npf_inet.c revision 1.32 1 /* $NetBSD: npf_inet.c,v 1.32 2014/07/20 00:37:41 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Various protocol related helper routines.
34 *
35 * This layer manipulates npf_cache_t structure i.e. caches requested headers
36 * and stores which information was cached in the information bit field.
37 * It is also responsibility of this layer to update or invalidate the cache
38 * on rewrites (e.g. by translation routines).
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.32 2014/07/20 00:37:41 rmind Exp $");
43
44 #include <sys/param.h>
45 #include <sys/types.h>
46
47 #include <net/pfil.h>
48 #include <net/if.h>
49 #include <net/ethertypes.h>
50 #include <net/if_ether.h>
51
52 #include <netinet/in_systm.h>
53 #include <netinet/in.h>
54 #include <netinet/ip.h>
55 #include <netinet/ip6.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <netinet/ip_icmp.h>
59
60 #include "npf_impl.h"
61
62 /*
63 * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
64 */
65
66 uint16_t
67 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
68 {
69 uint32_t sum;
70
71 /*
72 * RFC 1624:
73 * HC' = ~(~HC + ~m + m')
74 *
75 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
76 */
77 sum = ~cksum & 0xffff;
78 sum += (~odatum & 0xffff) + ndatum;
79 sum = (sum >> 16) + (sum & 0xffff);
80 sum += (sum >> 16);
81
82 return ~sum & 0xffff;
83 }
84
85 uint16_t
86 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
87 {
88 uint32_t sum;
89
90 /*
91 * Checksum 32-bit datum as as two 16-bit. Note, the first
92 * 32->16 bit reduction is not necessary.
93 */
94 sum = ~cksum & 0xffff;
95 sum += (~odatum & 0xffff) + (ndatum & 0xffff);
96
97 sum += (~odatum >> 16) + (ndatum >> 16);
98 sum = (sum >> 16) + (sum & 0xffff);
99 sum += (sum >> 16);
100 return ~sum & 0xffff;
101 }
102
103 /*
104 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
105 */
106 uint16_t
107 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
108 const npf_addr_t *naddr)
109 {
110 const uint32_t *oip32 = (const uint32_t *)oaddr;
111 const uint32_t *nip32 = (const uint32_t *)naddr;
112
113 KASSERT(sz % sizeof(uint32_t) == 0);
114 do {
115 cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
116 sz -= sizeof(uint32_t);
117 } while (sz);
118
119 return cksum;
120 }
121
122 /*
123 * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
124 * Note: used for hash function.
125 */
126 uint32_t
127 npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
128 {
129 uint32_t mix = 0;
130
131 KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
132
133 for (int i = 0; i < (sz >> 2); i++) {
134 mix ^= a1->s6_addr32[i];
135 mix ^= a2->s6_addr32[i];
136 }
137 return mix;
138 }
139
140 /*
141 * npf_addr_mask: apply the mask to a given address and store the result.
142 */
143 void
144 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
145 const int alen, npf_addr_t *out)
146 {
147 const int nwords = alen >> 2;
148 uint_fast8_t length = mask;
149
150 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
151 KASSERT(length <= NPF_MAX_NETMASK);
152
153 for (int i = 0; i < nwords; i++) {
154 uint32_t wordmask;
155
156 if (length >= 32) {
157 wordmask = htonl(0xffffffff);
158 length -= 32;
159 } else if (length) {
160 wordmask = htonl(0xffffffff << (32 - length));
161 length = 0;
162 } else {
163 wordmask = 0;
164 }
165 out->s6_addr32[i] = addr->s6_addr32[i] & wordmask;
166 }
167 }
168
169 /*
170 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
171 *
172 * => Return 0 if equal and negative/positive if less/greater accordingly.
173 * => Ignore the mask, if NPF_NO_NETMASK is specified.
174 */
175 int
176 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
177 const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
178 {
179 npf_addr_t realaddr1, realaddr2;
180
181 if (mask1 != NPF_NO_NETMASK) {
182 npf_addr_mask(addr1, mask1, alen, &realaddr1);
183 addr1 = &realaddr1;
184 }
185 if (mask2 != NPF_NO_NETMASK) {
186 npf_addr_mask(addr2, mask2, alen, &realaddr2);
187 addr2 = &realaddr2;
188 }
189 return memcmp(addr1, addr2, alen);
190 }
191
192 /*
193 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
194 *
195 * => Returns all values in host byte-order.
196 */
197 int
198 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
199 {
200 const struct tcphdr *th = npc->npc_l4.tcp;
201 u_int thlen;
202
203 KASSERT(npf_iscached(npc, NPC_TCP));
204
205 *seq = ntohl(th->th_seq);
206 *ack = ntohl(th->th_ack);
207 *win = (uint32_t)ntohs(th->th_win);
208 thlen = th->th_off << 2;
209
210 if (npf_iscached(npc, NPC_IP4)) {
211 const struct ip *ip = npc->npc_ip.v4;
212 return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
213 } else if (npf_iscached(npc, NPC_IP6)) {
214 const struct ip6_hdr *ip6 = npc->npc_ip.v6;
215 return ntohs(ip6->ip6_plen) - thlen;
216 }
217 return 0;
218 }
219
220 /*
221 * npf_fetch_tcpopts: parse and return TCP options.
222 */
223 bool
224 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
225 {
226 nbuf_t *nbuf = npc->npc_nbuf;
227 const struct tcphdr *th = npc->npc_l4.tcp;
228 int topts_len, step;
229 void *nptr;
230 uint8_t val;
231 bool ok;
232
233 KASSERT(npf_iscached(npc, NPC_IP46));
234 KASSERT(npf_iscached(npc, NPC_TCP));
235
236 /* Determine if there are any TCP options, get their length. */
237 topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
238 if (topts_len <= 0) {
239 /* No options. */
240 return false;
241 }
242 KASSERT(topts_len <= MAX_TCPOPTLEN);
243
244 /* First step: IP and TCP header up to options. */
245 step = npc->npc_hlen + sizeof(struct tcphdr);
246 nbuf_reset(nbuf);
247 next:
248 if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
249 ok = false;
250 goto done;
251 }
252 val = *(uint8_t *)nptr;
253
254 switch (val) {
255 case TCPOPT_EOL:
256 /* Done. */
257 ok = true;
258 goto done;
259 case TCPOPT_NOP:
260 topts_len--;
261 step = 1;
262 break;
263 case TCPOPT_MAXSEG:
264 if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) {
265 ok = false;
266 goto done;
267 }
268 if (mss) {
269 if (*mss) {
270 memcpy(nptr, mss, sizeof(uint16_t));
271 } else {
272 memcpy(mss, nptr, sizeof(uint16_t));
273 }
274 }
275 topts_len -= TCPOLEN_MAXSEG;
276 step = 2;
277 break;
278 case TCPOPT_WINDOW:
279 /* TCP Window Scaling (RFC 1323). */
280 if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) {
281 ok = false;
282 goto done;
283 }
284 val = *(uint8_t *)nptr;
285 *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
286 topts_len -= TCPOLEN_WINDOW;
287 step = 1;
288 break;
289 default:
290 if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) {
291 ok = false;
292 goto done;
293 }
294 val = *(uint8_t *)nptr;
295 if (val < 2 || val > topts_len) {
296 ok = false;
297 goto done;
298 }
299 topts_len -= val;
300 step = val - 1;
301 }
302
303 /* Any options left? */
304 if (__predict_true(topts_len > 0)) {
305 goto next;
306 }
307 ok = true;
308 done:
309 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
310 npf_recache(npc);
311 }
312 return ok;
313 }
314
315 static int
316 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
317 {
318 const void *nptr = nbuf_dataptr(nbuf);
319 const uint8_t ver = *(const uint8_t *)nptr;
320 int flags = 0;
321
322 switch (ver >> 4) {
323 case IPVERSION: {
324 struct ip *ip;
325
326 ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
327 if (ip == NULL) {
328 return 0;
329 }
330
331 /* Check header length and fragment offset. */
332 if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
333 return 0;
334 }
335 if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
336 /* Note fragmentation. */
337 flags |= NPC_IPFRAG;
338 }
339
340 /* Cache: layer 3 - IPv4. */
341 npc->npc_alen = sizeof(struct in_addr);
342 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
343 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
344 npc->npc_hlen = ip->ip_hl << 2;
345 npc->npc_proto = ip->ip_p;
346
347 npc->npc_ip.v4 = ip;
348 flags |= NPC_IP4;
349 break;
350 }
351
352 case (IPV6_VERSION >> 4): {
353 struct ip6_hdr *ip6;
354 struct ip6_ext *ip6e;
355 size_t off, hlen;
356
357 ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
358 if (ip6 == NULL) {
359 return 0;
360 }
361
362 /* Set initial next-protocol value. */
363 hlen = sizeof(struct ip6_hdr);
364 npc->npc_proto = ip6->ip6_nxt;
365 npc->npc_hlen = hlen;
366
367 /*
368 * Advance by the length of the current header.
369 */
370 off = nbuf_offset(nbuf);
371 while (nbuf_advance(nbuf, hlen, 0) != NULL) {
372 ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e));
373 if (ip6e == NULL) {
374 return 0;
375 }
376
377 /*
378 * Determine whether we are going to continue.
379 */
380 switch (npc->npc_proto) {
381 case IPPROTO_HOPOPTS:
382 case IPPROTO_DSTOPTS:
383 case IPPROTO_ROUTING:
384 hlen = (ip6e->ip6e_len + 1) << 3;
385 break;
386 case IPPROTO_FRAGMENT:
387 hlen = sizeof(struct ip6_frag);
388 flags |= NPC_IPFRAG;
389 break;
390 case IPPROTO_AH:
391 hlen = (ip6e->ip6e_len + 2) << 2;
392 break;
393 default:
394 hlen = 0;
395 break;
396 }
397
398 if (!hlen) {
399 break;
400 }
401 npc->npc_proto = ip6e->ip6e_nxt;
402 npc->npc_hlen += hlen;
403 }
404
405 /*
406 * Re-fetch the header pointers (nbufs might have been
407 * reallocated). Restore the original offset (if any).
408 */
409 nbuf_reset(nbuf);
410 ip6 = nbuf_dataptr(nbuf);
411 if (off) {
412 nbuf_advance(nbuf, off, 0);
413 }
414
415 /* Cache: layer 3 - IPv6. */
416 npc->npc_alen = sizeof(struct in6_addr);
417 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
418 npc->npc_ips[NPF_DST]= (npf_addr_t *)&ip6->ip6_dst;
419
420 npc->npc_ip.v6 = ip6;
421 flags |= NPC_IP6;
422 break;
423 }
424 default:
425 break;
426 }
427 return flags;
428 }
429
430 /*
431 * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
432 * and TCP, UDP or ICMP headers.
433 *
434 * => nbuf offset shall be set accordingly.
435 */
436 int
437 npf_cache_all(npf_cache_t *npc)
438 {
439 nbuf_t *nbuf = npc->npc_nbuf;
440 int flags, l4flags;
441 u_int hlen;
442
443 /*
444 * This routine is a main point where the references are cached,
445 * therefore clear the flag as we reset.
446 */
447 again:
448 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
449
450 /*
451 * First, cache the L3 header (IPv4 or IPv6). If IP packet is
452 * fragmented, then we cannot look into L4.
453 */
454 flags = npf_cache_ip(npc, nbuf);
455 if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) {
456 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
457 npc->npc_info |= flags;
458 return flags;
459 }
460 hlen = npc->npc_hlen;
461
462 switch (npc->npc_proto) {
463 case IPPROTO_TCP:
464 /* Cache: layer 4 - TCP. */
465 npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
466 sizeof(struct tcphdr));
467 l4flags = NPC_LAYER4 | NPC_TCP;
468 break;
469 case IPPROTO_UDP:
470 /* Cache: layer 4 - UDP. */
471 npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
472 sizeof(struct udphdr));
473 l4flags = NPC_LAYER4 | NPC_UDP;
474 break;
475 case IPPROTO_ICMP:
476 /* Cache: layer 4 - ICMPv4. */
477 npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
478 offsetof(struct icmp, icmp_void));
479 l4flags = NPC_LAYER4 | NPC_ICMP;
480 break;
481 case IPPROTO_ICMPV6:
482 /* Cache: layer 4 - ICMPv6. */
483 npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
484 offsetof(struct icmp6_hdr, icmp6_data32));
485 l4flags = NPC_LAYER4 | NPC_ICMP;
486 break;
487 default:
488 l4flags = 0;
489 break;
490 }
491
492 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
493 goto again;
494 }
495
496 /* Add the L4 flags if nbuf_advance() succeeded. */
497 if (l4flags && npc->npc_l4.hdr) {
498 flags |= l4flags;
499 }
500 npc->npc_info |= flags;
501 return flags;
502 }
503
504 void
505 npf_recache(npf_cache_t *npc)
506 {
507 nbuf_t *nbuf = npc->npc_nbuf;
508 const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
509 int flags __diagused;
510
511 nbuf_reset(nbuf);
512 npc->npc_info = 0;
513 flags = npf_cache_all(npc);
514
515 KASSERT((flags & mflags) == mflags);
516 KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
517 }
518
519 /*
520 * npf_rwrip: rewrite required IP address.
521 */
522 bool
523 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
524 {
525 KASSERT(npf_iscached(npc, NPC_IP46));
526 KASSERT(which == NPF_SRC || which == NPF_DST);
527
528 memcpy(npc->npc_ips[which], addr, npc->npc_alen);
529 return true;
530 }
531
532 /*
533 * npf_rwrport: rewrite required TCP/UDP port.
534 */
535 bool
536 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
537 {
538 const int proto = npc->npc_proto;
539 in_port_t *oport;
540
541 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
542 KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
543 KASSERT(which == NPF_SRC || which == NPF_DST);
544
545 /* Get the offset and store the port in it. */
546 if (proto == IPPROTO_TCP) {
547 struct tcphdr *th = npc->npc_l4.tcp;
548 oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
549 } else {
550 struct udphdr *uh = npc->npc_l4.udp;
551 oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
552 }
553 memcpy(oport, &port, sizeof(in_port_t));
554 return true;
555 }
556
557 /*
558 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
559 */
560 bool
561 npf_rwrcksum(const npf_cache_t *npc, u_int which,
562 const npf_addr_t *addr, const in_port_t port)
563 {
564 const npf_addr_t *oaddr = npc->npc_ips[which];
565 const int proto = npc->npc_proto;
566 const int alen = npc->npc_alen;
567 uint16_t *ocksum;
568 in_port_t oport;
569
570 KASSERT(npf_iscached(npc, NPC_LAYER4));
571 KASSERT(which == NPF_SRC || which == NPF_DST);
572
573 if (npf_iscached(npc, NPC_IP4)) {
574 struct ip *ip = npc->npc_ip.v4;
575 uint16_t ipsum = ip->ip_sum;
576
577 /* Recalculate IPv4 checksum and rewrite. */
578 ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
579 } else {
580 /* No checksum for IPv6. */
581 KASSERT(npf_iscached(npc, NPC_IP6));
582 }
583
584 /* Nothing else to do for ICMP. */
585 if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
586 return true;
587 }
588 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
589
590 /*
591 * Calculate TCP/UDP checksum:
592 * - Skip if UDP and the current checksum is zero.
593 * - Fixup the IP address change.
594 * - Fixup the port change, if required (non-zero).
595 */
596 if (proto == IPPROTO_TCP) {
597 struct tcphdr *th = npc->npc_l4.tcp;
598
599 ocksum = &th->th_sum;
600 oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
601 } else {
602 struct udphdr *uh = npc->npc_l4.udp;
603
604 KASSERT(proto == IPPROTO_UDP);
605 ocksum = &uh->uh_sum;
606 if (*ocksum == 0) {
607 /* No need to update. */
608 return true;
609 }
610 oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
611 }
612
613 uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
614 if (port) {
615 cksum = npf_fixup16_cksum(cksum, oport, port);
616 }
617
618 /* Rewrite TCP/UDP checksum. */
619 memcpy(ocksum, &cksum, sizeof(uint16_t));
620 return true;
621 }
622
623 /*
624 * npf_napt_rwr: perform address and/or port translation.
625 */
626 int
627 npf_napt_rwr(const npf_cache_t *npc, u_int which,
628 const npf_addr_t *addr, const in_addr_t port)
629 {
630 const unsigned proto = npc->npc_proto;
631
632 /*
633 * Rewrite IP and/or TCP/UDP checksums first, since we need the
634 * current (old) address/port for the calculations. Then perform
635 * the address translation i.e. rewrite source or destination.
636 */
637 if (!npf_rwrcksum(npc, which, addr, port)) {
638 return EINVAL;
639 }
640 if (!npf_rwrip(npc, which, addr)) {
641 return EINVAL;
642 }
643 if (port == 0) {
644 /* Done. */
645 return 0;
646 }
647
648 switch (proto) {
649 case IPPROTO_TCP:
650 case IPPROTO_UDP:
651 /* Rewrite source/destination port. */
652 if (!npf_rwrport(npc, which, port)) {
653 return EINVAL;
654 }
655 break;
656 case IPPROTO_ICMP:
657 case IPPROTO_ICMPV6:
658 KASSERT(npf_iscached(npc, NPC_ICMP));
659 /* Nothing. */
660 break;
661 default:
662 return ENOTSUP;
663 }
664 return 0;
665 }
666
667 /*
668 * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
669 */
670
671 int
672 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
673 npf_netmask_t len, uint16_t adj)
674 {
675 npf_addr_t *addr = npc->npc_ips[which];
676 unsigned remnant, word, preflen = len >> 4;
677 uint32_t sum;
678
679 KASSERT(which == NPF_SRC || which == NPF_DST);
680
681 if (!npf_iscached(npc, NPC_IP6)) {
682 return EINVAL;
683 }
684 if (len <= 48) {
685 /*
686 * The word to adjust. Cannot translate the 0xffff
687 * subnet if /48 or shorter.
688 */
689 word = 3;
690 if (addr->s6_addr16[word] == 0xffff) {
691 return EINVAL;
692 }
693 } else {
694 /*
695 * Also, all 0s or 1s in the host part are disallowed for
696 * longer than /48 prefixes.
697 */
698 if ((addr->s6_addr32[2] == 0 && addr->s6_addr32[3] == 0) ||
699 (addr->s6_addr32[2] == ~0U && addr->s6_addr32[3] == ~0U))
700 return EINVAL;
701
702 /* Determine the 16-bit word to adjust. */
703 for (word = 4; word < 8; word++)
704 if (addr->s6_addr16[word] != 0xffff)
705 break;
706 }
707
708 /* Rewrite the prefix. */
709 for (unsigned i = 0; i < preflen; i++) {
710 addr->s6_addr16[i] = pref->s6_addr16[i];
711 }
712
713 /*
714 * If prefix length is within a 16-bit word (not dividable by 16),
715 * then prepare a mask, determine the word and adjust it.
716 */
717 if ((remnant = len - (preflen << 4)) != 0) {
718 const uint16_t wordmask = (1U << remnant) - 1;
719 const unsigned i = preflen;
720
721 addr->s6_addr16[i] = (pref->s6_addr16[i] & wordmask) |
722 (addr->s6_addr16[i] & ~wordmask);
723 }
724
725 /*
726 * Performing 1's complement sum/difference.
727 */
728 sum = addr->s6_addr16[word] + adj;
729 while (sum >> 16) {
730 sum = (sum >> 16) + (sum & 0xffff);
731 }
732 if (sum == 0xffff) {
733 /* RFC 1071. */
734 sum = 0x0000;
735 }
736 addr->s6_addr16[word] = sum;
737 return 0;
738 }
739
740 #if defined(DDB) || defined(_NPF_TESTING)
741
742 const char *
743 npf_addr_dump(const npf_addr_t *addr, int alen)
744 {
745 if (alen == sizeof(struct in_addr)) {
746 struct in_addr ip;
747 memcpy(&ip, addr, alen);
748 return inet_ntoa(ip);
749 }
750 return "[IPv6]"; // XXX
751 }
752
753 #endif
754