
185 1.53 rmind for (int i = 0; i < nwords; i++) {
186 1.53 rmind uint32_t wordmask;
187 1.53 rmind
188 1.53 rmind if (length >= 32) {
189 1.53 rmind wordmask = htonl(0xffffffff);
190 1.53 rmind length -= 32;
191 1.53 rmind } else if (length) {
192 1.53 rmind wordmask = htonl(0xffffffff << (32 - length));
193 1.53 rmind length = 0;
194 1.53 rmind } else {
195 1.53 rmind wordmask = 0;
196 1.53 rmind }
197 1.53 rmind out->word32[i] |= addr->word32[i] & ~wordmask;
198 1.53 rmind }
199 1.53 rmind }
200 1.53 rmind
201 1.53 rmind /*
202 1.12 rmind * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
203 1.12 rmind *
204 1.13 rmind * => Return 0 if equal and negative/positive if less/greater accordingly.
205 1.12 rmind * => Ignore the mask, if NPF_NO_NETMASK is specified.
206 1.12 rmind */
207 1.12 rmind int
208 1.12 rmind npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
209 1.13 rmind const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
210 1.12 rmind {
211 1.13 rmind npf_addr_t realaddr1, realaddr2;
212 1.12 rmind
213 1.12 rmind if (mask1 != NPF_NO_NETMASK) {
214 1.13 rmind npf_addr_mask(addr1, mask1, alen, &realaddr1);
215 1.13 rmind addr1 = &realaddr1;
216 1.12 rmind }
217 1.12 rmind if (mask2 != NPF_NO_NETMASK) {
218 1.13 rmind npf_addr_mask(addr2, mask2, alen, &realaddr2);
219 1.13 rmind addr2 = &realaddr2;
220 1.12 rmind }
221 1.13 rmind return memcmp(addr1, addr2, alen);
222 1.12 rmind }
223 1.12 rmind
224 1.4 rmind /*
225 1.4 rmind * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
226 1.12 rmind *
227 1.12 rmind * => Returns all values in host byte-order.
228 1.4 rmind */
229 1.4 rmind int
230 1.12 rmind npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
231 1.4 rmind {
232 1.19 rmind const struct tcphdr *th = npc->npc_l4.tcp;
233 1.8 rmind u_int thlen;
234 1.1 rmind
235 1.7 zoltan KASSERT(npf_iscached(npc, NPC_TCP));
236 1.1 rmind
237 1.4 rmind *seq = ntohl(th->th_seq);
238 1.4 rmind *ack = ntohl(th->th_ack);
239 1.4 rmind *win = (uint32_t)ntohs(th->th_win);
240 1.8 rmind thlen = th->th_off << 2;
241 1.1 rmind
242 1.7 zoltan if (npf_iscached(npc, NPC_IP4)) {
243 1.19 rmind const struct ip *ip = npc->npc_ip.v4;
244 1.21 rmind return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
245 1.12 rmind } else if (npf_iscached(npc, NPC_IP6)) {
246 1.19 rmind const struct ip6_hdr *ip6 = npc->npc_ip.v6;
247 1.42 maxv return ntohs(ip6->ip6_plen) -
248 1.42 maxv (npc->npc_hlen - sizeof(*ip6)) - thlen;
249 1.7 zoltan }
250 1.7 zoltan return 0;
251 1.1 rmind }
252 1.1 rmind
253 1.1 rmind /*
254 1.4 rmind * npf_fetch_tcpopts: parse and return TCP options.
255 1.1 rmind */
256 1.1 rmind bool
257 1.32 rmind npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
258 1.1 rmind {
259 1.32 rmind nbuf_t *nbuf = npc->npc_nbuf;
260 1.19 rmind const struct tcphdr *th = npc->npc_l4.tcp;
261 1.49 maxv int cnt, optlen = 0;
262 1.49 maxv uint8_t *cp, opt;
263 1.4 rmind uint8_t val;
264 1.19 rmind bool ok;
265 1.4 rmind
266 1.7 zoltan KASSERT(npf_iscached(npc, NPC_IP46));
267 1.7 zoltan KASSERT(npf_iscached(npc, NPC_TCP));
268 1.10 rmind
269 1.4 rmind /* Determine if there are any TCP options, get their length. */
270 1.49 maxv cnt = (th->th_off << 2) - sizeof(struct tcphdr);
271 1.49 maxv if (cnt <= 0) {
272 1.4 rmind /* No options. */
273 1.1 rmind return false;
274 1.4 rmind }
275 1.49 maxv KASSERT(cnt <= MAX_TCPOPTLEN);
276 1.1 rmind
277 1.49 maxv /* Fetch all the options at once. */
278 1.19 rmind nbuf_reset(nbuf);
279 1.49 maxv const int step = npc->npc_hlen + sizeof(struct tcphdr);
280 1.49 maxv if ((cp = nbuf_advance(nbuf, step, cnt)) == NULL) {
281 1.19 rmind ok = false;
282 1.19 rmind goto done;
283 1.4 rmind }
284 1.12 rmind
285 1.49 maxv /* Scan the options. */
286 1.49 maxv for (; cnt > 0; cnt -= optlen, cp += optlen) {
287 1.49 maxv opt = cp[0];
288 1.49 maxv if (opt == TCPOPT_EOL)
289 1.49 maxv break;
290 1.49 maxv if (opt == TCPOPT_NOP)
291 1.49 maxv optlen = 1;
292 1.49 maxv else {
293 1.49 maxv if (cnt < 2)
294 1.49 maxv break;
295 1.49 maxv optlen = cp[1];
296 1.49 maxv if (optlen < 2 || optlen > cnt)
297 1.49 maxv break;
298 1.49 maxv }
299 1.49 maxv
300 1.49 maxv switch (opt) {
301 1.49 maxv case TCPOPT_MAXSEG:
302 1.49 maxv if (optlen != TCPOLEN_MAXSEG)
303 1.49 maxv continue;
304 1.49 maxv if (mss) {
305 1.51 maxv memcpy(mss, cp + 2, sizeof(uint16_t));
306 1.19 rmind }
307 1.49 maxv break;
308 1.49 maxv case TCPOPT_WINDOW:
309 1.50 maxv if (optlen != TCPOLEN_WINDOW)
310 1.49 maxv continue;
311 1.49 maxv val = *(cp + 2);
312 1.49 maxv *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
313 1.49 maxv break;
314 1.49 maxv default:
315 1.49 maxv break;
316 1.4 rmind }
317 1.4 rmind }
318 1.49 maxv
319 1.19 rmind ok = true;
320 1.19 rmind done:
321 1.19 rmind if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
322 1.32 rmind npf_recache(npc);
323 1.19 rmind }
324 1.19 rmind return ok;
325 1.1 rmind }
326 1.1 rmind
327 1.51 maxv /*
328 1.51 maxv * npf_set_mss: set the MSS.
329 1.51 maxv */
330 1.51 maxv bool
331 1.51 maxv npf_set_mss(npf_cache_t *npc, uint16_t mss, uint16_t *old, uint16_t *new,
332 1.51 maxv bool *mid)
333 1.51 maxv {
334 1.51 maxv nbuf_t *nbuf = npc->npc_nbuf;
335 1.51 maxv const struct tcphdr *th = npc->npc_l4.tcp;
336 1.51 maxv int cnt, optlen = 0;
337 1.51 maxv uint8_t *cp, *base, opt;
338 1.51 maxv bool ok;
339 1.51 maxv
340 1.51 maxv KASSERT(npf_iscached(npc, NPC_IP46));
341 1.51 maxv KASSERT(npf_iscached(npc, NPC_TCP));
342 1.51 maxv
343 1.51 maxv /* Determine if there are any TCP options, get their length. */
344 1.51 maxv cnt = (th->th_off << 2) - sizeof(struct tcphdr);
345 1.51 maxv if (cnt <= 0) {
346 1.51 maxv /* No options. */
347 1.51 maxv return false;
348 1.51 maxv }
349 1.51 maxv KASSERT(cnt <= MAX_TCPOPTLEN);
350 1.51 maxv
351 1.51 maxv /* Fetch all the options at once. */
352 1.51 maxv nbuf_reset(nbuf);
353 1.51 maxv const int step = npc->npc_hlen + sizeof(struct tcphdr);
354 1.51 maxv if ((base = nbuf_advance(nbuf, step, cnt)) == NULL) {
355 1.51 maxv ok = false;
356 1.51 maxv goto done;
357 1.51 maxv }
358 1.51 maxv
359 1.51 maxv /* Scan the options. */
360 1.51 maxv for (cp = base; cnt > 0; cnt -= optlen, cp += optlen) {
361 1.51 maxv opt = cp[0];
362 1.51 maxv if (opt == TCPOPT_EOL)
363 1.51 maxv break;
364 1.51 maxv if (opt == TCPOPT_NOP)
365 1.51 maxv optlen = 1;
366 1.51 maxv else {
367 1.51 maxv if (cnt < 2)
368 1.51 maxv break;
369 1.51 maxv optlen = cp[1];
370 1.51 maxv if (optlen < 2 || optlen > cnt)
371 1.51 maxv break;
372 1.51 maxv }
373 1.51 maxv
374 1.51 maxv switch (opt) {
375 1.51 maxv case TCPOPT_MAXSEG:
376 1.51 maxv if (optlen != TCPOLEN_MAXSEG)
377 1.51 maxv continue;
378 1.51 maxv if (((cp + 2) - base) % sizeof(uint16_t) != 0) {
379 1.51 maxv *mid = true;
380 1.51 maxv memcpy(&old[0], cp + 1, sizeof(uint16_t));
381 1.51 maxv memcpy(&old[1], cp + 3, sizeof(uint16_t));
382 1.51 maxv memcpy(cp + 2, &mss, sizeof(uint16_t));
383 1.51 maxv memcpy(&new[0], cp + 1, sizeof(uint16_t));
384 1.51 maxv memcpy(&new[1], cp + 3, sizeof(uint16_t));
385 1.51 maxv } else {
386 1.51 maxv *mid = false;
387 1.51 maxv memcpy(cp + 2, &mss, sizeof(uint16_t));
388 1.51 maxv }
389 1.51 maxv break;
390 1.51 maxv default:
391 1.51 maxv break;
392 1.51 maxv }
393 1.51 maxv }
394 1.51 maxv
395 1.51 maxv ok = true;
396 1.51 maxv done:
397 1.51 maxv if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
398 1.51 maxv npf_recache(npc);
399 1.51 maxv }
400 1.51 maxv return ok;
401 1.51 maxv }
402 1.51 maxv
403 1.19 rmind static int
404 1.19 rmind npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
405 1.1 rmind {
406 1.19 rmind const void *nptr = nbuf_dataptr(nbuf);
407 1.19 rmind const uint8_t ver = *(const uint8_t *)nptr;
408 1.19 rmind int flags = 0;
409 1.12 rmind
410 1.43 maxv /*
411 1.43 maxv * We intentionally don't read the L4 payload after IPPROTO_AH.
412 1.43 maxv */
413 1.43 maxv
414 1.4 rmind switch (ver >> 4) {
415 1.12 rmind case IPVERSION: {
416 1.19 rmind struct ip *ip;
417 1.12 rmind
418 1.19 rmind ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
419 1.19 rmind if (ip == NULL) {
420 1.38 maxv return NPC_FMTERR;
421 1.4 rmind }
422 1.12 rmind
423 1.46 maxv /* Retrieve the complete header. */
424 1.10 rmind if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
425 1.38 maxv return NPC_FMTERR;
426 1.4 rmind }
427 1.46 maxv ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
428 1.46 maxv if (ip == NULL) {
429 1.46 maxv return NPC_FMTERR;
430 1.46 maxv }
431 1.46 maxv
432 1.4 rmind if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
433 1.4 rmind /* Note fragmentation. */
434 1.19 rmind flags |= NPC_IPFRAG;
435 1.4 rmind }
436 1.12 rmind
437 1.4 rmind /* Cache: layer 3 - IPv4. */
438 1.14 rmind npc->npc_alen = sizeof(struct in_addr);
439 1.28 rmind npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
440 1.28 rmind npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
441 1.7 zoltan npc->npc_hlen = ip->ip_hl << 2;
442 1.19 rmind npc->npc_proto = ip->ip_p;
443 1.19 rmind
444 1.19 rmind npc->npc_ip.v4 = ip;
445 1.19 rmind flags |= NPC_IP4;
446 1.4 rmind break;
447 1.12 rmind }
448 1.4 rmind
449 1.12 rmind case (IPV6_VERSION >> 4): {
450 1.19 rmind struct ip6_hdr *ip6;
451 1.19 rmind struct ip6_ext *ip6e;
452 1.37 christos struct ip6_frag *ip6f;
453 1.19 rmind size_t off, hlen;
454 1.38 maxv int frag_present;
455 1.19 rmind
456 1.19 rmind ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
457 1.19 rmind if (ip6 == NULL) {
458 1.38 maxv return NPC_FMTERR;
459 1.7 zoltan }
460 1.19 rmind
461 1.44 maxv /*
462 1.44 maxv * XXX: We don't handle IPv6 Jumbograms.
463 1.44 maxv */
464 1.44 maxv
465 1.19 rmind /* Set initial next-protocol value. */
466 1.19 rmind hlen = sizeof(struct ip6_hdr);
467 1.19 rmind npc->npc_proto = ip6->ip6_nxt;
468 1.13 rmind npc->npc_hlen = hlen;
469 1.7 zoltan
470 1.38 maxv frag_present = 0;
471 1.38 maxv
472 1.12 rmind /*
473 1.19 rmind * Advance by the length of the current header.
474 1.12 rmind */
475 1.19 rmind off = nbuf_offset(nbuf);
476 1.38 maxv while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
477 1.13 rmind /*
478 1.13 rmind * Determine whether we are going to continue.
479 1.13 rmind */
480 1.19 rmind switch (npc->npc_proto) {
481 1.13 rmind case IPPROTO_HOPOPTS:
482 1.7 zoltan case IPPROTO_DSTOPTS:
483 1.7 zoltan case IPPROTO_ROUTING:
484 1.19 rmind hlen = (ip6e->ip6e_len + 1) << 3;
485 1.7 zoltan break;
486 1.7 zoltan case IPPROTO_FRAGMENT:
487 1.38 maxv if (frag_present++)
488 1.38 maxv return NPC_FMTERR;
489 1.37 christos ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
490 1.37 christos if (ip6f == NULL)
491 1.38 maxv return NPC_FMTERR;
492 1.38 maxv
493 1.41 maxv /* RFC6946: Skip dummy fragments. */
494 1.41 maxv if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
495 1.41 maxv !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
496 1.41 maxv hlen = sizeof(struct ip6_frag);
497 1.41 maxv break;
498 1.41 maxv }
499 1.41 maxv
500 1.40 maxv hlen = 0;
501 1.40 maxv flags |= NPC_IPFRAG;
502 1.37 christos
503 1.7 zoltan break;
504 1.7 zoltan default:
505 1.13 rmind hlen = 0;
506 1.13 rmind break;
507 1.13 rmind }
508 1.13 rmind
509 1.13 rmind if (!hlen) {
510 1.7 zoltan break;
511 1.7 zoltan }
512 1.19 rmind npc->npc_proto = ip6e->ip6e_nxt;
513 1.13 rmind npc->npc_hlen += hlen;
514 1.13 rmind }
515 1.7 zoltan
516 1.46 maxv if (ip6e == NULL) {
517 1.46 maxv return NPC_FMTERR;
518 1.46 maxv }
519 1.46 maxv
520 1.23 rmind /*
521 1.23 rmind * Re-fetch the header pointers (nbufs might have been
522 1.23 rmind * reallocated). Restore the original offset (if any).
523 1.23 rmind */
524 1.19 rmind nbuf_reset(nbuf);
525 1.23 rmind ip6 = nbuf_dataptr(nbuf);
526 1.19 rmind if (off) {
527 1.19 rmind nbuf_advance(nbuf, off, 0);
528 1.19 rmind }
529 1.19 rmind
530 1.12 rmind /* Cache: layer 3 - IPv6. */
531 1.14 rmind npc->npc_alen = sizeof(struct in6_addr);
532 1.28 rmind npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
533 1.44 maxv npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;
534 1.19 rmind
535 1.19 rmind npc->npc_ip.v6 = ip6;
536 1.19 rmind flags |= NPC_IP6;
537 1.7 zoltan break;
538 1.12 rmind }
539 1.4 rmind default:
540 1.19 rmind break;
541 1.4 rmind }
542 1.19 rmind return flags;
543 1.1 rmind }
544 1.1 rmind
545 1.1 rmind /*
546 1.4 rmind * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
547 1.12 rmind * and TCP, UDP or ICMP headers.
548 1.19 rmind *
549 1.19 rmind * => nbuf offset shall be set accordingly.
550 1.1 rmind */
551 1.10 rmind int
552 1.32 rmind npf_cache_all(npf_cache_t *npc)
553 1.1 rmind {
554 1.32 rmind nbuf_t *nbuf = npc->npc_nbuf;
555 1.19 rmind int flags, l4flags;
556 1.19 rmind u_int hlen;
557 1.19 rmind
558 1.19 rmind /*
559 1.19 rmind * This routine is a main point where the references are cached,
560 1.19 rmind * therefore clear the flag as we reset.
561 1.19 rmind */
562 1.19 rmind again:
563 1.19 rmind nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
564 1.1 rmind
565 1.19 rmind /*
566 1.19 rmind * First, cache the L3 header (IPv4 or IPv6). If IP packet is
567 1.19 rmind * fragmented, then we cannot look into L4.
568 1.19 rmind */
569 1.19 rmind flags = npf_cache_ip(npc, nbuf);
570 1.38 maxv if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
571 1.38 maxv (flags & NPC_FMTERR) != 0) {
572 1.47 maxv goto out;
573 1.1 rmind }
574 1.19 rmind hlen = npc->npc_hlen;
575 1.19 rmind
576 1.45 maxv /*
577 1.45 maxv * Note: we guarantee that the potential "Query Id" field of the
578 1.45 maxv * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
579 1.45 maxv * ICMP ALG.
580 1.45 maxv */
581 1.19 rmind switch (npc->npc_proto) {
582 1.1 rmind case IPPROTO_TCP:
583 1.19 rmind /* Cache: layer 4 - TCP. */
584 1.19 rmind npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
585 1.19 rmind sizeof(struct tcphdr));
586 1.19 rmind l4flags = NPC_LAYER4 | NPC_TCP;
587 1.10 rmind break;
588 1.1 rmind case IPPROTO_UDP:
589 1.19 rmind /* Cache: layer 4 - UDP. */
590 1.19 rmind npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
591 1.19 rmind sizeof(struct udphdr));
592 1.19 rmind l4flags = NPC_LAYER4 | NPC_UDP;
593 1.10 rmind break;
594 1.1 rmind case IPPROTO_ICMP:
595 1.19 rmind /* Cache: layer 4 - ICMPv4. */
596 1.19 rmind npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
597 1.45 maxv ICMP_MINLEN);
598 1.19 rmind l4flags = NPC_LAYER4 | NPC_ICMP;
599 1.19 rmind break;
600 1.15 spz case IPPROTO_ICMPV6:
601 1.19 rmind /* Cache: layer 4 - ICMPv6. */
602 1.19 rmind npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
603 1.45 maxv sizeof(struct icmp6_hdr));
604 1.19 rmind l4flags = NPC_LAYER4 | NPC_ICMP;
605 1.19 rmind break;
606 1.19 rmind default:
607 1.19 rmind l4flags = 0;
608 1.10 rmind break;
609 1.1 rmind }
610 1.19 rmind
611 1.47 maxv /* Error out if nbuf_advance failed. */
612 1.47 maxv if (l4flags && npc->npc_l4.hdr == NULL) {
613 1.47 maxv goto err;
614 1.47 maxv }
615 1.47 maxv
616 1.19 rmind if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
617 1.19 rmind goto again;
618 1.19 rmind }
619 1.19 rmind
620 1.47 maxv flags |= l4flags;
621 1.47 maxv npc->npc_info |= flags;
622 1.47 maxv return flags;
623 1.47 maxv
624 1.47 maxv err:
625 1.47 maxv flags = NPC_FMTERR;
626 1.47 maxv out:
627 1.47 maxv nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
628 1.19 rmind npc->npc_info |= flags;
629 1.19 rmind return flags;
630 1.19 rmind }
631 1.19 rmind
632 1.19 rmind void
633 1.32 rmind npf_recache(npf_cache_t *npc)
634 1.19 rmind {
635 1.32 rmind nbuf_t *nbuf = npc->npc_nbuf;
636 1.24 martin const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
637 1.25 mrg int flags __diagused;
638 1.19 rmind
639 1.19 rmind nbuf_reset(nbuf);
640 1.19 rmind npc->npc_info = 0;
641 1.32 rmind flags = npf_cache_all(npc);
642 1.32 rmind
643 1.19 rmind KASSERT((flags & mflags) == mflags);
644 1.19 rmind KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
645 1.1 rmind }
646 1.1 rmind
647 1.1 rmind /*
648 1.19 rmind * npf_rwrip: rewrite required IP address.
649 1.4 rmind */
650 1.4 rmind bool
651 1.28 rmind npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
652 1.4 rmind {
653 1.4 rmind KASSERT(npf_iscached(npc, NPC_IP46));
654 1.28 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
655 1.4 rmind
656 1.28 rmind memcpy(npc->npc_ips[which], addr, npc->npc_alen);
657 1.4 rmind return true;
658 1.4 rmind }
659 1.4 rmind
660 1.4 rmind /*
661 1.19 rmind * npf_rwrport: rewrite required TCP/UDP port.
662 1.1 rmind */
663 1.1 rmind bool
664 1.28 rmind npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
665 1.1 rmind {
666 1.21 rmind const int proto = npc->npc_proto;
667 1.4 rmind in_port_t *oport;
668 1.1 rmind
669 1.4 rmind KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
670 1.1 rmind KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
671 1.28 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
672 1.1 rmind
673 1.19 rmind /* Get the offset and store the port in it. */
674 1.4 rmind if (proto == IPPROTO_TCP) {
675 1.19 rmind struct tcphdr *th = npc->npc_l4.tcp;
676 1.28 rmind oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
677 1.1 rmind } else {
678 1.19 rmind struct udphdr *uh = npc->npc_l4.udp;
679 1.28 rmind oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
680 1.1 rmind }
681 1.19 rmind memcpy(oport, &port, sizeof(in_port_t));
682 1.1 rmind return true;
683 1.1 rmind }
684 1.1 rmind
685 1.1 rmind /*
686 1.19 rmind * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
687 1.1 rmind */
688 1.1 rmind bool
689 1.28 rmind npf_rwrcksum(const npf_cache_t *npc, u_int which,
690 1.19 rmind const npf_addr_t *addr, const in_port_t port)
691 1.1 rmind {
692 1.28 rmind const npf_addr_t *oaddr = npc->npc_ips[which];
693 1.21 rmind const int proto = npc->npc_proto;
694 1.19 rmind const int alen = npc->npc_alen;
695 1.18 rmind uint16_t *ocksum;
696 1.18 rmind in_port_t oport;
697 1.18 rmind
698 1.19 rmind KASSERT(npf_iscached(npc, NPC_LAYER4));
699 1.28 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
700 1.18 rmind
701 1.4 rmind if (npf_iscached(npc, NPC_IP4)) {
702 1.19 rmind struct ip *ip = npc->npc_ip.v4;
703 1.19 rmind uint16_t ipsum = ip->ip_sum;
704 1.4 rmind
705 1.19 rmind /* Recalculate IPv4 checksum and rewrite. */
706 1.19 rmind ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
707 1.4 rmind } else {
708 1.4 rmind /* No checksum for IPv6. */
709 1.4 rmind KASSERT(npf_iscached(npc, NPC_IP6));
710 1.4 rmind }
711 1.4 rmind
712 1.18 rmind /* Nothing else to do for ICMP. */
713 1.30 rmind if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
714 1.4 rmind return true;
715 1.4 rmind }
716 1.7 zoltan KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
717 1.4 rmind
718 1.18 rmind /*
719 1.18 rmind * Calculate TCP/UDP checksum:
720 1.18 rmind * - Skip if UDP and the current checksum is zero.
721 1.18 rmind * - Fixup the IP address change.
722 1.18 rmind * - Fixup the port change, if required (non-zero).
723 1.18 rmind */
724 1.4 rmind if (proto == IPPROTO_TCP) {
725 1.19 rmind struct tcphdr *th = npc->npc_l4.tcp;
726 1.4 rmind
727 1.18 rmind ocksum = &th->th_sum;
728 1.28 rmind oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
729 1.4 rmind } else {
730 1.19 rmind struct udphdr *uh = npc->npc_l4.udp;
731 1.4 rmind
732 1.4 rmind KASSERT(proto == IPPROTO_UDP);
733 1.18 rmind ocksum = &uh->uh_sum;
734 1.18 rmind if (*ocksum == 0) {
735 1.4 rmind /* No need to update. */
736 1.4 rmind return true;
737 1.4 rmind }
738 1.28 rmind oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
739 1.18 rmind }
740 1.18 rmind
741 1.19 rmind uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
742 1.18 rmind if (port) {
743 1.18 rmind cksum = npf_fixup16_cksum(cksum, oport, port);
744 1.4 rmind }
745 1.1 rmind
746 1.19 rmind /* Rewrite TCP/UDP checksum. */
747 1.19 rmind memcpy(ocksum, &cksum, sizeof(uint16_t));
748 1.4 rmind return true;
749 1.4 rmind }
750 1.4 rmind
751 1.29 rmind /*
752 1.30 rmind * npf_napt_rwr: perform address and/or port translation.
753 1.30 rmind */
754 1.30 rmind int
755 1.30 rmind npf_napt_rwr(const npf_cache_t *npc, u_int which,
756 1.30 rmind const npf_addr_t *addr, const in_addr_t port)
757 1.30 rmind {
758 1.30 rmind const unsigned proto = npc->npc_proto;
759 1.30 rmind
760 1.30 rmind /*
761 1.30 rmind * Rewrite IP and/or TCP/UDP checksums first, since we need the
762 1.30 rmind * current (old) address/port for the calculations. Then perform
763 1.30 rmind * the address translation i.e. rewrite source or destination.
764 1.30 rmind */
765 1.30 rmind if (!npf_rwrcksum(npc, which, addr, port)) {
766 1.30 rmind return EINVAL;
767 1.30 rmind }
768 1.30 rmind if (!npf_rwrip(npc, which, addr)) {
769 1.30 rmind return EINVAL;
770 1.30 rmind }
771 1.30 rmind if (port == 0) {
772 1.30 rmind /* Done. */
773 1.30 rmind return 0;
774 1.30 rmind }
775 1.30 rmind
776 1.30 rmind switch (proto) {
777 1.30 rmind case IPPROTO_TCP:
778 1.30 rmind case IPPROTO_UDP:
779 1.30 rmind /* Rewrite source/destination port. */
780 1.30 rmind if (!npf_rwrport(npc, which, port)) {
781 1.30 rmind return EINVAL;
782 1.30 rmind }
783 1.30 rmind break;
784 1.30 rmind case IPPROTO_ICMP:
785 1.30 rmind case IPPROTO_ICMPV6:
786 1.30 rmind KASSERT(npf_iscached(npc, NPC_ICMP));
787 1.30 rmind /* Nothing. */
788 1.30 rmind break;
789 1.30 rmind default:
790 1.30 rmind return ENOTSUP;
791 1.30 rmind }
792 1.30 rmind return 0;
793 1.30 rmind }
794 1.30 rmind
795 1.30 rmind /*
796 1.29 rmind * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
797 1.29 rmind */
798 1.29 rmind int
799 1.29 rmind npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
800 1.29 rmind npf_netmask_t len, uint16_t adj)
801 1.29 rmind {
802 1.29 rmind npf_addr_t *addr = npc->npc_ips[which];
803 1.29 rmind unsigned remnant, word, preflen = len >> 4;
804 1.29 rmind uint32_t sum;
805 1.29 rmind
806 1.29 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
807 1.29 rmind
808 1.29 rmind if (!npf_iscached(npc, NPC_IP6)) {
809 1.29 rmind return EINVAL;
810 1.29 rmind }
811 1.29 rmind if (len <= 48) {
812 1.29 rmind /*
813 1.29 rmind * The word to adjust. Cannot translate the 0xffff
814 1.29 rmind * subnet if /48 or shorter.
815 1.29 rmind */
816 1.29 rmind word = 3;
817 1.36 christos if (addr->word16[word] == 0xffff) {
818 1.29 rmind return EINVAL;
819 1.29 rmind }
820 1.29 rmind } else {
821 1.29 rmind /*
822 1.29 rmind * Also, all 0s or 1s in the host part are disallowed for
823 1.29 rmind * longer than /48 prefixes.
824 1.29 rmind */
825 1.36 christos if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
826 1.36 christos (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
827 1.29 rmind return EINVAL;
828 1.29 rmind
829 1.29 rmind /* Determine the 16-bit word to adjust. */
830 1.29 rmind for (word = 4; word < 8; word++)
831 1.36 christos if (addr->word16[word] != 0xffff)
832 1.29 rmind break;
833 1.29 rmind }
834 1.29 rmind
835 1.29 rmind /* Rewrite the prefix. */
836 1.29 rmind for (unsigned i = 0; i < preflen; i++) {
837 1.36 christos addr->word16[i] = pref->word16[i];
838 1.29 rmind }
839 1.29 rmind
840 1.29 rmind /*
841 1.29 rmind * If prefix length is within a 16-bit word (not dividable by 16),
842 1.29 rmind * then prepare a mask, determine the word and adjust it.
843 1.29 rmind */
844 1.29 rmind if ((remnant = len - (preflen << 4)) != 0) {
845 1.29 rmind const uint16_t wordmask = (1U << remnant) - 1;
846 1.29 rmind const unsigned i = preflen;
847 1.29 rmind
848 1.36 christos addr->word16[i] = (pref->word16[i] & wordmask) |
849 1.36 christos (addr->word16[i] & ~wordmask);
850 1.29 rmind }
851 1.29 rmind
852 1.29 rmind /*
853 1.29 rmind * Performing 1's complement sum/difference.
854 1.29 rmind */
855 1.36 christos sum = addr->word16[word] + adj;
856 1.29 rmind while (sum >> 16) {
857 1.29 rmind sum = (sum >> 16) + (sum & 0xffff);
858 1.29 rmind }
859 1.29 rmind if (sum == 0xffff) {
860 1.29 rmind /* RFC 1071. */
861 1.29 rmind sum = 0x0000;
862 1.29 rmind }
863 1.36 christos addr->word16[word] = sum;
864 1.29 rmind return 0;
865 1.29 rmind }
866 1.29 rmind
867 1.13 rmind #if defined(DDB) || defined(_NPF_TESTING)
868 1.13 rmind
869 1.31 rmind const char *
870 1.31 rmind npf_addr_dump(const npf_addr_t *addr, int alen)
871 1.13 rmind {
872 1.31 rmind if (alen == sizeof(struct in_addr)) {
873 1.31 rmind struct in_addr ip;
874 1.31 rmind memcpy(&ip, addr, alen);
875 1.31 rmind return inet_ntoa(ip);
876 1.31 rmind }
877 1.36 christos return "[IPv6]";
878 1.13 rmind }
879 1.13 rmind
880 1.13 rmind #endif
881