Home | History | Annotate | Line # | Download | only in npf
npf_inet.c revision 1.19
      1 /*	$NetBSD: npf_inet.c,v 1.19 2012/12/24 19:05:43 rmind Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2009-2012 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This material is based upon work partially supported by The
      8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  * Various procotol related helper routines.
     34  *
     35  * This layer manipulates npf_cache_t structure i.e. caches requested headers
     36  * and stores which information was cached in the information bit field.
     37  * It is also responsibility of this layer to update or invalidate the cache
     38  * on rewrites (e.g. by translation routines).
     39  */
     40 
     41 #include <sys/cdefs.h>
     42 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.19 2012/12/24 19:05:43 rmind Exp $");
     43 
     44 #include <sys/param.h>
     45 #include <sys/types.h>
     46 
     47 #include <net/pfil.h>
     48 #include <net/if.h>
     49 #include <net/ethertypes.h>
     50 #include <net/if_ether.h>
     51 
     52 #include <netinet/in_systm.h>
     53 #include <netinet/in.h>
     54 #include <netinet/ip.h>
     55 #include <netinet/ip6.h>
     56 #include <netinet/tcp.h>
     57 #include <netinet/udp.h>
     58 #include <netinet/ip_icmp.h>
     59 
     60 #include "npf_impl.h"
     61 
     62 /*
     63  * npf_fixup{16,32}_cksum: update IPv4 checksum.
     64  */
     65 
     66 uint16_t
     67 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
     68 {
     69 	uint32_t sum;
     70 
     71 	/*
     72 	 * RFC 1624:
     73 	 *	HC' = ~(~HC + ~m + m')
     74 	 */
     75 	sum = ~ntohs(cksum) & 0xffff;
     76 	sum += (~ntohs(odatum) & 0xffff) + ntohs(ndatum);
     77 	sum = (sum >> 16) + (sum & 0xffff);
     78 	sum += (sum >> 16);
     79 
     80 	return htons(~sum & 0xffff);
     81 }
     82 
     83 uint16_t
     84 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
     85 {
     86 
     87 	cksum = npf_fixup16_cksum(cksum, odatum & 0xffff, ndatum & 0xffff);
     88 	cksum = npf_fixup16_cksum(cksum, odatum >> 16, ndatum >> 16);
     89 	return cksum;
     90 }
     91 
     92 /*
     93  * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
     94  */
     95 uint16_t
     96 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
     97     const npf_addr_t *naddr)
     98 {
     99 	const uint32_t *oip32 = (const uint32_t *)oaddr;
    100 	const uint32_t *nip32 = (const uint32_t *)naddr;
    101 
    102 	KASSERT(sz % sizeof(uint32_t) == 0);
    103 	do {
    104 		cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
    105 		sz -= sizeof(uint32_t);
    106 	} while (sz);
    107 
    108 	return cksum;
    109 }
    110 
    111 /*
    112  * npf_addr_sum: provide IP address as a summed (if needed) 32-bit integer.
    113  * Note: used for hash function.
    114  */
    115 uint32_t
    116 npf_addr_sum(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
    117 {
    118 	uint32_t mix = 0;
    119 	int i;
    120 
    121 	KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
    122 
    123 	for (i = 0; i < (sz >> 2); i++) {
    124 		mix += a1->s6_addr32[i];
    125 		mix += a2->s6_addr32[i];
    126 	}
    127 	return mix;
    128 }
    129 
    130 /*
    131  * npf_addr_mask: apply the mask to a given address and store the result.
    132  */
    133 void
    134 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
    135     const int alen, npf_addr_t *out)
    136 {
    137 	const int nwords = alen >> 2;
    138 	uint_fast8_t length = mask;
    139 
    140 	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
    141 	KASSERT(length <= NPF_MAX_NETMASK);
    142 
    143 	for (int i = 0; i < nwords; i++) {
    144 		uint32_t wordmask;
    145 
    146 		if (length >= 32) {
    147 			wordmask = htonl(0xffffffff);
    148 			length -= 32;
    149 		} else if (length) {
    150 			wordmask = htonl(0xffffffff << (32 - length));
    151 			length = 0;
    152 		} else {
    153 			wordmask = 0;
    154 		}
    155 		out->s6_addr32[i] = addr->s6_addr32[i] & wordmask;
    156 	}
    157 }
    158 
    159 /*
    160  * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
    161  *
    162  * => Return 0 if equal and negative/positive if less/greater accordingly.
    163  * => Ignore the mask, if NPF_NO_NETMASK is specified.
    164  */
    165 int
    166 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
    167     const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
    168 {
    169 	npf_addr_t realaddr1, realaddr2;
    170 
    171 	if (mask1 != NPF_NO_NETMASK) {
    172 		npf_addr_mask(addr1, mask1, alen, &realaddr1);
    173 		addr1 = &realaddr1;
    174 	}
    175 	if (mask2 != NPF_NO_NETMASK) {
    176 		npf_addr_mask(addr2, mask2, alen, &realaddr2);
    177 		addr2 = &realaddr2;
    178 	}
    179 	return memcmp(addr1, addr2, alen);
    180 }
    181 
    182 /*
    183  * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
    184  *
    185  * => Returns all values in host byte-order.
    186  */
    187 int
    188 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
    189 {
    190 	const struct tcphdr *th = npc->npc_l4.tcp;
    191 	u_int thlen;
    192 
    193 	KASSERT(npf_iscached(npc, NPC_TCP));
    194 
    195 	*seq = ntohl(th->th_seq);
    196 	*ack = ntohl(th->th_ack);
    197 	*win = (uint32_t)ntohs(th->th_win);
    198 	thlen = th->th_off << 2;
    199 
    200 	if (npf_iscached(npc, NPC_IP4)) {
    201 		const struct ip *ip = npc->npc_ip.v4;
    202 		return ntohs(ip->ip_len) - npf_cache_hlen(npc) - thlen;
    203 	} else if (npf_iscached(npc, NPC_IP6)) {
    204 		const struct ip6_hdr *ip6 = npc->npc_ip.v6;
    205 		return ntohs(ip6->ip6_plen) - thlen;
    206 	}
    207 	return 0;
    208 }
    209 
    210 /*
    211  * npf_fetch_tcpopts: parse and return TCP options.
    212  */
    213 bool
    214 npf_fetch_tcpopts(npf_cache_t *npc, nbuf_t *nbuf, uint16_t *mss, int *wscale)
    215 {
    216 	const struct tcphdr *th = npc->npc_l4.tcp;
    217 	int topts_len, step;
    218 	void *nptr;
    219 	uint8_t val;
    220 	bool ok;
    221 
    222 	KASSERT(npf_iscached(npc, NPC_IP46));
    223 	KASSERT(npf_iscached(npc, NPC_TCP));
    224 
    225 	/* Determine if there are any TCP options, get their length. */
    226 	topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
    227 	if (topts_len <= 0) {
    228 		/* No options. */
    229 		return false;
    230 	}
    231 	KASSERT(topts_len <= MAX_TCPOPTLEN);
    232 
    233 	/* First step: IP and TCP header up to options. */
    234 	step = npf_cache_hlen(npc) + sizeof(struct tcphdr);
    235 	nbuf_reset(nbuf);
    236 next:
    237 	if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
    238 		ok = false;
    239 		goto done;
    240 	}
    241 	val = *(uint8_t *)nptr;
    242 
    243 	switch (val) {
    244 	case TCPOPT_EOL:
    245 		/* Done. */
    246 		ok = true;
    247 		goto done;
    248 	case TCPOPT_NOP:
    249 		topts_len--;
    250 		step = 1;
    251 		break;
    252 	case TCPOPT_MAXSEG:
    253 		if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) {
    254 			ok = false;
    255 			goto done;
    256 		}
    257 		if (mss) {
    258 			if (*mss) {
    259 				memcpy(nptr, mss, sizeof(uint16_t));
    260 			} else {
    261 				memcpy(mss, nptr, sizeof(uint16_t));
    262 			}
    263 		}
    264 		topts_len -= TCPOLEN_MAXSEG;
    265 		step = 2;
    266 		break;
    267 	case TCPOPT_WINDOW:
    268 		/* TCP Window Scaling (RFC 1323). */
    269 		if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) {
    270 			ok = false;
    271 			goto done;
    272 		}
    273 		val = *(uint8_t *)nptr;
    274 		*wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
    275 		topts_len -= TCPOLEN_WINDOW;
    276 		step = 1;
    277 		break;
    278 	default:
    279 		if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) {
    280 			ok = false;
    281 			goto done;
    282 		}
    283 		val = *(uint8_t *)nptr;
    284 		if (val < 2 || val > topts_len) {
    285 			ok = false;
    286 			goto done;
    287 		}
    288 		topts_len -= val;
    289 		step = val - 1;
    290 	}
    291 
    292 	/* Any options left? */
    293 	if (__predict_true(topts_len > 0)) {
    294 		goto next;
    295 	}
    296 	ok = true;
    297 done:
    298 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    299 		npf_recache(npc, nbuf);
    300 	}
    301 	return ok;
    302 }
    303 
    304 static int
    305 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
    306 {
    307 	const void *nptr = nbuf_dataptr(nbuf);
    308 	const uint8_t ver = *(const uint8_t *)nptr;
    309 	int flags = 0;
    310 
    311 	switch (ver >> 4) {
    312 	case IPVERSION: {
    313 		struct ip *ip;
    314 
    315 		ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
    316 		if (ip == NULL) {
    317 			return 0;
    318 		}
    319 
    320 		/* Check header length and fragment offset. */
    321 		if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
    322 			return 0;
    323 		}
    324 		if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
    325 			/* Note fragmentation. */
    326 			flags |= NPC_IPFRAG;
    327 		}
    328 
    329 		/* Cache: layer 3 - IPv4. */
    330 		npc->npc_alen = sizeof(struct in_addr);
    331 		npc->npc_srcip = (npf_addr_t *)&ip->ip_src;
    332 		npc->npc_dstip = (npf_addr_t *)&ip->ip_dst;
    333 		npc->npc_hlen = ip->ip_hl << 2;
    334 		npc->npc_proto = ip->ip_p;
    335 
    336 		npc->npc_ip.v4 = ip;
    337 		flags |= NPC_IP4;
    338 		break;
    339 	}
    340 
    341 	case (IPV6_VERSION >> 4): {
    342 		struct ip6_hdr *ip6;
    343 		struct ip6_ext *ip6e;
    344 		size_t off, hlen;
    345 
    346 		ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
    347 		if (ip6 == NULL) {
    348 			return 0;
    349 		}
    350 
    351 		/* Set initial next-protocol value. */
    352 		hlen = sizeof(struct ip6_hdr);
    353 		npc->npc_proto = ip6->ip6_nxt;
    354 		npc->npc_hlen = hlen;
    355 
    356 		/*
    357 		 * Advance by the length of the current header.
    358 		 */
    359 		off = nbuf_offset(nbuf);
    360 		while (nbuf_advance(nbuf, hlen, 0) != NULL) {
    361 			ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e));
    362 			if (ip6e == NULL) {
    363 				return 0;
    364 			}
    365 
    366 			/*
    367 			 * Determine whether we are going to continue.
    368 			 */
    369 			switch (npc->npc_proto) {
    370 			case IPPROTO_HOPOPTS:
    371 			case IPPROTO_DSTOPTS:
    372 			case IPPROTO_ROUTING:
    373 				hlen = (ip6e->ip6e_len + 1) << 3;
    374 				break;
    375 			case IPPROTO_FRAGMENT:
    376 				hlen = sizeof(struct ip6_frag);
    377 				flags |= NPC_IPFRAG;
    378 				break;
    379 			case IPPROTO_AH:
    380 				hlen = (ip6e->ip6e_len + 2) << 2;
    381 				break;
    382 			default:
    383 				hlen = 0;
    384 				break;
    385 			}
    386 
    387 			if (!hlen) {
    388 				break;
    389 			}
    390 			npc->npc_proto = ip6e->ip6e_nxt;
    391 			npc->npc_hlen += hlen;
    392 		}
    393 
    394 		/* Restore the offset. */
    395 		nbuf_reset(nbuf);
    396 		if (off) {
    397 			nbuf_advance(nbuf, off, 0);
    398 		}
    399 
    400 		/* Cache: layer 3 - IPv6. */
    401 		npc->npc_alen = sizeof(struct in6_addr);
    402 		npc->npc_srcip = (npf_addr_t *)&ip6->ip6_src;
    403 		npc->npc_dstip = (npf_addr_t *)&ip6->ip6_dst;
    404 
    405 		npc->npc_ip.v6 = ip6;
    406 		flags |= NPC_IP6;
    407 		break;
    408 	}
    409 	default:
    410 		break;
    411 	}
    412 	return flags;
    413 }
    414 
    415 /*
    416  * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
    417  * and TCP, UDP or ICMP headers.
    418  *
    419  * => nbuf offset shall be set accordingly.
    420  */
    421 int
    422 npf_cache_all(npf_cache_t *npc, nbuf_t *nbuf)
    423 {
    424 	int flags, l4flags;
    425 	u_int hlen;
    426 
    427 	/*
    428 	 * This routine is a main point where the references are cached,
    429 	 * therefore clear the flag as we reset.
    430 	 */
    431 again:
    432 	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
    433 
    434 	/*
    435 	 * First, cache the L3 header (IPv4 or IPv6).  If IP packet is
    436 	 * fragmented, then we cannot look into L4.
    437 	 */
    438 	flags = npf_cache_ip(npc, nbuf);
    439 	if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) {
    440 		npc->npc_info |= flags;
    441 		return flags;
    442 	}
    443 	hlen = npc->npc_hlen;
    444 
    445 	switch (npc->npc_proto) {
    446 	case IPPROTO_TCP:
    447 		/* Cache: layer 4 - TCP. */
    448 		npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
    449 		    sizeof(struct tcphdr));
    450 		l4flags = NPC_LAYER4 | NPC_TCP;
    451 		break;
    452 	case IPPROTO_UDP:
    453 		/* Cache: layer 4 - UDP. */
    454 		npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
    455 		    sizeof(struct udphdr));
    456 		l4flags = NPC_LAYER4 | NPC_UDP;
    457 		break;
    458 	case IPPROTO_ICMP:
    459 		/* Cache: layer 4 - ICMPv4. */
    460 		npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
    461 		    offsetof(struct icmp, icmp_void));
    462 		l4flags = NPC_LAYER4 | NPC_ICMP;
    463 		break;
    464 	case IPPROTO_ICMPV6:
    465 		/* Cache: layer 4 - ICMPv6. */
    466 		npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
    467 		    offsetof(struct icmp6_hdr, icmp6_data32));
    468 		l4flags = NPC_LAYER4 | NPC_ICMP;
    469 		break;
    470 	default:
    471 		l4flags = 0;
    472 		break;
    473 	}
    474 
    475 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    476 		goto again;
    477 	}
    478 
    479 	/* Add the L4 flags if nbuf_advance() succeeded. */
    480 	if (l4flags && npc->npc_l4.hdr) {
    481 		flags |= l4flags;
    482 	}
    483 	npc->npc_info |= flags;
    484 	return flags;
    485 }
    486 
    487 void
    488 npf_recache(npf_cache_t *npc, nbuf_t *nbuf)
    489 {
    490 	const int mflags = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
    491 	int flags;
    492 
    493 	nbuf_reset(nbuf);
    494 	npc->npc_info = 0;
    495 	flags = npf_cache_all(npc, nbuf);
    496 	KASSERT((flags & mflags) == mflags);
    497 	KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
    498 }
    499 
    500 /*
    501  * npf_rwrip: rewrite required IP address.
    502  */
    503 bool
    504 npf_rwrip(const npf_cache_t *npc, int di, const npf_addr_t *addr)
    505 {
    506 	npf_addr_t *oaddr;
    507 
    508 	KASSERT(npf_iscached(npc, NPC_IP46));
    509 
    510 	/*
    511 	 * Rewrite source address if outgoing and destination if incoming.
    512 	 */
    513 	oaddr = (di == PFIL_OUT) ? npc->npc_srcip : npc->npc_dstip;
    514 	memcpy(oaddr, addr, npc->npc_alen);
    515 	return true;
    516 }
    517 
    518 /*
    519  * npf_rwrport: rewrite required TCP/UDP port.
    520  */
    521 bool
    522 npf_rwrport(const npf_cache_t *npc, int di, const in_port_t port)
    523 {
    524 	const int proto = npf_cache_ipproto(npc);
    525 	in_port_t *oport;
    526 
    527 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    528 	KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
    529 
    530 	/* Get the offset and store the port in it. */
    531 	if (proto == IPPROTO_TCP) {
    532 		struct tcphdr *th = npc->npc_l4.tcp;
    533 		oport = (di == PFIL_OUT) ? &th->th_sport : &th->th_dport;
    534 	} else {
    535 		struct udphdr *uh = npc->npc_l4.udp;
    536 		oport = (di == PFIL_OUT) ? &uh->uh_sport : &uh->uh_dport;
    537 	}
    538 	memcpy(oport, &port, sizeof(in_port_t));
    539 	return true;
    540 }
    541 
    542 /*
    543  * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
    544  */
    545 bool
    546 npf_rwrcksum(const npf_cache_t *npc, const int di,
    547     const npf_addr_t *addr, const in_port_t port)
    548 {
    549 	const int proto = npf_cache_ipproto(npc);
    550 	const int alen = npc->npc_alen;
    551 	npf_addr_t *oaddr;
    552 	uint16_t *ocksum;
    553 	in_port_t oport;
    554 
    555 	KASSERT(npf_iscached(npc, NPC_LAYER4));
    556 	oaddr = (di == PFIL_OUT) ? npc->npc_srcip : npc->npc_dstip;
    557 
    558 	if (npf_iscached(npc, NPC_IP4)) {
    559 		struct ip *ip = npc->npc_ip.v4;
    560 		uint16_t ipsum = ip->ip_sum;
    561 
    562 		/* Recalculate IPv4 checksum and rewrite. */
    563 		ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
    564 	} else {
    565 		/* No checksum for IPv6. */
    566 		KASSERT(npf_iscached(npc, NPC_IP6));
    567 	}
    568 
    569 	/* Nothing else to do for ICMP. */
    570 	if (proto == IPPROTO_ICMP) {
    571 		return true;
    572 	}
    573 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    574 
    575 	/*
    576 	 * Calculate TCP/UDP checksum:
    577 	 * - Skip if UDP and the current checksum is zero.
    578 	 * - Fixup the IP address change.
    579 	 * - Fixup the port change, if required (non-zero).
    580 	 */
    581 	if (proto == IPPROTO_TCP) {
    582 		struct tcphdr *th = npc->npc_l4.tcp;
    583 
    584 		ocksum = &th->th_sum;
    585 		oport = (di == PFIL_OUT) ? th->th_sport : th->th_dport;
    586 	} else {
    587 		struct udphdr *uh = npc->npc_l4.udp;
    588 
    589 		KASSERT(proto == IPPROTO_UDP);
    590 		ocksum = &uh->uh_sum;
    591 		if (*ocksum == 0) {
    592 			/* No need to update. */
    593 			return true;
    594 		}
    595 		oport = (di == PFIL_OUT) ? uh->uh_sport : uh->uh_dport;
    596 	}
    597 
    598 	uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
    599 	if (port) {
    600 		cksum = npf_fixup16_cksum(cksum, oport, port);
    601 	}
    602 
    603 	/* Rewrite TCP/UDP checksum. */
    604 	memcpy(ocksum, &cksum, sizeof(uint16_t));
    605 	return true;
    606 }
    607 
    608 #if defined(DDB) || defined(_NPF_TESTING)
    609 
    610 void
    611 npf_addr_dump(const npf_addr_t *addr)
    612 {
    613 	printf("IP[%x:%x:%x:%x]\n",
    614 	    addr->s6_addr32[0], addr->s6_addr32[1],
    615 	    addr->s6_addr32[2], addr->s6_addr32[3]);
    616 }
    617 
    618 #endif
    619