npf_inet.c revision 1.37 1 /* $NetBSD: npf_inet.c,v 1.37 2017/02/19 20:27:22 christos Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Various protocol related helper routines.
34 *
35 * This layer manipulates npf_cache_t structure i.e. caches requested headers
36 * and stores which information was cached in the information bit field.
37 * It is also responsibility of this layer to update or invalidate the cache
38 * on rewrites (e.g. by translation routines).
39 */
40
41 #ifdef _KERNEL
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.37 2017/02/19 20:27:22 christos Exp $");
44
45 #include <sys/param.h>
46 #include <sys/types.h>
47
48 #include <net/pfil.h>
49 #include <net/if.h>
50 #include <net/ethertypes.h>
51 #include <net/if_ether.h>
52
53 #include <netinet/in_systm.h>
54 #include <netinet/in.h>
55 #include <netinet6/in6_var.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <netinet/ip_icmp.h>
61 #endif
62
63 #include "npf_impl.h"
64
65 /*
66 * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
67 */
68
69 uint16_t
70 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
71 {
72 uint32_t sum;
73
74 /*
75 * RFC 1624:
76 * HC' = ~(~HC + ~m + m')
77 *
78 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
79 */
80 sum = ~cksum & 0xffff;
81 sum += (~odatum & 0xffff) + ndatum;
82 sum = (sum >> 16) + (sum & 0xffff);
83 sum += (sum >> 16);
84
85 return ~sum & 0xffff;
86 }
87
88 uint16_t
89 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
90 {
91 uint32_t sum;
92
93 /*
94 * Checksum 32-bit datum as as two 16-bit. Note, the first
95 * 32->16 bit reduction is not necessary.
96 */
97 sum = ~cksum & 0xffff;
98 sum += (~odatum & 0xffff) + (ndatum & 0xffff);
99
100 sum += (~odatum >> 16) + (ndatum >> 16);
101 sum = (sum >> 16) + (sum & 0xffff);
102 sum += (sum >> 16);
103 return ~sum & 0xffff;
104 }
105
106 /*
107 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
108 */
109 uint16_t
110 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
111 const npf_addr_t *naddr)
112 {
113 const uint32_t *oip32 = (const uint32_t *)oaddr;
114 const uint32_t *nip32 = (const uint32_t *)naddr;
115
116 KASSERT(sz % sizeof(uint32_t) == 0);
117 do {
118 cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
119 sz -= sizeof(uint32_t);
120 } while (sz);
121
122 return cksum;
123 }
124
125 /*
126 * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
127 * Note: used for hash function.
128 */
129 uint32_t
130 npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
131 {
132 uint32_t mix = 0;
133
134 KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
135
136 for (int i = 0; i < (sz >> 2); i++) {
137 mix ^= a1->word32[i];
138 mix ^= a2->word32[i];
139 }
140 return mix;
141 }
142
143 /*
144 * npf_addr_mask: apply the mask to a given address and store the result.
145 */
146 void
147 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
148 const int alen, npf_addr_t *out)
149 {
150 const int nwords = alen >> 2;
151 uint_fast8_t length = mask;
152
153 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
154 KASSERT(length <= NPF_MAX_NETMASK);
155
156 for (int i = 0; i < nwords; i++) {
157 uint32_t wordmask;
158
159 if (length >= 32) {
160 wordmask = htonl(0xffffffff);
161 length -= 32;
162 } else if (length) {
163 wordmask = htonl(0xffffffff << (32 - length));
164 length = 0;
165 } else {
166 wordmask = 0;
167 }
168 out->word32[i] = addr->word32[i] & wordmask;
169 }
170 }
171
172 /*
173 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
174 *
175 * => Return 0 if equal and negative/positive if less/greater accordingly.
176 * => Ignore the mask, if NPF_NO_NETMASK is specified.
177 */
178 int
179 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
180 const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
181 {
182 npf_addr_t realaddr1, realaddr2;
183
184 if (mask1 != NPF_NO_NETMASK) {
185 npf_addr_mask(addr1, mask1, alen, &realaddr1);
186 addr1 = &realaddr1;
187 }
188 if (mask2 != NPF_NO_NETMASK) {
189 npf_addr_mask(addr2, mask2, alen, &realaddr2);
190 addr2 = &realaddr2;
191 }
192 return memcmp(addr1, addr2, alen);
193 }
194
195 /*
196 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
197 *
198 * => Returns all values in host byte-order.
199 */
200 int
201 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
202 {
203 const struct tcphdr *th = npc->npc_l4.tcp;
204 u_int thlen;
205
206 KASSERT(npf_iscached(npc, NPC_TCP));
207
208 *seq = ntohl(th->th_seq);
209 *ack = ntohl(th->th_ack);
210 *win = (uint32_t)ntohs(th->th_win);
211 thlen = th->th_off << 2;
212
213 if (npf_iscached(npc, NPC_IP4)) {
214 const struct ip *ip = npc->npc_ip.v4;
215 return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
216 } else if (npf_iscached(npc, NPC_IP6)) {
217 const struct ip6_hdr *ip6 = npc->npc_ip.v6;
218 return ntohs(ip6->ip6_plen) - thlen;
219 }
220 return 0;
221 }
222
223 /*
224 * npf_fetch_tcpopts: parse and return TCP options.
225 */
226 bool
227 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
228 {
229 nbuf_t *nbuf = npc->npc_nbuf;
230 const struct tcphdr *th = npc->npc_l4.tcp;
231 int topts_len, step;
232 void *nptr;
233 uint8_t val;
234 bool ok;
235
236 KASSERT(npf_iscached(npc, NPC_IP46));
237 KASSERT(npf_iscached(npc, NPC_TCP));
238
239 /* Determine if there are any TCP options, get their length. */
240 topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
241 if (topts_len <= 0) {
242 /* No options. */
243 return false;
244 }
245 KASSERT(topts_len <= MAX_TCPOPTLEN);
246
247 /* First step: IP and TCP header up to options. */
248 step = npc->npc_hlen + sizeof(struct tcphdr);
249 nbuf_reset(nbuf);
250 next:
251 if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
252 ok = false;
253 goto done;
254 }
255 val = *(uint8_t *)nptr;
256
257 switch (val) {
258 case TCPOPT_EOL:
259 /* Done. */
260 ok = true;
261 goto done;
262 case TCPOPT_NOP:
263 topts_len--;
264 step = 1;
265 break;
266 case TCPOPT_MAXSEG:
267 if ((nptr = nbuf_advance(nbuf, 2, 2)) == NULL) {
268 ok = false;
269 goto done;
270 }
271 if (mss) {
272 if (*mss) {
273 memcpy(nptr, mss, sizeof(uint16_t));
274 } else {
275 memcpy(mss, nptr, sizeof(uint16_t));
276 }
277 }
278 topts_len -= TCPOLEN_MAXSEG;
279 step = 2;
280 break;
281 case TCPOPT_WINDOW:
282 /* TCP Window Scaling (RFC 1323). */
283 if ((nptr = nbuf_advance(nbuf, 2, 1)) == NULL) {
284 ok = false;
285 goto done;
286 }
287 val = *(uint8_t *)nptr;
288 *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
289 topts_len -= TCPOLEN_WINDOW;
290 step = 1;
291 break;
292 default:
293 if ((nptr = nbuf_advance(nbuf, 1, 1)) == NULL) {
294 ok = false;
295 goto done;
296 }
297 val = *(uint8_t *)nptr;
298 if (val < 2 || val > topts_len) {
299 ok = false;
300 goto done;
301 }
302 topts_len -= val;
303 step = val - 1;
304 }
305
306 /* Any options left? */
307 if (__predict_true(topts_len > 0)) {
308 goto next;
309 }
310 ok = true;
311 done:
312 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
313 npf_recache(npc);
314 }
315 return ok;
316 }
317
318 static int
319 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
320 {
321 const void *nptr = nbuf_dataptr(nbuf);
322 const uint8_t ver = *(const uint8_t *)nptr;
323 int flags = 0;
324
325 switch (ver >> 4) {
326 case IPVERSION: {
327 struct ip *ip;
328
329 ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
330 if (ip == NULL) {
331 return 0;
332 }
333
334 /* Check header length and fragment offset. */
335 if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
336 return 0;
337 }
338 if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
339 /* Note fragmentation. */
340 flags |= NPC_IPFRAG;
341 }
342
343 /* Cache: layer 3 - IPv4. */
344 npc->npc_alen = sizeof(struct in_addr);
345 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
346 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
347 npc->npc_hlen = ip->ip_hl << 2;
348 npc->npc_proto = ip->ip_p;
349
350 npc->npc_ip.v4 = ip;
351 flags |= NPC_IP4;
352 break;
353 }
354
355 case (IPV6_VERSION >> 4): {
356 struct ip6_hdr *ip6;
357 struct ip6_ext *ip6e;
358 struct ip6_frag *ip6f;
359 size_t off, hlen;
360
361 ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
362 if (ip6 == NULL) {
363 return 0;
364 }
365
366 /* Set initial next-protocol value. */
367 hlen = sizeof(struct ip6_hdr);
368 npc->npc_proto = ip6->ip6_nxt;
369 npc->npc_hlen = hlen;
370
371 /*
372 * Advance by the length of the current header.
373 */
374 off = nbuf_offset(nbuf);
375 while (nbuf_advance(nbuf, hlen, 0) != NULL) {
376 ip6e = nbuf_ensure_contig(nbuf, sizeof(*ip6e));
377 if (ip6e == NULL) {
378 return 0;
379 }
380
381 /*
382 * Determine whether we are going to continue.
383 */
384 switch (npc->npc_proto) {
385 case IPPROTO_HOPOPTS:
386 case IPPROTO_DSTOPTS:
387 case IPPROTO_ROUTING:
388 hlen = (ip6e->ip6e_len + 1) << 3;
389 break;
390 case IPPROTO_FRAGMENT:
391 ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
392 if (ip6f == NULL)
393 return 0;
394 /*
395 * We treat the first fragment as a regular
396 * packet and then we pass the rest of the
397 * fragments unconditionally. This way if
398 * the first packet passes the rest will
399 * be able to reassembled, if not they will
400 * be ignored. We can do better later.
401 */
402 if (ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) != 0)
403 flags |= NPC_IPFRAG;
404
405 hlen = sizeof(struct ip6_frag);
406 break;
407 case IPPROTO_AH:
408 hlen = (ip6e->ip6e_len + 2) << 2;
409 break;
410 default:
411 hlen = 0;
412 break;
413 }
414
415 if (!hlen) {
416 break;
417 }
418 npc->npc_proto = ip6e->ip6e_nxt;
419 npc->npc_hlen += hlen;
420 }
421
422 /*
423 * Re-fetch the header pointers (nbufs might have been
424 * reallocated). Restore the original offset (if any).
425 */
426 nbuf_reset(nbuf);
427 ip6 = nbuf_dataptr(nbuf);
428 if (off) {
429 nbuf_advance(nbuf, off, 0);
430 }
431
432 /* Cache: layer 3 - IPv6. */
433 npc->npc_alen = sizeof(struct in6_addr);
434 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
435 npc->npc_ips[NPF_DST]= (npf_addr_t *)&ip6->ip6_dst;
436
437 npc->npc_ip.v6 = ip6;
438 flags |= NPC_IP6;
439 break;
440 }
441 default:
442 break;
443 }
444 return flags;
445 }
446
447 /*
448 * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
449 * and TCP, UDP or ICMP headers.
450 *
451 * => nbuf offset shall be set accordingly.
452 */
453 int
454 npf_cache_all(npf_cache_t *npc)
455 {
456 nbuf_t *nbuf = npc->npc_nbuf;
457 int flags, l4flags;
458 u_int hlen;
459
460 /*
461 * This routine is a main point where the references are cached,
462 * therefore clear the flag as we reset.
463 */
464 again:
465 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
466
467 /*
468 * First, cache the L3 header (IPv4 or IPv6). If IP packet is
469 * fragmented, then we cannot look into L4.
470 */
471 flags = npf_cache_ip(npc, nbuf);
472 if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0) {
473 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
474 npc->npc_info |= flags;
475 return flags;
476 }
477 hlen = npc->npc_hlen;
478
479 switch (npc->npc_proto) {
480 case IPPROTO_TCP:
481 /* Cache: layer 4 - TCP. */
482 npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
483 sizeof(struct tcphdr));
484 l4flags = NPC_LAYER4 | NPC_TCP;
485 break;
486 case IPPROTO_UDP:
487 /* Cache: layer 4 - UDP. */
488 npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
489 sizeof(struct udphdr));
490 l4flags = NPC_LAYER4 | NPC_UDP;
491 break;
492 case IPPROTO_ICMP:
493 /* Cache: layer 4 - ICMPv4. */
494 npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
495 offsetof(struct icmp, icmp_void));
496 l4flags = NPC_LAYER4 | NPC_ICMP;
497 break;
498 case IPPROTO_ICMPV6:
499 /* Cache: layer 4 - ICMPv6. */
500 npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
501 offsetof(struct icmp6_hdr, icmp6_data32));
502 l4flags = NPC_LAYER4 | NPC_ICMP;
503 break;
504 default:
505 l4flags = 0;
506 break;
507 }
508
509 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
510 goto again;
511 }
512
513 /* Add the L4 flags if nbuf_advance() succeeded. */
514 if (l4flags && npc->npc_l4.hdr) {
515 flags |= l4flags;
516 }
517 npc->npc_info |= flags;
518 return flags;
519 }
520
521 void
522 npf_recache(npf_cache_t *npc)
523 {
524 nbuf_t *nbuf = npc->npc_nbuf;
525 const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
526 int flags __diagused;
527
528 nbuf_reset(nbuf);
529 npc->npc_info = 0;
530 flags = npf_cache_all(npc);
531
532 KASSERT((flags & mflags) == mflags);
533 KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
534 }
535
536 /*
537 * npf_rwrip: rewrite required IP address.
538 */
539 bool
540 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
541 {
542 KASSERT(npf_iscached(npc, NPC_IP46));
543 KASSERT(which == NPF_SRC || which == NPF_DST);
544
545 memcpy(npc->npc_ips[which], addr, npc->npc_alen);
546 return true;
547 }
548
549 /*
550 * npf_rwrport: rewrite required TCP/UDP port.
551 */
552 bool
553 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
554 {
555 const int proto = npc->npc_proto;
556 in_port_t *oport;
557
558 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
559 KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
560 KASSERT(which == NPF_SRC || which == NPF_DST);
561
562 /* Get the offset and store the port in it. */
563 if (proto == IPPROTO_TCP) {
564 struct tcphdr *th = npc->npc_l4.tcp;
565 oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
566 } else {
567 struct udphdr *uh = npc->npc_l4.udp;
568 oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
569 }
570 memcpy(oport, &port, sizeof(in_port_t));
571 return true;
572 }
573
574 /*
575 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
576 */
577 bool
578 npf_rwrcksum(const npf_cache_t *npc, u_int which,
579 const npf_addr_t *addr, const in_port_t port)
580 {
581 const npf_addr_t *oaddr = npc->npc_ips[which];
582 const int proto = npc->npc_proto;
583 const int alen = npc->npc_alen;
584 uint16_t *ocksum;
585 in_port_t oport;
586
587 KASSERT(npf_iscached(npc, NPC_LAYER4));
588 KASSERT(which == NPF_SRC || which == NPF_DST);
589
590 if (npf_iscached(npc, NPC_IP4)) {
591 struct ip *ip = npc->npc_ip.v4;
592 uint16_t ipsum = ip->ip_sum;
593
594 /* Recalculate IPv4 checksum and rewrite. */
595 ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
596 } else {
597 /* No checksum for IPv6. */
598 KASSERT(npf_iscached(npc, NPC_IP6));
599 }
600
601 /* Nothing else to do for ICMP. */
602 if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
603 return true;
604 }
605 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
606
607 /*
608 * Calculate TCP/UDP checksum:
609 * - Skip if UDP and the current checksum is zero.
610 * - Fixup the IP address change.
611 * - Fixup the port change, if required (non-zero).
612 */
613 if (proto == IPPROTO_TCP) {
614 struct tcphdr *th = npc->npc_l4.tcp;
615
616 ocksum = &th->th_sum;
617 oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
618 } else {
619 struct udphdr *uh = npc->npc_l4.udp;
620
621 KASSERT(proto == IPPROTO_UDP);
622 ocksum = &uh->uh_sum;
623 if (*ocksum == 0) {
624 /* No need to update. */
625 return true;
626 }
627 oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
628 }
629
630 uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
631 if (port) {
632 cksum = npf_fixup16_cksum(cksum, oport, port);
633 }
634
635 /* Rewrite TCP/UDP checksum. */
636 memcpy(ocksum, &cksum, sizeof(uint16_t));
637 return true;
638 }
639
640 /*
641 * npf_napt_rwr: perform address and/or port translation.
642 */
643 int
644 npf_napt_rwr(const npf_cache_t *npc, u_int which,
645 const npf_addr_t *addr, const in_addr_t port)
646 {
647 const unsigned proto = npc->npc_proto;
648
649 /*
650 * Rewrite IP and/or TCP/UDP checksums first, since we need the
651 * current (old) address/port for the calculations. Then perform
652 * the address translation i.e. rewrite source or destination.
653 */
654 if (!npf_rwrcksum(npc, which, addr, port)) {
655 return EINVAL;
656 }
657 if (!npf_rwrip(npc, which, addr)) {
658 return EINVAL;
659 }
660 if (port == 0) {
661 /* Done. */
662 return 0;
663 }
664
665 switch (proto) {
666 case IPPROTO_TCP:
667 case IPPROTO_UDP:
668 /* Rewrite source/destination port. */
669 if (!npf_rwrport(npc, which, port)) {
670 return EINVAL;
671 }
672 break;
673 case IPPROTO_ICMP:
674 case IPPROTO_ICMPV6:
675 KASSERT(npf_iscached(npc, NPC_ICMP));
676 /* Nothing. */
677 break;
678 default:
679 return ENOTSUP;
680 }
681 return 0;
682 }
683
684 /*
685 * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
686 */
687
688 int
689 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
690 npf_netmask_t len, uint16_t adj)
691 {
692 npf_addr_t *addr = npc->npc_ips[which];
693 unsigned remnant, word, preflen = len >> 4;
694 uint32_t sum;
695
696 KASSERT(which == NPF_SRC || which == NPF_DST);
697
698 if (!npf_iscached(npc, NPC_IP6)) {
699 return EINVAL;
700 }
701 if (len <= 48) {
702 /*
703 * The word to adjust. Cannot translate the 0xffff
704 * subnet if /48 or shorter.
705 */
706 word = 3;
707 if (addr->word16[word] == 0xffff) {
708 return EINVAL;
709 }
710 } else {
711 /*
712 * Also, all 0s or 1s in the host part are disallowed for
713 * longer than /48 prefixes.
714 */
715 if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
716 (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
717 return EINVAL;
718
719 /* Determine the 16-bit word to adjust. */
720 for (word = 4; word < 8; word++)
721 if (addr->word16[word] != 0xffff)
722 break;
723 }
724
725 /* Rewrite the prefix. */
726 for (unsigned i = 0; i < preflen; i++) {
727 addr->word16[i] = pref->word16[i];
728 }
729
730 /*
731 * If prefix length is within a 16-bit word (not dividable by 16),
732 * then prepare a mask, determine the word and adjust it.
733 */
734 if ((remnant = len - (preflen << 4)) != 0) {
735 const uint16_t wordmask = (1U << remnant) - 1;
736 const unsigned i = preflen;
737
738 addr->word16[i] = (pref->word16[i] & wordmask) |
739 (addr->word16[i] & ~wordmask);
740 }
741
742 /*
743 * Performing 1's complement sum/difference.
744 */
745 sum = addr->word16[word] + adj;
746 while (sum >> 16) {
747 sum = (sum >> 16) + (sum & 0xffff);
748 }
749 if (sum == 0xffff) {
750 /* RFC 1071. */
751 sum = 0x0000;
752 }
753 addr->word16[word] = sum;
754 return 0;
755 }
756
757 #if defined(DDB) || defined(_NPF_TESTING)
758
759 const char *
760 npf_addr_dump(const npf_addr_t *addr, int alen)
761 {
762 if (alen == sizeof(struct in_addr)) {
763 struct in_addr ip;
764 memcpy(&ip, addr, alen);
765 return inet_ntoa(ip);
766 }
767 return "[IPv6]";
768 }
769
770 #endif
771