npf_inet.c revision 1.22.2.1 1 /* $NetBSD: npf_inet.c,v 1.22.2.1 2013/08/28 23:59:36 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2012 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Various protocol related helper routines.
34 *
35 * This layer manipulates npf_cache_t structure i.e. caches requested headers
36 * and stores which information was cached in the information bit field.
37 * It is also responsibility of this layer to update or invalidate the cache
38 * on rewrites (e.g. by translation routines).
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.22.2.1 2013/08/28 23:59:36 rmind Exp $");
43
44 #include <sys/param.h>
45 #include <sys/types.h>
46
47 #include <net/pfil.h>
48 #include <net/if.h>
49 #include <net/ethertypes.h>
50 #include <net/if_ether.h>
51
52 #include <netinet/in_systm.h>
53 #include <netinet/in.h>
54 #include <netinet/ip.h>
55 #include <netinet/ip6.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <netinet/ip_icmp.h>
59
60 #include "npf_impl.h"
61
62 /*
63 * npf_fixup{16,32}_cksum: update IPv4 checksum.
64 */
65
66 uint16_t
67 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
68 {
69 uint32_t sum;
70
71 /*
72 * RFC 1624:
73 * HC' = ~(~HC + ~m + m')
74 */
75 sum = ~ntohs(cksum) & 0xffff;
76 sum += (~ntohs(odatum) & 0xffff) + ntohs(ndatum);
77 sum = (sum >> 16) + (sum & 0xffff);
78 sum += (sum >> 16);
79
80 return htons(~sum & 0xffff);
81 }
82
83 uint16_t
84 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
85 {
86
87 cksum = npf_fixup16_cksum(cksum, odatum & 0xffff, ndatum & 0xffff);
88 cksum = npf_fixup16_cksum(cksum, odatum >> 16, ndatum >> 16);
89 return cksum;
90 }
91
92 /*
93 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
94 */
95 uint16_t
96 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
97 const npf_addr_t *naddr)
98 {
99 const uint32_t *oip32 = (const uint32_t *)oaddr;
100 const uint32_t *nip32 = (const uint32_t *)naddr;
101
102 KASSERT(sz % sizeof(uint32_t) == 0);
103 do {
104 cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
105 sz -= sizeof(uint32_t);
106 } while (sz);
107
108 return cksum;
109 }
110
111 /*
112 * npf_addr_sum: provide IP address as a summed (if needed) 32-bit integer.
113 * Note: used for hash function.
114 */
115 uint32_t
116 npf_addr_sum(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
117 {
118 uint32_t mix = 0;
119 int i;
120
121 KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
122
123 for (i = 0; i < (sz >> 2); i++) {
124 mix += a1->s6_addr32[i];
125 mix += a2->s6_addr32[i];
126 }
127 return mix;
128 }
129
130 /*
131 * npf_addr_mask: apply the mask to a given address and store the result.
132 */
133 void
134 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
135 const int alen, npf_addr_t *out)
136 {
137 const int nwords = alen >> 2;
138 uint_fast8_t length = mask;
139
140 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
141 KASSERT(length <= NPF_MAX_NETMASK);
142
143 for (int i = 0; i < nwords; i++) {
144 uint32_t wordmask;
145
146 if (length >= 32) {
147 wordmask = htonl(0xffffffff);
148 length -= 32;
149 } else if (length) {
150 wordmask = htonl(0xffffffff << (32 - length));
151 length = 0;
152 } else {
153 wordmask = 0;
154 }
155 out->s6_addr32[i] = addr->s6_addr32[i] & wordmask;
156 }
157 }
158
159 /*
160 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
161 *
162 * => Return 0 if equal and negative/positive if less/greater accordingly.
163 * => Ignore the mask, if NPF_NO_NETMASK is specified.
164 */
165 int
166 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
167 const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
168 {
169 npf_addr_t realaddr1, realaddr2;
170
171 if (mask1 != NPF_NO_NETMASK) {
172 npf_addr_mask(addr1, mask1, alen, &realaddr1);
173 addr1 = &realaddr1;
174 }
175 if (mask2 != NPF_NO_NETMASK) {
176 npf_addr_mask(addr2, mask2, alen, &realaddr2);
177 addr2 = &realaddr2;
178 }
179 return memcmp(addr1, addr2, alen);
180 }
181
182 /*
183 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
184 *
185 * => Returns all values in host byte-order.
186 */
187 int
188 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
189 {
190 const struct tcphdr *th = npc->npc_l4.tcp;
191 u_int thlen;
192
193 KASSERT(npf_iscached(npc, NPC_TCP));
194
195 *seq = ntohl(th->th_seq);
196 *ack = ntohl(th->th_ack);
197 *win = (uint32_t)ntohs(th->th_win);
198 thlen = th->th_off << 2;
199
200 if (npf_iscached(npc, NPC_IP4)) {
201 const struct ip *ip = npc->npc_ip.v4;
202 return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
203 } else if (npf_iscached(npc, NPC_IP6)) {
204 const struct ip6_hdr *ip6 = npc->npc_ip.v6;
205 return ntohs(ip6->ip6_plen) - thlen;
206 }
207 return 0;
208 }
209
210 /*
211 * npf_fetch_tcpopts: parse and return TCP options.
212 */
213 bool
214 npf_fetch_tcpopts(npf_cache_t *npc, nbuf_t *nbuf, uint16_t *mss, int *wscale)
215 {
216 const struct tcphdr *th = npc->npc_l4.tcp;
217 int topts_len, step;
218 void *nptr;
219 uint8_t val;
220 bool ok;
221
222 KASSERT(npf_iscached(npc, NPC_IP46));
223 KASSERT(npf_iscached(npc, NPC_TCP));
224
225 /* Determine if there are any TCP options, get their length. */
226 topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
227 if (topts_len <= 0) {
228 /* No options. */
229 return false;
230 }
231 KASSERT(topts_len <= MAX_TCPOPTLEN);
232
233 /* First step: IP and TCP header up to options. */
234 step = npc->npc_hlen + sizeof(struct tcphdr);
235 nbuf_reset(nbuf);
236 next:
237 if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
238 ok = false;
239 goto done;
240 }
241 val = *(uint8_t *)nptr;
242
243 switch (val) {
244 case TCPOPT_EOL:
245 /* Done. */
246 ok = true;
247 goto done;
248 case TCPOPT_NOP:
249 topts_len--;
250 step = 1;
251 break;
252 case TCPOPT_MAXSEG:
253 if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) {
254 ok = false;
255 goto done;
256 }
257 if (mss) {
258 if (*mss) {
259 memcpy(nptr, mss, sizeof(uint16_t));
260 } else {
261 memcpy(mss, nptr, sizeof(uint16_t));
262 }
263 }
264 topts_len -= TCPOLEN_MAXSEG;
265 step = 2;
266 break;
267 case TCPOPT_WINDOW:
268 /* TCP Window Scaling (RFC 1323). */
269 if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) {
270 ok = false;
271 goto done;
272 }
273 val = *(uint8_t *)nptr;
274 *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
275 topts_len -= TCPOLEN_WINDOW;
276 step = 1;
277 break;
278 default:
279 if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) {
280 ok = false;
281 goto done;
282 }
283 val = *(uint8_t *)nptr;
284 if (val < 2 || val > topts_len) {
285 ok = false;
286 goto done;
287 }
288 topts_len -= val;
289 step = val - 1;
290 }
291
292 /* Any options left? */
293 if (__predict_true(topts_len > 0)) {
294 goto next;
295 }
296 ok = true;
297 done:
298 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
299 npf_recache(npc, nbuf);
300 }
301 return ok;
302 }
303
304 static int
305 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
306 {
307 const void *nptr = nbuf_dataptr(nbuf);
308 const uint8_t ver = *(const uint8_t *)nptr;
309 int flags = 0;
310
311 switch (ver >> 4) {
312 case IPVERSION: {
313 struct ip *ip;
314
315 ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
316 if (ip == NULL) {
317 return 0;
318 }
319
320 /* Check header length and fragment offset. */
321 if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
322 return 0;
323 }
324 if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
325 /* Note fragmentation. */
326 flags |= NPC_IPFRAG;
327 }
328
329 /* Cache: layer 3 - IPv4. */
330 npc->npc_alen = sizeof(struct in_addr);
331 npc->npc_srcip = (npf_addr_t *)&ip->ip_src;
332 npc->npc_dstip = (npf_addr_t *)&ip->ip_dst;
333 npc->npc_hlen = ip->ip_hl << 2;
334 npc->npc_proto = ip->ip_p;
335
336 npc->npc_ip.v4 = ip;
337 flags |= NPC_IP4;
338 break;
339 }
340
341 case (IPV6_VERSION >> 4): {
342 struct ip6_hdr *ip6;
343 struct ip6_ext *ip6e;
344 size_t off, hlen;
345
346 ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
347 if (ip6 == NULL) {
348 return 0;
349 }
350
351 /* Set initial next-protocol value. */
352 hlen = sizeof(struct ip6_hdr);
353 npc->npc_proto = ip6->ip6_nxt;
354 npc->npc_hlen = hlen;
355
356 /*
357 * Advance by the length of the current header.
358 */
359 off = nbuf_offset(nbuf);
360 while (nbuf_advance(nbuf, hlen, 0) != NULL) {
361 ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e));
362 if (ip6e == NULL) {
363 return 0;
364 }
365
366 /*
367 * Determine whether we are going to continue.
368 */
369 switch (npc->npc_proto) {
370 case IPPROTO_HOPOPTS:
371 case IPPROTO_DSTOPTS:
372 case IPPROTO_ROUTING:
373 hlen = (ip6e->ip6e_len + 1) << 3;
374 break;
375 case IPPROTO_FRAGMENT:
376 hlen = sizeof(struct ip6_frag);
377 flags |= NPC_IPFRAG;
378 break;
379 case IPPROTO_AH:
380 hlen = (ip6e->ip6e_len + 2) << 2;
381 break;
382 default:
383 hlen = 0;
384 break;
385 }
386
387 if (!hlen) {
388 break;
389 }
390 npc->npc_proto = ip6e->ip6e_nxt;
391 npc->npc_hlen += hlen;
392 }
393
394 /*
395 * Re-fetch the header pointers (nbufs might have been
396 * reallocated). Restore the original offset (if any).
397 */
398 nbuf_reset(nbuf);
399 ip6 = nbuf_dataptr(nbuf);
400 if (off) {
401 nbuf_advance(nbuf, off, 0);
402 }
403
404 /* Cache: layer 3 - IPv6. */
405 npc->npc_alen = sizeof(struct in6_addr);
406 npc->npc_srcip = (npf_addr_t *)&ip6->ip6_src;
407 npc->npc_dstip = (npf_addr_t *)&ip6->ip6_dst;
408
409 npc->npc_ip.v6 = ip6;
410 flags |= NPC_IP6;
411 break;
412 }
413 default:
414 break;
415 }
416 return flags;
417 }
418
419 /*
420 * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
421 * and TCP, UDP or ICMP headers.
422 *
423 * => nbuf offset shall be set accordingly.
424 */
425 int
426 npf_cache_all(npf_cache_t *npc, nbuf_t *nbuf)
427 {
428 int flags, l4flags;
429 u_int hlen;
430
431 /*
432 * This routine is a main point where the references are cached,
433 * therefore clear the flag as we reset.
434 */
435 again:
436 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
437
438 /*
439 * First, cache the L3 header (IPv4 or IPv6). If IP packet is
440 * fragmented, then we cannot look into L4.
441 */
442 flags = npf_cache_ip(npc, nbuf);
443 if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) {
444 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
445 npc->npc_info |= flags;
446 return flags;
447 }
448 hlen = npc->npc_hlen;
449
450 switch (npc->npc_proto) {
451 case IPPROTO_TCP:
452 /* Cache: layer 4 - TCP. */
453 npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
454 sizeof(struct tcphdr));
455 l4flags = NPC_LAYER4 | NPC_TCP;
456 break;
457 case IPPROTO_UDP:
458 /* Cache: layer 4 - UDP. */
459 npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
460 sizeof(struct udphdr));
461 l4flags = NPC_LAYER4 | NPC_UDP;
462 break;
463 case IPPROTO_ICMP:
464 /* Cache: layer 4 - ICMPv4. */
465 npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
466 offsetof(struct icmp, icmp_void));
467 l4flags = NPC_LAYER4 | NPC_ICMP;
468 break;
469 case IPPROTO_ICMPV6:
470 /* Cache: layer 4 - ICMPv6. */
471 npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
472 offsetof(struct icmp6_hdr, icmp6_data32));
473 l4flags = NPC_LAYER4 | NPC_ICMP;
474 break;
475 default:
476 l4flags = 0;
477 break;
478 }
479
480 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
481 goto again;
482 }
483
484 /* Add the L4 flags if nbuf_advance() succeeded. */
485 if (l4flags && npc->npc_l4.hdr) {
486 flags |= l4flags;
487 }
488 npc->npc_info |= flags;
489 return flags;
490 }
491
492 void
493 npf_recache(npf_cache_t *npc, nbuf_t *nbuf)
494 {
495 const int mflags __unused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
496 int flags;
497
498 nbuf_reset(nbuf);
499 npc->npc_info = 0;
500 flags = npf_cache_all(npc, nbuf);
501 KASSERT((flags & mflags) == mflags);
502 KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
503 }
504
505 /*
506 * npf_rwrip: rewrite required IP address.
507 */
508 bool
509 npf_rwrip(const npf_cache_t *npc, int di, const npf_addr_t *addr)
510 {
511 npf_addr_t *oaddr;
512
513 KASSERT(npf_iscached(npc, NPC_IP46));
514
515 /*
516 * Rewrite source address if outgoing and destination if incoming.
517 */
518 oaddr = (di == PFIL_OUT) ? npc->npc_srcip : npc->npc_dstip;
519 memcpy(oaddr, addr, npc->npc_alen);
520 return true;
521 }
522
523 /*
524 * npf_rwrport: rewrite required TCP/UDP port.
525 */
526 bool
527 npf_rwrport(const npf_cache_t *npc, int di, const in_port_t port)
528 {
529 const int proto = npc->npc_proto;
530 in_port_t *oport;
531
532 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
533 KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
534
535 /* Get the offset and store the port in it. */
536 if (proto == IPPROTO_TCP) {
537 struct tcphdr *th = npc->npc_l4.tcp;
538 oport = (di == PFIL_OUT) ? &th->th_sport : &th->th_dport;
539 } else {
540 struct udphdr *uh = npc->npc_l4.udp;
541 oport = (di == PFIL_OUT) ? &uh->uh_sport : &uh->uh_dport;
542 }
543 memcpy(oport, &port, sizeof(in_port_t));
544 return true;
545 }
546
547 /*
548 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
549 */
550 bool
551 npf_rwrcksum(const npf_cache_t *npc, const int di,
552 const npf_addr_t *addr, const in_port_t port)
553 {
554 const int proto = npc->npc_proto;
555 const int alen = npc->npc_alen;
556 npf_addr_t *oaddr;
557 uint16_t *ocksum;
558 in_port_t oport;
559
560 KASSERT(npf_iscached(npc, NPC_LAYER4));
561 oaddr = (di == PFIL_OUT) ? npc->npc_srcip : npc->npc_dstip;
562
563 if (npf_iscached(npc, NPC_IP4)) {
564 struct ip *ip = npc->npc_ip.v4;
565 uint16_t ipsum = ip->ip_sum;
566
567 /* Recalculate IPv4 checksum and rewrite. */
568 ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
569 } else {
570 /* No checksum for IPv6. */
571 KASSERT(npf_iscached(npc, NPC_IP6));
572 }
573
574 /* Nothing else to do for ICMP. */
575 if (proto == IPPROTO_ICMP) {
576 return true;
577 }
578 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
579
580 /*
581 * Calculate TCP/UDP checksum:
582 * - Skip if UDP and the current checksum is zero.
583 * - Fixup the IP address change.
584 * - Fixup the port change, if required (non-zero).
585 */
586 if (proto == IPPROTO_TCP) {
587 struct tcphdr *th = npc->npc_l4.tcp;
588
589 ocksum = &th->th_sum;
590 oport = (di == PFIL_OUT) ? th->th_sport : th->th_dport;
591 } else {
592 struct udphdr *uh = npc->npc_l4.udp;
593
594 KASSERT(proto == IPPROTO_UDP);
595 ocksum = &uh->uh_sum;
596 if (*ocksum == 0) {
597 /* No need to update. */
598 return true;
599 }
600 oport = (di == PFIL_OUT) ? uh->uh_sport : uh->uh_dport;
601 }
602
603 uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
604 if (port) {
605 cksum = npf_fixup16_cksum(cksum, oport, port);
606 }
607
608 /* Rewrite TCP/UDP checksum. */
609 memcpy(ocksum, &cksum, sizeof(uint16_t));
610 return true;
611 }
612
613 #if defined(DDB) || defined(_NPF_TESTING)
614
615 void
616 npf_addr_dump(const npf_addr_t *addr)
617 {
618 printf("IP[%x:%x:%x:%x]\n",
619 addr->s6_addr32[0], addr->s6_addr32[1],
620 addr->s6_addr32[2], addr->s6_addr32[3]);
621 }
622
623 #endif
624