npf_inet.c revision 1.32.6.1 1 /* $NetBSD: npf_inet.c,v 1.32.6.1 2018/05/14 19:03:48 martin Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Various protocol related helper routines.
34 *
35 * This layer manipulates npf_cache_t structure i.e. caches requested headers
36 * and stores which information was cached in the information bit field.
37 * It is also responsibility of this layer to update or invalidate the cache
38 * on rewrites (e.g. by translation routines).
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.32.6.1 2018/05/14 19:03:48 martin Exp $");
43
44 #include <sys/param.h>
45 #include <sys/types.h>
46
47 #include <net/pfil.h>
48 #include <net/if.h>
49 #include <net/ethertypes.h>
50 #include <net/if_ether.h>
51
52 #include <netinet/in_systm.h>
53 #include <netinet/in.h>
54 #include <netinet/ip.h>
55 #include <netinet/ip6.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <netinet/ip_icmp.h>
59
60 #include "npf_impl.h"
61
62 /*
63 * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
64 */
65
66 uint16_t
67 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
68 {
69 uint32_t sum;
70
71 /*
72 * RFC 1624:
73 * HC' = ~(~HC + ~m + m')
74 *
75 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
76 */
77 sum = ~cksum & 0xffff;
78 sum += (~odatum & 0xffff) + ndatum;
79 sum = (sum >> 16) + (sum & 0xffff);
80 sum += (sum >> 16);
81
82 return ~sum & 0xffff;
83 }
84
85 uint16_t
86 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
87 {
88 uint32_t sum;
89
90 /*
91 * Checksum 32-bit datum as as two 16-bit. Note, the first
92 * 32->16 bit reduction is not necessary.
93 */
94 sum = ~cksum & 0xffff;
95 sum += (~odatum & 0xffff) + (ndatum & 0xffff);
96
97 sum += (~odatum >> 16) + (ndatum >> 16);
98 sum = (sum >> 16) + (sum & 0xffff);
99 sum += (sum >> 16);
100 return ~sum & 0xffff;
101 }
102
103 /*
104 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
105 */
106 uint16_t
107 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
108 const npf_addr_t *naddr)
109 {
110 const uint32_t *oip32 = (const uint32_t *)oaddr;
111 const uint32_t *nip32 = (const uint32_t *)naddr;
112
113 KASSERT(sz % sizeof(uint32_t) == 0);
114 do {
115 cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
116 sz -= sizeof(uint32_t);
117 } while (sz);
118
119 return cksum;
120 }
121
122 /*
123 * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
124 * Note: used for hash function.
125 */
126 uint32_t
127 npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
128 {
129 uint32_t mix = 0;
130
131 KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
132
133 for (int i = 0; i < (sz >> 2); i++) {
134 mix ^= a1->s6_addr32[i];
135 mix ^= a2->s6_addr32[i];
136 }
137 return mix;
138 }
139
140 /*
141 * npf_addr_mask: apply the mask to a given address and store the result.
142 */
143 void
144 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
145 const int alen, npf_addr_t *out)
146 {
147 const int nwords = alen >> 2;
148 uint_fast8_t length = mask;
149
150 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
151 KASSERT(length <= NPF_MAX_NETMASK);
152
153 for (int i = 0; i < nwords; i++) {
154 uint32_t wordmask;
155
156 if (length >= 32) {
157 wordmask = htonl(0xffffffff);
158 length -= 32;
159 } else if (length) {
160 wordmask = htonl(0xffffffff << (32 - length));
161 length = 0;
162 } else {
163 wordmask = 0;
164 }
165 out->s6_addr32[i] = addr->s6_addr32[i] & wordmask;
166 }
167 }
168
169 /*
170 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
171 *
172 * => Return 0 if equal and negative/positive if less/greater accordingly.
173 * => Ignore the mask, if NPF_NO_NETMASK is specified.
174 */
175 int
176 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
177 const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
178 {
179 npf_addr_t realaddr1, realaddr2;
180
181 if (mask1 != NPF_NO_NETMASK) {
182 npf_addr_mask(addr1, mask1, alen, &realaddr1);
183 addr1 = &realaddr1;
184 }
185 if (mask2 != NPF_NO_NETMASK) {
186 npf_addr_mask(addr2, mask2, alen, &realaddr2);
187 addr2 = &realaddr2;
188 }
189 return memcmp(addr1, addr2, alen);
190 }
191
192 /*
193 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
194 *
195 * => Returns all values in host byte-order.
196 */
197 int
198 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
199 {
200 const struct tcphdr *th = npc->npc_l4.tcp;
201 u_int thlen;
202
203 KASSERT(npf_iscached(npc, NPC_TCP));
204
205 *seq = ntohl(th->th_seq);
206 *ack = ntohl(th->th_ack);
207 *win = (uint32_t)ntohs(th->th_win);
208 thlen = th->th_off << 2;
209
210 if (npf_iscached(npc, NPC_IP4)) {
211 const struct ip *ip = npc->npc_ip.v4;
212 return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
213 } else if (npf_iscached(npc, NPC_IP6)) {
214 const struct ip6_hdr *ip6 = npc->npc_ip.v6;
215 return ntohs(ip6->ip6_plen) - thlen;
216 }
217 return 0;
218 }
219
220 /*
221 * npf_fetch_tcpopts: parse and return TCP options.
222 */
223 bool
224 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
225 {
226 nbuf_t *nbuf = npc->npc_nbuf;
227 const struct tcphdr *th = npc->npc_l4.tcp;
228 int topts_len, step;
229 void *nptr;
230 uint8_t val;
231 bool ok;
232
233 KASSERT(npf_iscached(npc, NPC_IP46));
234 KASSERT(npf_iscached(npc, NPC_TCP));
235
236 /* Determine if there are any TCP options, get their length. */
237 topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
238 if (topts_len <= 0) {
239 /* No options. */
240 return false;
241 }
242 KASSERT(topts_len <= MAX_TCPOPTLEN);
243
244 /* First step: IP and TCP header up to options. */
245 step = npc->npc_hlen + sizeof(struct tcphdr);
246 nbuf_reset(nbuf);
247 next:
248 if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
249 ok = false;
250 goto done;
251 }
252 val = *(uint8_t *)nptr;
253
254 switch (val) {
255 case TCPOPT_EOL:
256 /* Done. */
257 ok = true;
258 goto done;
259 case TCPOPT_NOP:
260 topts_len--;
261 step = 1;
262 break;
263 case TCPOPT_MAXSEG:
264 if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) {
265 ok = false;
266 goto done;
267 }
268 if (mss) {
269 if (*mss) {
270 memcpy(nptr, mss, sizeof(uint16_t));
271 } else {
272 memcpy(mss, nptr, sizeof(uint16_t));
273 }
274 }
275 topts_len -= TCPOLEN_MAXSEG;
276 step = 2;
277 break;
278 case TCPOPT_WINDOW:
279 /* TCP Window Scaling (RFC 1323). */
280 if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) {
281 ok = false;
282 goto done;
283 }
284 val = *(uint8_t *)nptr;
285 *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
286 topts_len -= TCPOLEN_WINDOW;
287 step = 1;
288 break;
289 default:
290 if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) {
291 ok = false;
292 goto done;
293 }
294 val = *(uint8_t *)nptr;
295 if (val < 2 || val > topts_len) {
296 ok = false;
297 goto done;
298 }
299 topts_len -= val;
300 step = val - 1;
301 }
302
303 /* Any options left? */
304 if (__predict_true(topts_len > 0)) {
305 goto next;
306 }
307 ok = true;
308 done:
309 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
310 npf_recache(npc);
311 }
312 return ok;
313 }
314
315 static int
316 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
317 {
318 const void *nptr = nbuf_dataptr(nbuf);
319 const uint8_t ver = *(const uint8_t *)nptr;
320 int flags = 0;
321
322 switch (ver >> 4) {
323 case IPVERSION: {
324 struct ip *ip;
325
326 ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
327 if (ip == NULL) {
328 return 0;
329 }
330
331 /* Check header length and fragment offset. */
332 if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
333 return 0;
334 }
335 if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
336 /* Note fragmentation. */
337 flags |= NPC_IPFRAG;
338 }
339
340 /* Cache: layer 3 - IPv4. */
341 npc->npc_alen = sizeof(struct in_addr);
342 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
343 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
344 npc->npc_hlen = ip->ip_hl << 2;
345 npc->npc_proto = ip->ip_p;
346
347 npc->npc_ip.v4 = ip;
348 flags |= NPC_IP4;
349 break;
350 }
351
352 case (IPV6_VERSION >> 4): {
353 struct ip6_hdr *ip6;
354 struct ip6_ext *ip6e;
355 size_t off, hlen;
356
357 ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
358 if (ip6 == NULL) {
359 return 0;
360 }
361
362 /* Set initial next-protocol value. */
363 hlen = sizeof(struct ip6_hdr);
364 npc->npc_proto = ip6->ip6_nxt;
365 npc->npc_hlen = hlen;
366
367 /*
368 * Advance by the length of the current header.
369 */
370 off = nbuf_offset(nbuf);
371 while (nbuf_advance(nbuf, hlen, 0) != NULL) {
372 ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e));
373 if (ip6e == NULL) {
374 return 0;
375 }
376
377 /*
378 * Determine whether we are going to continue.
379 */
380 switch (npc->npc_proto) {
381 case IPPROTO_HOPOPTS:
382 case IPPROTO_DSTOPTS:
383 case IPPROTO_ROUTING:
384 hlen = (ip6e->ip6e_len + 1) << 3;
385 break;
386 case IPPROTO_FRAGMENT:
387 hlen = sizeof(struct ip6_frag);
388 flags |= NPC_IPFRAG;
389 break;
390 case IPPROTO_AH:
391 hlen = (ip6e->ip6e_len + 2) << 2;
392 break;
393 default:
394 hlen = 0;
395 break;
396 }
397
398 if (!hlen) {
399 break;
400 }
401 npc->npc_proto = ip6e->ip6e_nxt;
402 npc->npc_hlen += hlen;
403 }
404
405 /*
406 * Re-fetch the header pointers (nbufs might have been
407 * reallocated). Restore the original offset (if any).
408 */
409 nbuf_reset(nbuf);
410 ip6 = nbuf_dataptr(nbuf);
411 if (off) {
412 nbuf_advance(nbuf, off, 0);
413 }
414
415 /* Cache: layer 3 - IPv6. */
416 npc->npc_alen = sizeof(struct in6_addr);
417 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
418 npc->npc_ips[NPF_DST]= (npf_addr_t *)&ip6->ip6_dst;
419
420 npc->npc_ip.v6 = ip6;
421 flags |= NPC_IP6;
422 break;
423 }
424 default:
425 break;
426 }
427 return flags;
428 }
429
430 /*
431 * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
432 * and TCP, UDP or ICMP headers.
433 *
434 * => nbuf offset shall be set accordingly.
435 */
436 int
437 npf_cache_all(npf_cache_t *npc)
438 {
439 nbuf_t *nbuf = npc->npc_nbuf;
440 int flags, l4flags;
441 u_int hlen;
442
443 /*
444 * This routine is a main point where the references are cached,
445 * therefore clear the flag as we reset.
446 */
447 again:
448 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
449
450 /*
451 * First, cache the L3 header (IPv4 or IPv6). If IP packet is
452 * fragmented, then we cannot look into L4.
453 */
454 flags = npf_cache_ip(npc, nbuf);
455 if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) {
456 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
457 npc->npc_info |= flags;
458 return flags;
459 }
460 hlen = npc->npc_hlen;
461
462 /*
463 * Note: we guarantee that the potential "Query Id" field of the
464 * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
465 * ICMP ALG.
466 */
467 switch (npc->npc_proto) {
468 case IPPROTO_TCP:
469 /* Cache: layer 4 - TCP. */
470 npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
471 sizeof(struct tcphdr));
472 l4flags = NPC_LAYER4 | NPC_TCP;
473 break;
474 case IPPROTO_UDP:
475 /* Cache: layer 4 - UDP. */
476 npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
477 sizeof(struct udphdr));
478 l4flags = NPC_LAYER4 | NPC_UDP;
479 break;
480 case IPPROTO_ICMP:
481 /* Cache: layer 4 - ICMPv4. */
482 npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
483 ICMP_MINLEN);
484 l4flags = NPC_LAYER4 | NPC_ICMP;
485 break;
486 case IPPROTO_ICMPV6:
487 /* Cache: layer 4 - ICMPv6. */
488 npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
489 sizeof(struct icmp6_hdr));
490 l4flags = NPC_LAYER4 | NPC_ICMP;
491 break;
492 default:
493 l4flags = 0;
494 break;
495 }
496
497 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
498 goto again;
499 }
500
501 /* Add the L4 flags if nbuf_advance() succeeded. */
502 if (l4flags && npc->npc_l4.hdr) {
503 flags |= l4flags;
504 }
505 npc->npc_info |= flags;
506 return flags;
507 }
508
509 void
510 npf_recache(npf_cache_t *npc)
511 {
512 nbuf_t *nbuf = npc->npc_nbuf;
513 const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
514 int flags __diagused;
515
516 nbuf_reset(nbuf);
517 npc->npc_info = 0;
518 flags = npf_cache_all(npc);
519
520 KASSERT((flags & mflags) == mflags);
521 KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
522 }
523
524 /*
525 * npf_rwrip: rewrite required IP address.
526 */
527 bool
528 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
529 {
530 KASSERT(npf_iscached(npc, NPC_IP46));
531 KASSERT(which == NPF_SRC || which == NPF_DST);
532
533 memcpy(npc->npc_ips[which], addr, npc->npc_alen);
534 return true;
535 }
536
537 /*
538 * npf_rwrport: rewrite required TCP/UDP port.
539 */
540 bool
541 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
542 {
543 const int proto = npc->npc_proto;
544 in_port_t *oport;
545
546 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
547 KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
548 KASSERT(which == NPF_SRC || which == NPF_DST);
549
550 /* Get the offset and store the port in it. */
551 if (proto == IPPROTO_TCP) {
552 struct tcphdr *th = npc->npc_l4.tcp;
553 oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
554 } else {
555 struct udphdr *uh = npc->npc_l4.udp;
556 oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
557 }
558 memcpy(oport, &port, sizeof(in_port_t));
559 return true;
560 }
561
562 /*
563 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
564 */
565 bool
566 npf_rwrcksum(const npf_cache_t *npc, u_int which,
567 const npf_addr_t *addr, const in_port_t port)
568 {
569 const npf_addr_t *oaddr = npc->npc_ips[which];
570 const int proto = npc->npc_proto;
571 const int alen = npc->npc_alen;
572 uint16_t *ocksum;
573 in_port_t oport;
574
575 KASSERT(npf_iscached(npc, NPC_LAYER4));
576 KASSERT(which == NPF_SRC || which == NPF_DST);
577
578 if (npf_iscached(npc, NPC_IP4)) {
579 struct ip *ip = npc->npc_ip.v4;
580 uint16_t ipsum = ip->ip_sum;
581
582 /* Recalculate IPv4 checksum and rewrite. */
583 ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
584 } else {
585 /* No checksum for IPv6. */
586 KASSERT(npf_iscached(npc, NPC_IP6));
587 }
588
589 /* Nothing else to do for ICMP. */
590 if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
591 return true;
592 }
593 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
594
595 /*
596 * Calculate TCP/UDP checksum:
597 * - Skip if UDP and the current checksum is zero.
598 * - Fixup the IP address change.
599 * - Fixup the port change, if required (non-zero).
600 */
601 if (proto == IPPROTO_TCP) {
602 struct tcphdr *th = npc->npc_l4.tcp;
603
604 ocksum = &th->th_sum;
605 oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
606 } else {
607 struct udphdr *uh = npc->npc_l4.udp;
608
609 KASSERT(proto == IPPROTO_UDP);
610 ocksum = &uh->uh_sum;
611 if (*ocksum == 0) {
612 /* No need to update. */
613 return true;
614 }
615 oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
616 }
617
618 uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
619 if (port) {
620 cksum = npf_fixup16_cksum(cksum, oport, port);
621 }
622
623 /* Rewrite TCP/UDP checksum. */
624 memcpy(ocksum, &cksum, sizeof(uint16_t));
625 return true;
626 }
627
628 /*
629 * npf_napt_rwr: perform address and/or port translation.
630 */
631 int
632 npf_napt_rwr(const npf_cache_t *npc, u_int which,
633 const npf_addr_t *addr, const in_addr_t port)
634 {
635 const unsigned proto = npc->npc_proto;
636
637 /*
638 * Rewrite IP and/or TCP/UDP checksums first, since we need the
639 * current (old) address/port for the calculations. Then perform
640 * the address translation i.e. rewrite source or destination.
641 */
642 if (!npf_rwrcksum(npc, which, addr, port)) {
643 return EINVAL;
644 }
645 if (!npf_rwrip(npc, which, addr)) {
646 return EINVAL;
647 }
648 if (port == 0) {
649 /* Done. */
650 return 0;
651 }
652
653 switch (proto) {
654 case IPPROTO_TCP:
655 case IPPROTO_UDP:
656 /* Rewrite source/destination port. */
657 if (!npf_rwrport(npc, which, port)) {
658 return EINVAL;
659 }
660 break;
661 case IPPROTO_ICMP:
662 case IPPROTO_ICMPV6:
663 KASSERT(npf_iscached(npc, NPC_ICMP));
664 /* Nothing. */
665 break;
666 default:
667 return ENOTSUP;
668 }
669 return 0;
670 }
671
672 /*
673 * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
674 */
675
676 int
677 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
678 npf_netmask_t len, uint16_t adj)
679 {
680 npf_addr_t *addr = npc->npc_ips[which];
681 unsigned remnant, word, preflen = len >> 4;
682 uint32_t sum;
683
684 KASSERT(which == NPF_SRC || which == NPF_DST);
685
686 if (!npf_iscached(npc, NPC_IP6)) {
687 return EINVAL;
688 }
689 if (len <= 48) {
690 /*
691 * The word to adjust. Cannot translate the 0xffff
692 * subnet if /48 or shorter.
693 */
694 word = 3;
695 if (addr->s6_addr16[word] == 0xffff) {
696 return EINVAL;
697 }
698 } else {
699 /*
700 * Also, all 0s or 1s in the host part are disallowed for
701 * longer than /48 prefixes.
702 */
703 if ((addr->s6_addr32[2] == 0 && addr->s6_addr32[3] == 0) ||
704 (addr->s6_addr32[2] == ~0U && addr->s6_addr32[3] == ~0U))
705 return EINVAL;
706
707 /* Determine the 16-bit word to adjust. */
708 for (word = 4; word < 8; word++)
709 if (addr->s6_addr16[word] != 0xffff)
710 break;
711 }
712
713 /* Rewrite the prefix. */
714 for (unsigned i = 0; i < preflen; i++) {
715 addr->s6_addr16[i] = pref->s6_addr16[i];
716 }
717
718 /*
719 * If prefix length is within a 16-bit word (not dividable by 16),
720 * then prepare a mask, determine the word and adjust it.
721 */
722 if ((remnant = len - (preflen << 4)) != 0) {
723 const uint16_t wordmask = (1U << remnant) - 1;
724 const unsigned i = preflen;
725
726 addr->s6_addr16[i] = (pref->s6_addr16[i] & wordmask) |
727 (addr->s6_addr16[i] & ~wordmask);
728 }
729
730 /*
731 * Performing 1's complement sum/difference.
732 */
733 sum = addr->s6_addr16[word] + adj;
734 while (sum >> 16) {
735 sum = (sum >> 16) + (sum & 0xffff);
736 }
737 if (sum == 0xffff) {
738 /* RFC 1071. */
739 sum = 0x0000;
740 }
741 addr->s6_addr16[word] = sum;
742 return 0;
743 }
744
745 #if defined(DDB) || defined(_NPF_TESTING)
746
747 const char *
748 npf_addr_dump(const npf_addr_t *addr, int alen)
749 {
750 if (alen == sizeof(struct in_addr)) {
751 struct in_addr ip;
752 memcpy(&ip, addr, alen);
753 return inet_ntoa(ip);
754 }
755 return "[IPv6]"; // XXX
756 }
757
758 #endif
759