npf_inet.c revision 1.57 1 1.1 rmind /*-
2 1.29 rmind * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
3 1.1 rmind * All rights reserved.
4 1.1 rmind *
5 1.1 rmind * This material is based upon work partially supported by The
6 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
7 1.1 rmind *
8 1.1 rmind * Redistribution and use in source and binary forms, with or without
9 1.1 rmind * modification, are permitted provided that the following conditions
10 1.1 rmind * are met:
11 1.1 rmind * 1. Redistributions of source code must retain the above copyright
12 1.1 rmind * notice, this list of conditions and the following disclaimer.
13 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer in the
15 1.1 rmind * documentation and/or other materials provided with the distribution.
16 1.1 rmind *
17 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
28 1.1 rmind */
29 1.1 rmind
30 1.1 rmind /*
31 1.22 rmind * Various protocol related helper routines.
32 1.12 rmind *
33 1.12 rmind * This layer manipulates npf_cache_t structure i.e. caches requested headers
34 1.12 rmind * and stores which information was cached in the information bit field.
35 1.12 rmind * It is also responsibility of this layer to update or invalidate the cache
36 1.12 rmind * on rewrites (e.g. by translation routines).
37 1.1 rmind */
38 1.1 rmind
39 1.36 christos #ifdef _KERNEL
40 1.1 rmind #include <sys/cdefs.h>
41 1.57 rmind __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.57 2020/05/30 14:16:56 rmind Exp $");
42 1.1 rmind
43 1.1 rmind #include <sys/param.h>
44 1.11 rmind #include <sys/types.h>
45 1.1 rmind
46 1.4 rmind #include <net/pfil.h>
47 1.4 rmind #include <net/if.h>
48 1.4 rmind #include <net/ethertypes.h>
49 1.4 rmind #include <net/if_ether.h>
50 1.4 rmind
51 1.1 rmind #include <netinet/in_systm.h>
52 1.1 rmind #include <netinet/in.h>
53 1.33 mlelstv #include <netinet6/in6_var.h>
54 1.1 rmind #include <netinet/ip.h>
55 1.4 rmind #include <netinet/ip6.h>
56 1.1 rmind #include <netinet/tcp.h>
57 1.1 rmind #include <netinet/udp.h>
58 1.1 rmind #include <netinet/ip_icmp.h>
59 1.36 christos #endif
60 1.1 rmind
61 1.1 rmind #include "npf_impl.h"
62 1.1 rmind
63 1.1 rmind /*
64 1.27 rmind * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
65 1.1 rmind */
66 1.1 rmind
67 1.1 rmind uint16_t
68 1.1 rmind npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
69 1.1 rmind {
70 1.1 rmind uint32_t sum;
71 1.1 rmind
72 1.1 rmind /*
73 1.1 rmind * RFC 1624:
74 1.1 rmind * HC' = ~(~HC + ~m + m')
75 1.27 rmind *
76 1.27 rmind * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
77 1.1 rmind */
78 1.27 rmind sum = ~cksum & 0xffff;
79 1.27 rmind sum += (~odatum & 0xffff) + ndatum;
80 1.1 rmind sum = (sum >> 16) + (sum & 0xffff);
81 1.1 rmind sum += (sum >> 16);
82 1.1 rmind
83 1.27 rmind return ~sum & 0xffff;
84 1.1 rmind }
85 1.1 rmind
86 1.1 rmind uint16_t
87 1.1 rmind npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
88 1.1 rmind {
89 1.27 rmind uint32_t sum;
90 1.27 rmind
91 1.27 rmind /*
92 1.27 rmind * Checksum 32-bit datum as as two 16-bit. Note, the first
93 1.27 rmind * 32->16 bit reduction is not necessary.
94 1.27 rmind */
95 1.27 rmind sum = ~cksum & 0xffff;
96 1.27 rmind sum += (~odatum & 0xffff) + (ndatum & 0xffff);
97 1.1 rmind
98 1.27 rmind sum += (~odatum >> 16) + (ndatum >> 16);
99 1.27 rmind sum = (sum >> 16) + (sum & 0xffff);
100 1.27 rmind sum += (sum >> 16);
101 1.27 rmind return ~sum & 0xffff;
102 1.1 rmind }
103 1.1 rmind
104 1.1 rmind /*
105 1.4 rmind * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
106 1.4 rmind */
107 1.4 rmind uint16_t
108 1.19 rmind npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
109 1.19 rmind const npf_addr_t *naddr)
110 1.4 rmind {
111 1.19 rmind const uint32_t *oip32 = (const uint32_t *)oaddr;
112 1.19 rmind const uint32_t *nip32 = (const uint32_t *)naddr;
113 1.4 rmind
114 1.4 rmind KASSERT(sz % sizeof(uint32_t) == 0);
115 1.4 rmind do {
116 1.4 rmind cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
117 1.4 rmind sz -= sizeof(uint32_t);
118 1.4 rmind } while (sz);
119 1.4 rmind
120 1.4 rmind return cksum;
121 1.4 rmind }
122 1.4 rmind
123 1.4 rmind /*
124 1.26 rmind * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
125 1.4 rmind * Note: used for hash function.
126 1.1 rmind */
127 1.4 rmind uint32_t
128 1.53 rmind npf_addr_mix(const int alen, const npf_addr_t *a1, const npf_addr_t *a2)
129 1.1 rmind {
130 1.53 rmind const int nwords = alen >> 2;
131 1.4 rmind uint32_t mix = 0;
132 1.1 rmind
133 1.53 rmind KASSERT(alen > 0 && a1 != NULL && a2 != NULL);
134 1.5 rmind
135 1.53 rmind for (int i = 0; i < nwords; i++) {
136 1.36 christos mix ^= a1->word32[i];
137 1.36 christos mix ^= a2->word32[i];
138 1.4 rmind }
139 1.4 rmind return mix;
140 1.4 rmind }
141 1.1 rmind
142 1.13 rmind /*
143 1.13 rmind * npf_addr_mask: apply the mask to a given address and store the result.
144 1.13 rmind */
145 1.13 rmind void
146 1.13 rmind npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
147 1.13 rmind const int alen, npf_addr_t *out)
148 1.12 rmind {
149 1.13 rmind const int nwords = alen >> 2;
150 1.12 rmind uint_fast8_t length = mask;
151 1.12 rmind
152 1.12 rmind /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
153 1.12 rmind KASSERT(length <= NPF_MAX_NETMASK);
154 1.12 rmind
155 1.13 rmind for (int i = 0; i < nwords; i++) {
156 1.13 rmind uint32_t wordmask;
157 1.13 rmind
158 1.12 rmind if (length >= 32) {
159 1.13 rmind wordmask = htonl(0xffffffff);
160 1.12 rmind length -= 32;
161 1.13 rmind } else if (length) {
162 1.13 rmind wordmask = htonl(0xffffffff << (32 - length));
163 1.13 rmind length = 0;
164 1.12 rmind } else {
165 1.13 rmind wordmask = 0;
166 1.12 rmind }
167 1.36 christos out->word32[i] = addr->word32[i] & wordmask;
168 1.12 rmind }
169 1.12 rmind }
170 1.12 rmind
171 1.12 rmind /*
172 1.53 rmind * npf_addr_bitor: bitwise OR the host part (given the netmask).
173 1.53 rmind * Zero mask can be used to OR the entire address.
174 1.53 rmind */
175 1.53 rmind void
176 1.53 rmind npf_addr_bitor(const npf_addr_t *addr, const npf_netmask_t mask,
177 1.53 rmind const int alen, npf_addr_t *out)
178 1.53 rmind {
179 1.53 rmind const int nwords = alen >> 2;
180 1.53 rmind uint_fast8_t length = mask;
181 1.53 rmind
182 1.53 rmind /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
183 1.53 rmind KASSERT(length <= NPF_MAX_NETMASK);
184 1.53 rmind
185 1.53 rmind for (int i = 0; i < nwords; i++) {
186 1.53 rmind uint32_t wordmask;
187 1.53 rmind
188 1.53 rmind if (length >= 32) {
189 1.53 rmind wordmask = htonl(0xffffffff);
190 1.53 rmind length -= 32;
191 1.53 rmind } else if (length) {
192 1.53 rmind wordmask = htonl(0xffffffff << (32 - length));
193 1.53 rmind length = 0;
194 1.53 rmind } else {
195 1.53 rmind wordmask = 0;
196 1.53 rmind }
197 1.53 rmind out->word32[i] |= addr->word32[i] & ~wordmask;
198 1.53 rmind }
199 1.53 rmind }
200 1.53 rmind
201 1.53 rmind /*
202 1.12 rmind * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
203 1.12 rmind *
204 1.13 rmind * => Return 0 if equal and negative/positive if less/greater accordingly.
205 1.12 rmind * => Ignore the mask, if NPF_NO_NETMASK is specified.
206 1.12 rmind */
207 1.12 rmind int
208 1.12 rmind npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
209 1.13 rmind const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
210 1.12 rmind {
211 1.13 rmind npf_addr_t realaddr1, realaddr2;
212 1.12 rmind
213 1.12 rmind if (mask1 != NPF_NO_NETMASK) {
214 1.13 rmind npf_addr_mask(addr1, mask1, alen, &realaddr1);
215 1.13 rmind addr1 = &realaddr1;
216 1.12 rmind }
217 1.12 rmind if (mask2 != NPF_NO_NETMASK) {
218 1.13 rmind npf_addr_mask(addr2, mask2, alen, &realaddr2);
219 1.13 rmind addr2 = &realaddr2;
220 1.12 rmind }
221 1.13 rmind return memcmp(addr1, addr2, alen);
222 1.12 rmind }
223 1.12 rmind
224 1.54 rmind int
225 1.54 rmind npf_netmask_check(const int alen, npf_netmask_t mask)
226 1.54 rmind {
227 1.54 rmind switch (alen) {
228 1.54 rmind case sizeof(struct in_addr):
229 1.54 rmind if (__predict_false(mask > 32 && mask != NPF_NO_NETMASK)) {
230 1.54 rmind return EINVAL;
231 1.54 rmind }
232 1.54 rmind break;
233 1.54 rmind case sizeof(struct in6_addr):
234 1.54 rmind if (__predict_false(mask > 128 && mask != NPF_NO_NETMASK)) {
235 1.54 rmind return EINVAL;
236 1.54 rmind }
237 1.54 rmind break;
238 1.54 rmind default:
239 1.54 rmind return EINVAL;
240 1.54 rmind }
241 1.54 rmind return 0;
242 1.54 rmind }
243 1.54 rmind
244 1.4 rmind /*
245 1.4 rmind * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
246 1.12 rmind *
247 1.12 rmind * => Returns all values in host byte-order.
248 1.4 rmind */
249 1.4 rmind int
250 1.12 rmind npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
251 1.4 rmind {
252 1.19 rmind const struct tcphdr *th = npc->npc_l4.tcp;
253 1.8 rmind u_int thlen;
254 1.1 rmind
255 1.7 zoltan KASSERT(npf_iscached(npc, NPC_TCP));
256 1.1 rmind
257 1.4 rmind *seq = ntohl(th->th_seq);
258 1.4 rmind *ack = ntohl(th->th_ack);
259 1.4 rmind *win = (uint32_t)ntohs(th->th_win);
260 1.8 rmind thlen = th->th_off << 2;
261 1.1 rmind
262 1.7 zoltan if (npf_iscached(npc, NPC_IP4)) {
263 1.19 rmind const struct ip *ip = npc->npc_ip.v4;
264 1.21 rmind return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
265 1.12 rmind } else if (npf_iscached(npc, NPC_IP6)) {
266 1.19 rmind const struct ip6_hdr *ip6 = npc->npc_ip.v6;
267 1.42 maxv return ntohs(ip6->ip6_plen) -
268 1.42 maxv (npc->npc_hlen - sizeof(*ip6)) - thlen;
269 1.7 zoltan }
270 1.7 zoltan return 0;
271 1.1 rmind }
272 1.1 rmind
273 1.1 rmind /*
274 1.4 rmind * npf_fetch_tcpopts: parse and return TCP options.
275 1.1 rmind */
276 1.1 rmind bool
277 1.32 rmind npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
278 1.1 rmind {
279 1.32 rmind nbuf_t *nbuf = npc->npc_nbuf;
280 1.19 rmind const struct tcphdr *th = npc->npc_l4.tcp;
281 1.49 maxv int cnt, optlen = 0;
282 1.49 maxv uint8_t *cp, opt;
283 1.4 rmind uint8_t val;
284 1.19 rmind bool ok;
285 1.4 rmind
286 1.7 zoltan KASSERT(npf_iscached(npc, NPC_IP46));
287 1.7 zoltan KASSERT(npf_iscached(npc, NPC_TCP));
288 1.10 rmind
289 1.4 rmind /* Determine if there are any TCP options, get their length. */
290 1.49 maxv cnt = (th->th_off << 2) - sizeof(struct tcphdr);
291 1.49 maxv if (cnt <= 0) {
292 1.4 rmind /* No options. */
293 1.1 rmind return false;
294 1.4 rmind }
295 1.49 maxv KASSERT(cnt <= MAX_TCPOPTLEN);
296 1.1 rmind
297 1.49 maxv /* Fetch all the options at once. */
298 1.19 rmind nbuf_reset(nbuf);
299 1.49 maxv const int step = npc->npc_hlen + sizeof(struct tcphdr);
300 1.49 maxv if ((cp = nbuf_advance(nbuf, step, cnt)) == NULL) {
301 1.19 rmind ok = false;
302 1.19 rmind goto done;
303 1.4 rmind }
304 1.12 rmind
305 1.49 maxv /* Scan the options. */
306 1.49 maxv for (; cnt > 0; cnt -= optlen, cp += optlen) {
307 1.49 maxv opt = cp[0];
308 1.49 maxv if (opt == TCPOPT_EOL)
309 1.49 maxv break;
310 1.49 maxv if (opt == TCPOPT_NOP)
311 1.49 maxv optlen = 1;
312 1.49 maxv else {
313 1.49 maxv if (cnt < 2)
314 1.49 maxv break;
315 1.49 maxv optlen = cp[1];
316 1.49 maxv if (optlen < 2 || optlen > cnt)
317 1.49 maxv break;
318 1.49 maxv }
319 1.49 maxv
320 1.49 maxv switch (opt) {
321 1.49 maxv case TCPOPT_MAXSEG:
322 1.49 maxv if (optlen != TCPOLEN_MAXSEG)
323 1.49 maxv continue;
324 1.49 maxv if (mss) {
325 1.51 maxv memcpy(mss, cp + 2, sizeof(uint16_t));
326 1.19 rmind }
327 1.49 maxv break;
328 1.49 maxv case TCPOPT_WINDOW:
329 1.50 maxv if (optlen != TCPOLEN_WINDOW)
330 1.49 maxv continue;
331 1.49 maxv val = *(cp + 2);
332 1.49 maxv *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
333 1.49 maxv break;
334 1.49 maxv default:
335 1.49 maxv break;
336 1.4 rmind }
337 1.4 rmind }
338 1.49 maxv
339 1.19 rmind ok = true;
340 1.19 rmind done:
341 1.19 rmind if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
342 1.32 rmind npf_recache(npc);
343 1.19 rmind }
344 1.19 rmind return ok;
345 1.1 rmind }
346 1.1 rmind
347 1.51 maxv /*
348 1.51 maxv * npf_set_mss: set the MSS.
349 1.51 maxv */
350 1.51 maxv bool
351 1.51 maxv npf_set_mss(npf_cache_t *npc, uint16_t mss, uint16_t *old, uint16_t *new,
352 1.51 maxv bool *mid)
353 1.51 maxv {
354 1.51 maxv nbuf_t *nbuf = npc->npc_nbuf;
355 1.51 maxv const struct tcphdr *th = npc->npc_l4.tcp;
356 1.51 maxv int cnt, optlen = 0;
357 1.51 maxv uint8_t *cp, *base, opt;
358 1.51 maxv bool ok;
359 1.51 maxv
360 1.51 maxv KASSERT(npf_iscached(npc, NPC_IP46));
361 1.51 maxv KASSERT(npf_iscached(npc, NPC_TCP));
362 1.51 maxv
363 1.51 maxv /* Determine if there are any TCP options, get their length. */
364 1.51 maxv cnt = (th->th_off << 2) - sizeof(struct tcphdr);
365 1.51 maxv if (cnt <= 0) {
366 1.51 maxv /* No options. */
367 1.51 maxv return false;
368 1.51 maxv }
369 1.51 maxv KASSERT(cnt <= MAX_TCPOPTLEN);
370 1.51 maxv
371 1.51 maxv /* Fetch all the options at once. */
372 1.51 maxv nbuf_reset(nbuf);
373 1.51 maxv const int step = npc->npc_hlen + sizeof(struct tcphdr);
374 1.51 maxv if ((base = nbuf_advance(nbuf, step, cnt)) == NULL) {
375 1.51 maxv ok = false;
376 1.51 maxv goto done;
377 1.51 maxv }
378 1.51 maxv
379 1.51 maxv /* Scan the options. */
380 1.51 maxv for (cp = base; cnt > 0; cnt -= optlen, cp += optlen) {
381 1.51 maxv opt = cp[0];
382 1.51 maxv if (opt == TCPOPT_EOL)
383 1.51 maxv break;
384 1.51 maxv if (opt == TCPOPT_NOP)
385 1.51 maxv optlen = 1;
386 1.51 maxv else {
387 1.51 maxv if (cnt < 2)
388 1.51 maxv break;
389 1.51 maxv optlen = cp[1];
390 1.51 maxv if (optlen < 2 || optlen > cnt)
391 1.51 maxv break;
392 1.51 maxv }
393 1.51 maxv
394 1.51 maxv switch (opt) {
395 1.51 maxv case TCPOPT_MAXSEG:
396 1.51 maxv if (optlen != TCPOLEN_MAXSEG)
397 1.51 maxv continue;
398 1.51 maxv if (((cp + 2) - base) % sizeof(uint16_t) != 0) {
399 1.51 maxv *mid = true;
400 1.51 maxv memcpy(&old[0], cp + 1, sizeof(uint16_t));
401 1.51 maxv memcpy(&old[1], cp + 3, sizeof(uint16_t));
402 1.51 maxv memcpy(cp + 2, &mss, sizeof(uint16_t));
403 1.51 maxv memcpy(&new[0], cp + 1, sizeof(uint16_t));
404 1.51 maxv memcpy(&new[1], cp + 3, sizeof(uint16_t));
405 1.51 maxv } else {
406 1.51 maxv *mid = false;
407 1.51 maxv memcpy(cp + 2, &mss, sizeof(uint16_t));
408 1.51 maxv }
409 1.51 maxv break;
410 1.51 maxv default:
411 1.51 maxv break;
412 1.51 maxv }
413 1.51 maxv }
414 1.51 maxv
415 1.51 maxv ok = true;
416 1.51 maxv done:
417 1.51 maxv if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
418 1.51 maxv npf_recache(npc);
419 1.51 maxv }
420 1.51 maxv return ok;
421 1.51 maxv }
422 1.51 maxv
423 1.19 rmind static int
424 1.19 rmind npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
425 1.1 rmind {
426 1.19 rmind const void *nptr = nbuf_dataptr(nbuf);
427 1.19 rmind const uint8_t ver = *(const uint8_t *)nptr;
428 1.19 rmind int flags = 0;
429 1.12 rmind
430 1.43 maxv /*
431 1.43 maxv * We intentionally don't read the L4 payload after IPPROTO_AH.
432 1.43 maxv */
433 1.43 maxv
434 1.4 rmind switch (ver >> 4) {
435 1.12 rmind case IPVERSION: {
436 1.19 rmind struct ip *ip;
437 1.12 rmind
438 1.19 rmind ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
439 1.19 rmind if (ip == NULL) {
440 1.38 maxv return NPC_FMTERR;
441 1.4 rmind }
442 1.12 rmind
443 1.46 maxv /* Retrieve the complete header. */
444 1.10 rmind if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
445 1.38 maxv return NPC_FMTERR;
446 1.4 rmind }
447 1.46 maxv ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
448 1.46 maxv if (ip == NULL) {
449 1.46 maxv return NPC_FMTERR;
450 1.46 maxv }
451 1.46 maxv
452 1.4 rmind if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
453 1.4 rmind /* Note fragmentation. */
454 1.19 rmind flags |= NPC_IPFRAG;
455 1.4 rmind }
456 1.12 rmind
457 1.4 rmind /* Cache: layer 3 - IPv4. */
458 1.14 rmind npc->npc_alen = sizeof(struct in_addr);
459 1.28 rmind npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
460 1.28 rmind npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
461 1.7 zoltan npc->npc_hlen = ip->ip_hl << 2;
462 1.19 rmind npc->npc_proto = ip->ip_p;
463 1.19 rmind
464 1.19 rmind npc->npc_ip.v4 = ip;
465 1.19 rmind flags |= NPC_IP4;
466 1.4 rmind break;
467 1.12 rmind }
468 1.4 rmind
469 1.12 rmind case (IPV6_VERSION >> 4): {
470 1.19 rmind struct ip6_hdr *ip6;
471 1.19 rmind struct ip6_ext *ip6e;
472 1.37 christos struct ip6_frag *ip6f;
473 1.19 rmind size_t off, hlen;
474 1.38 maxv int frag_present;
475 1.19 rmind
476 1.19 rmind ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
477 1.19 rmind if (ip6 == NULL) {
478 1.38 maxv return NPC_FMTERR;
479 1.7 zoltan }
480 1.19 rmind
481 1.44 maxv /*
482 1.44 maxv * XXX: We don't handle IPv6 Jumbograms.
483 1.44 maxv */
484 1.44 maxv
485 1.19 rmind /* Set initial next-protocol value. */
486 1.19 rmind hlen = sizeof(struct ip6_hdr);
487 1.19 rmind npc->npc_proto = ip6->ip6_nxt;
488 1.13 rmind npc->npc_hlen = hlen;
489 1.7 zoltan
490 1.38 maxv frag_present = 0;
491 1.38 maxv
492 1.12 rmind /*
493 1.19 rmind * Advance by the length of the current header.
494 1.12 rmind */
495 1.19 rmind off = nbuf_offset(nbuf);
496 1.38 maxv while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
497 1.13 rmind /*
498 1.13 rmind * Determine whether we are going to continue.
499 1.13 rmind */
500 1.19 rmind switch (npc->npc_proto) {
501 1.13 rmind case IPPROTO_HOPOPTS:
502 1.7 zoltan case IPPROTO_DSTOPTS:
503 1.7 zoltan case IPPROTO_ROUTING:
504 1.19 rmind hlen = (ip6e->ip6e_len + 1) << 3;
505 1.7 zoltan break;
506 1.7 zoltan case IPPROTO_FRAGMENT:
507 1.38 maxv if (frag_present++)
508 1.38 maxv return NPC_FMTERR;
509 1.37 christos ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
510 1.37 christos if (ip6f == NULL)
511 1.38 maxv return NPC_FMTERR;
512 1.38 maxv
513 1.41 maxv /* RFC6946: Skip dummy fragments. */
514 1.41 maxv if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
515 1.41 maxv !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
516 1.41 maxv hlen = sizeof(struct ip6_frag);
517 1.41 maxv break;
518 1.41 maxv }
519 1.41 maxv
520 1.40 maxv hlen = 0;
521 1.40 maxv flags |= NPC_IPFRAG;
522 1.37 christos
523 1.7 zoltan break;
524 1.7 zoltan default:
525 1.13 rmind hlen = 0;
526 1.13 rmind break;
527 1.13 rmind }
528 1.13 rmind
529 1.13 rmind if (!hlen) {
530 1.7 zoltan break;
531 1.7 zoltan }
532 1.19 rmind npc->npc_proto = ip6e->ip6e_nxt;
533 1.13 rmind npc->npc_hlen += hlen;
534 1.13 rmind }
535 1.7 zoltan
536 1.46 maxv if (ip6e == NULL) {
537 1.46 maxv return NPC_FMTERR;
538 1.46 maxv }
539 1.46 maxv
540 1.23 rmind /*
541 1.23 rmind * Re-fetch the header pointers (nbufs might have been
542 1.23 rmind * reallocated). Restore the original offset (if any).
543 1.23 rmind */
544 1.19 rmind nbuf_reset(nbuf);
545 1.23 rmind ip6 = nbuf_dataptr(nbuf);
546 1.19 rmind if (off) {
547 1.19 rmind nbuf_advance(nbuf, off, 0);
548 1.19 rmind }
549 1.19 rmind
550 1.12 rmind /* Cache: layer 3 - IPv6. */
551 1.14 rmind npc->npc_alen = sizeof(struct in6_addr);
552 1.28 rmind npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
553 1.44 maxv npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;
554 1.19 rmind
555 1.19 rmind npc->npc_ip.v6 = ip6;
556 1.19 rmind flags |= NPC_IP6;
557 1.7 zoltan break;
558 1.12 rmind }
559 1.4 rmind default:
560 1.19 rmind break;
561 1.4 rmind }
562 1.19 rmind return flags;
563 1.1 rmind }
564 1.1 rmind
565 1.56 rmind static inline int
566 1.56 rmind npf_cache_tcp(npf_cache_t *npc, nbuf_t *nbuf, unsigned hlen)
567 1.56 rmind {
568 1.56 rmind struct tcphdr *th;
569 1.56 rmind
570 1.56 rmind th = nbuf_advance(nbuf, hlen, sizeof(struct tcphdr));
571 1.56 rmind if (__predict_false(th == NULL)) {
572 1.56 rmind return NPC_FMTERR;
573 1.56 rmind }
574 1.56 rmind if (__predict_false(th->th_off < 5)) {
575 1.56 rmind return NPC_FMTERR;
576 1.56 rmind }
577 1.56 rmind npc->npc_l4.tcp = th;
578 1.56 rmind return NPC_LAYER4 | NPC_TCP;
579 1.56 rmind }
580 1.56 rmind
581 1.1 rmind /*
582 1.4 rmind * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
583 1.12 rmind * and TCP, UDP or ICMP headers.
584 1.19 rmind *
585 1.19 rmind * => nbuf offset shall be set accordingly.
586 1.1 rmind */
587 1.10 rmind int
588 1.32 rmind npf_cache_all(npf_cache_t *npc)
589 1.1 rmind {
590 1.32 rmind nbuf_t *nbuf = npc->npc_nbuf;
591 1.19 rmind int flags, l4flags;
592 1.19 rmind u_int hlen;
593 1.19 rmind
594 1.19 rmind /*
595 1.19 rmind * This routine is a main point where the references are cached,
596 1.19 rmind * therefore clear the flag as we reset.
597 1.19 rmind */
598 1.19 rmind again:
599 1.19 rmind nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
600 1.1 rmind
601 1.19 rmind /*
602 1.19 rmind * First, cache the L3 header (IPv4 or IPv6). If IP packet is
603 1.19 rmind * fragmented, then we cannot look into L4.
604 1.19 rmind */
605 1.19 rmind flags = npf_cache_ip(npc, nbuf);
606 1.38 maxv if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
607 1.38 maxv (flags & NPC_FMTERR) != 0) {
608 1.47 maxv goto out;
609 1.1 rmind }
610 1.19 rmind hlen = npc->npc_hlen;
611 1.19 rmind
612 1.45 maxv /*
613 1.45 maxv * Note: we guarantee that the potential "Query Id" field of the
614 1.45 maxv * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
615 1.45 maxv * ICMP ALG.
616 1.45 maxv */
617 1.19 rmind switch (npc->npc_proto) {
618 1.1 rmind case IPPROTO_TCP:
619 1.19 rmind /* Cache: layer 4 - TCP. */
620 1.56 rmind l4flags = npf_cache_tcp(npc, nbuf, hlen);
621 1.10 rmind break;
622 1.1 rmind case IPPROTO_UDP:
623 1.19 rmind /* Cache: layer 4 - UDP. */
624 1.19 rmind npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
625 1.19 rmind sizeof(struct udphdr));
626 1.19 rmind l4flags = NPC_LAYER4 | NPC_UDP;
627 1.10 rmind break;
628 1.1 rmind case IPPROTO_ICMP:
629 1.19 rmind /* Cache: layer 4 - ICMPv4. */
630 1.19 rmind npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
631 1.45 maxv ICMP_MINLEN);
632 1.19 rmind l4flags = NPC_LAYER4 | NPC_ICMP;
633 1.19 rmind break;
634 1.15 spz case IPPROTO_ICMPV6:
635 1.19 rmind /* Cache: layer 4 - ICMPv6. */
636 1.19 rmind npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
637 1.45 maxv sizeof(struct icmp6_hdr));
638 1.19 rmind l4flags = NPC_LAYER4 | NPC_ICMP;
639 1.19 rmind break;
640 1.19 rmind default:
641 1.19 rmind l4flags = 0;
642 1.10 rmind break;
643 1.1 rmind }
644 1.19 rmind
645 1.57 rmind /*
646 1.57 rmind * Error out if nbuf_advance() failed.
647 1.57 rmind */
648 1.57 rmind if (__predict_false(l4flags && !npc->npc_l4.hdr)) {
649 1.47 maxv goto err;
650 1.47 maxv }
651 1.47 maxv
652 1.19 rmind if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
653 1.19 rmind goto again;
654 1.19 rmind }
655 1.19 rmind
656 1.47 maxv flags |= l4flags;
657 1.47 maxv npc->npc_info |= flags;
658 1.47 maxv return flags;
659 1.47 maxv
660 1.47 maxv err:
661 1.47 maxv flags = NPC_FMTERR;
662 1.47 maxv out:
663 1.47 maxv nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
664 1.19 rmind npc->npc_info |= flags;
665 1.19 rmind return flags;
666 1.19 rmind }
667 1.19 rmind
668 1.19 rmind void
669 1.32 rmind npf_recache(npf_cache_t *npc)
670 1.19 rmind {
671 1.32 rmind nbuf_t *nbuf = npc->npc_nbuf;
672 1.24 martin const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
673 1.25 mrg int flags __diagused;
674 1.19 rmind
675 1.19 rmind nbuf_reset(nbuf);
676 1.19 rmind npc->npc_info = 0;
677 1.32 rmind flags = npf_cache_all(npc);
678 1.32 rmind
679 1.19 rmind KASSERT((flags & mflags) == mflags);
680 1.19 rmind KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
681 1.1 rmind }
682 1.1 rmind
683 1.1 rmind /*
684 1.19 rmind * npf_rwrip: rewrite required IP address.
685 1.4 rmind */
686 1.4 rmind bool
687 1.28 rmind npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
688 1.4 rmind {
689 1.4 rmind KASSERT(npf_iscached(npc, NPC_IP46));
690 1.28 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
691 1.4 rmind
692 1.28 rmind memcpy(npc->npc_ips[which], addr, npc->npc_alen);
693 1.4 rmind return true;
694 1.4 rmind }
695 1.4 rmind
696 1.4 rmind /*
697 1.19 rmind * npf_rwrport: rewrite required TCP/UDP port.
698 1.1 rmind */
699 1.1 rmind bool
700 1.28 rmind npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
701 1.1 rmind {
702 1.21 rmind const int proto = npc->npc_proto;
703 1.4 rmind in_port_t *oport;
704 1.1 rmind
705 1.4 rmind KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
706 1.1 rmind KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
707 1.28 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
708 1.1 rmind
709 1.19 rmind /* Get the offset and store the port in it. */
710 1.4 rmind if (proto == IPPROTO_TCP) {
711 1.19 rmind struct tcphdr *th = npc->npc_l4.tcp;
712 1.28 rmind oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
713 1.1 rmind } else {
714 1.19 rmind struct udphdr *uh = npc->npc_l4.udp;
715 1.28 rmind oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
716 1.1 rmind }
717 1.19 rmind memcpy(oport, &port, sizeof(in_port_t));
718 1.1 rmind return true;
719 1.1 rmind }
720 1.1 rmind
721 1.1 rmind /*
722 1.19 rmind * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
723 1.1 rmind */
724 1.1 rmind bool
725 1.28 rmind npf_rwrcksum(const npf_cache_t *npc, u_int which,
726 1.19 rmind const npf_addr_t *addr, const in_port_t port)
727 1.1 rmind {
728 1.28 rmind const npf_addr_t *oaddr = npc->npc_ips[which];
729 1.21 rmind const int proto = npc->npc_proto;
730 1.19 rmind const int alen = npc->npc_alen;
731 1.55 rmind uint16_t cksum, *ocksum;
732 1.55 rmind struct tcphdr *th;
733 1.55 rmind struct udphdr *uh;
734 1.18 rmind in_port_t oport;
735 1.18 rmind
736 1.19 rmind KASSERT(npf_iscached(npc, NPC_LAYER4));
737 1.28 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
738 1.18 rmind
739 1.4 rmind if (npf_iscached(npc, NPC_IP4)) {
740 1.19 rmind struct ip *ip = npc->npc_ip.v4;
741 1.19 rmind uint16_t ipsum = ip->ip_sum;
742 1.4 rmind
743 1.19 rmind /* Recalculate IPv4 checksum and rewrite. */
744 1.19 rmind ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
745 1.4 rmind } else {
746 1.4 rmind /* No checksum for IPv6. */
747 1.4 rmind KASSERT(npf_iscached(npc, NPC_IP6));
748 1.4 rmind }
749 1.4 rmind
750 1.18 rmind /*
751 1.18 rmind * Calculate TCP/UDP checksum:
752 1.18 rmind * - Skip if UDP and the current checksum is zero.
753 1.18 rmind * - Fixup the IP address change.
754 1.18 rmind * - Fixup the port change, if required (non-zero).
755 1.18 rmind */
756 1.55 rmind switch (proto) {
757 1.55 rmind case IPPROTO_TCP:
758 1.55 rmind KASSERT(npf_iscached(npc, NPC_TCP));
759 1.55 rmind th = npc->npc_l4.tcp;
760 1.18 rmind ocksum = &th->th_sum;
761 1.28 rmind oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
762 1.55 rmind break;
763 1.55 rmind case IPPROTO_UDP:
764 1.55 rmind KASSERT(npf_iscached(npc, NPC_UDP));
765 1.55 rmind uh = npc->npc_l4.udp;
766 1.18 rmind ocksum = &uh->uh_sum;
767 1.18 rmind if (*ocksum == 0) {
768 1.4 rmind /* No need to update. */
769 1.4 rmind return true;
770 1.4 rmind }
771 1.28 rmind oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
772 1.55 rmind break;
773 1.55 rmind case IPPROTO_ICMP:
774 1.55 rmind case IPPROTO_ICMPV6:
775 1.55 rmind default:
776 1.55 rmind /* Nothing else to do for ICMP. */
777 1.55 rmind return true;
778 1.18 rmind }
779 1.18 rmind
780 1.55 rmind /*
781 1.55 rmind * Update and rewrite the TCP/UDP checksum.
782 1.55 rmind */
783 1.55 rmind cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
784 1.18 rmind if (port) {
785 1.18 rmind cksum = npf_fixup16_cksum(cksum, oport, port);
786 1.4 rmind }
787 1.19 rmind memcpy(ocksum, &cksum, sizeof(uint16_t));
788 1.4 rmind return true;
789 1.4 rmind }
790 1.4 rmind
791 1.29 rmind /*
792 1.30 rmind * npf_napt_rwr: perform address and/or port translation.
793 1.30 rmind */
794 1.30 rmind int
795 1.30 rmind npf_napt_rwr(const npf_cache_t *npc, u_int which,
796 1.30 rmind const npf_addr_t *addr, const in_addr_t port)
797 1.30 rmind {
798 1.30 rmind const unsigned proto = npc->npc_proto;
799 1.30 rmind
800 1.30 rmind /*
801 1.30 rmind * Rewrite IP and/or TCP/UDP checksums first, since we need the
802 1.30 rmind * current (old) address/port for the calculations. Then perform
803 1.30 rmind * the address translation i.e. rewrite source or destination.
804 1.30 rmind */
805 1.30 rmind if (!npf_rwrcksum(npc, which, addr, port)) {
806 1.30 rmind return EINVAL;
807 1.30 rmind }
808 1.30 rmind if (!npf_rwrip(npc, which, addr)) {
809 1.30 rmind return EINVAL;
810 1.30 rmind }
811 1.30 rmind if (port == 0) {
812 1.30 rmind /* Done. */
813 1.30 rmind return 0;
814 1.30 rmind }
815 1.30 rmind
816 1.30 rmind switch (proto) {
817 1.30 rmind case IPPROTO_TCP:
818 1.30 rmind case IPPROTO_UDP:
819 1.30 rmind /* Rewrite source/destination port. */
820 1.30 rmind if (!npf_rwrport(npc, which, port)) {
821 1.30 rmind return EINVAL;
822 1.30 rmind }
823 1.30 rmind break;
824 1.30 rmind case IPPROTO_ICMP:
825 1.30 rmind case IPPROTO_ICMPV6:
826 1.30 rmind KASSERT(npf_iscached(npc, NPC_ICMP));
827 1.30 rmind /* Nothing. */
828 1.30 rmind break;
829 1.30 rmind default:
830 1.30 rmind return ENOTSUP;
831 1.30 rmind }
832 1.30 rmind return 0;
833 1.30 rmind }
834 1.30 rmind
835 1.30 rmind /*
836 1.29 rmind * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
837 1.29 rmind */
838 1.29 rmind int
839 1.29 rmind npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
840 1.29 rmind npf_netmask_t len, uint16_t adj)
841 1.29 rmind {
842 1.29 rmind npf_addr_t *addr = npc->npc_ips[which];
843 1.29 rmind unsigned remnant, word, preflen = len >> 4;
844 1.29 rmind uint32_t sum;
845 1.29 rmind
846 1.29 rmind KASSERT(which == NPF_SRC || which == NPF_DST);
847 1.29 rmind
848 1.29 rmind if (!npf_iscached(npc, NPC_IP6)) {
849 1.29 rmind return EINVAL;
850 1.29 rmind }
851 1.29 rmind if (len <= 48) {
852 1.29 rmind /*
853 1.29 rmind * The word to adjust. Cannot translate the 0xffff
854 1.29 rmind * subnet if /48 or shorter.
855 1.29 rmind */
856 1.29 rmind word = 3;
857 1.36 christos if (addr->word16[word] == 0xffff) {
858 1.29 rmind return EINVAL;
859 1.29 rmind }
860 1.29 rmind } else {
861 1.29 rmind /*
862 1.29 rmind * Also, all 0s or 1s in the host part are disallowed for
863 1.29 rmind * longer than /48 prefixes.
864 1.29 rmind */
865 1.36 christos if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
866 1.36 christos (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
867 1.29 rmind return EINVAL;
868 1.29 rmind
869 1.29 rmind /* Determine the 16-bit word to adjust. */
870 1.29 rmind for (word = 4; word < 8; word++)
871 1.36 christos if (addr->word16[word] != 0xffff)
872 1.29 rmind break;
873 1.29 rmind }
874 1.29 rmind
875 1.29 rmind /* Rewrite the prefix. */
876 1.29 rmind for (unsigned i = 0; i < preflen; i++) {
877 1.36 christos addr->word16[i] = pref->word16[i];
878 1.29 rmind }
879 1.29 rmind
880 1.29 rmind /*
881 1.29 rmind * If prefix length is within a 16-bit word (not dividable by 16),
882 1.29 rmind * then prepare a mask, determine the word and adjust it.
883 1.29 rmind */
884 1.29 rmind if ((remnant = len - (preflen << 4)) != 0) {
885 1.29 rmind const uint16_t wordmask = (1U << remnant) - 1;
886 1.29 rmind const unsigned i = preflen;
887 1.29 rmind
888 1.36 christos addr->word16[i] = (pref->word16[i] & wordmask) |
889 1.36 christos (addr->word16[i] & ~wordmask);
890 1.29 rmind }
891 1.29 rmind
892 1.29 rmind /*
893 1.29 rmind * Performing 1's complement sum/difference.
894 1.29 rmind */
895 1.36 christos sum = addr->word16[word] + adj;
896 1.29 rmind while (sum >> 16) {
897 1.29 rmind sum = (sum >> 16) + (sum & 0xffff);
898 1.29 rmind }
899 1.29 rmind if (sum == 0xffff) {
900 1.29 rmind /* RFC 1071. */
901 1.29 rmind sum = 0x0000;
902 1.29 rmind }
903 1.36 christos addr->word16[word] = sum;
904 1.29 rmind return 0;
905 1.29 rmind }
906 1.29 rmind
907 1.13 rmind #if defined(DDB) || defined(_NPF_TESTING)
908 1.13 rmind
909 1.31 rmind const char *
910 1.31 rmind npf_addr_dump(const npf_addr_t *addr, int alen)
911 1.13 rmind {
912 1.31 rmind if (alen == sizeof(struct in_addr)) {
913 1.31 rmind struct in_addr ip;
914 1.31 rmind memcpy(&ip, addr, alen);
915 1.31 rmind return inet_ntoa(ip);
916 1.31 rmind }
917 1.36 christos return "[IPv6]";
918 1.13 rmind }
919 1.13 rmind
920 1.13 rmind #endif
921