npf_inet.c revision 1.37.12.7 1 /*-
2 * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This material is based upon work partially supported by The
6 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 /*
31 * Various protocol related helper routines.
32 *
33 * This layer manipulates npf_cache_t structure i.e. caches requested headers
34 * and stores which information was cached in the information bit field.
35 * It is also responsibility of this layer to update or invalidate the cache
36 * on rewrites (e.g. by translation routines).
37 */
38
39 #ifdef _KERNEL
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.37.12.7 2018/09/30 01:45:56 pgoyette Exp $");
42
43 #include <sys/param.h>
44 #include <sys/types.h>
45
46 #include <net/pfil.h>
47 #include <net/if.h>
48 #include <net/ethertypes.h>
49 #include <net/if_ether.h>
50
51 #include <netinet/in_systm.h>
52 #include <netinet/in.h>
53 #include <netinet6/in6_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/ip6.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <netinet/ip_icmp.h>
59 #endif
60
61 #include "npf_impl.h"
62
63 /*
64 * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
65 */
66
67 uint16_t
68 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
69 {
70 uint32_t sum;
71
72 /*
73 * RFC 1624:
74 * HC' = ~(~HC + ~m + m')
75 *
76 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
77 */
78 sum = ~cksum & 0xffff;
79 sum += (~odatum & 0xffff) + ndatum;
80 sum = (sum >> 16) + (sum & 0xffff);
81 sum += (sum >> 16);
82
83 return ~sum & 0xffff;
84 }
85
86 uint16_t
87 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
88 {
89 uint32_t sum;
90
91 /*
92 * Checksum 32-bit datum as as two 16-bit. Note, the first
93 * 32->16 bit reduction is not necessary.
94 */
95 sum = ~cksum & 0xffff;
96 sum += (~odatum & 0xffff) + (ndatum & 0xffff);
97
98 sum += (~odatum >> 16) + (ndatum >> 16);
99 sum = (sum >> 16) + (sum & 0xffff);
100 sum += (sum >> 16);
101 return ~sum & 0xffff;
102 }
103
104 /*
105 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
106 */
107 uint16_t
108 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
109 const npf_addr_t *naddr)
110 {
111 const uint32_t *oip32 = (const uint32_t *)oaddr;
112 const uint32_t *nip32 = (const uint32_t *)naddr;
113
114 KASSERT(sz % sizeof(uint32_t) == 0);
115 do {
116 cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
117 sz -= sizeof(uint32_t);
118 } while (sz);
119
120 return cksum;
121 }
122
123 /*
124 * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
125 * Note: used for hash function.
126 */
127 uint32_t
128 npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
129 {
130 uint32_t mix = 0;
131
132 KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
133
134 for (int i = 0; i < (sz >> 2); i++) {
135 mix ^= a1->word32[i];
136 mix ^= a2->word32[i];
137 }
138 return mix;
139 }
140
141 /*
142 * npf_addr_mask: apply the mask to a given address and store the result.
143 */
144 void
145 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
146 const int alen, npf_addr_t *out)
147 {
148 const int nwords = alen >> 2;
149 uint_fast8_t length = mask;
150
151 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
152 KASSERT(length <= NPF_MAX_NETMASK);
153
154 for (int i = 0; i < nwords; i++) {
155 uint32_t wordmask;
156
157 if (length >= 32) {
158 wordmask = htonl(0xffffffff);
159 length -= 32;
160 } else if (length) {
161 wordmask = htonl(0xffffffff << (32 - length));
162 length = 0;
163 } else {
164 wordmask = 0;
165 }
166 out->word32[i] = addr->word32[i] & wordmask;
167 }
168 }
169
170 /*
171 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
172 *
173 * => Return 0 if equal and negative/positive if less/greater accordingly.
174 * => Ignore the mask, if NPF_NO_NETMASK is specified.
175 */
176 int
177 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
178 const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
179 {
180 npf_addr_t realaddr1, realaddr2;
181
182 if (mask1 != NPF_NO_NETMASK) {
183 npf_addr_mask(addr1, mask1, alen, &realaddr1);
184 addr1 = &realaddr1;
185 }
186 if (mask2 != NPF_NO_NETMASK) {
187 npf_addr_mask(addr2, mask2, alen, &realaddr2);
188 addr2 = &realaddr2;
189 }
190 return memcmp(addr1, addr2, alen);
191 }
192
193 /*
194 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
195 *
196 * => Returns all values in host byte-order.
197 */
198 int
199 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
200 {
201 const struct tcphdr *th = npc->npc_l4.tcp;
202 u_int thlen;
203
204 KASSERT(npf_iscached(npc, NPC_TCP));
205
206 *seq = ntohl(th->th_seq);
207 *ack = ntohl(th->th_ack);
208 *win = (uint32_t)ntohs(th->th_win);
209 thlen = th->th_off << 2;
210
211 if (npf_iscached(npc, NPC_IP4)) {
212 const struct ip *ip = npc->npc_ip.v4;
213 return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
214 } else if (npf_iscached(npc, NPC_IP6)) {
215 const struct ip6_hdr *ip6 = npc->npc_ip.v6;
216 return ntohs(ip6->ip6_plen) -
217 (npc->npc_hlen - sizeof(*ip6)) - thlen;
218 }
219 return 0;
220 }
221
222 /*
223 * npf_fetch_tcpopts: parse and return TCP options.
224 */
225 bool
226 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
227 {
228 nbuf_t *nbuf = npc->npc_nbuf;
229 const struct tcphdr *th = npc->npc_l4.tcp;
230 int cnt, optlen = 0;
231 uint8_t *cp, opt;
232 uint8_t val;
233 bool ok;
234
235 KASSERT(npf_iscached(npc, NPC_IP46));
236 KASSERT(npf_iscached(npc, NPC_TCP));
237
238 /* Determine if there are any TCP options, get their length. */
239 cnt = (th->th_off << 2) - sizeof(struct tcphdr);
240 if (cnt <= 0) {
241 /* No options. */
242 return false;
243 }
244 KASSERT(cnt <= MAX_TCPOPTLEN);
245
246 /* Fetch all the options at once. */
247 nbuf_reset(nbuf);
248 const int step = npc->npc_hlen + sizeof(struct tcphdr);
249 if ((cp = nbuf_advance(nbuf, step, cnt)) == NULL) {
250 ok = false;
251 goto done;
252 }
253
254 /* Scan the options. */
255 for (; cnt > 0; cnt -= optlen, cp += optlen) {
256 opt = cp[0];
257 if (opt == TCPOPT_EOL)
258 break;
259 if (opt == TCPOPT_NOP)
260 optlen = 1;
261 else {
262 if (cnt < 2)
263 break;
264 optlen = cp[1];
265 if (optlen < 2 || optlen > cnt)
266 break;
267 }
268
269 switch (opt) {
270 case TCPOPT_MAXSEG:
271 if (optlen != TCPOLEN_MAXSEG)
272 continue;
273 if (mss) {
274 memcpy(mss, cp + 2, sizeof(uint16_t));
275 }
276 break;
277 case TCPOPT_WINDOW:
278 if (optlen != TCPOLEN_WINDOW)
279 continue;
280 val = *(cp + 2);
281 *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
282 break;
283 default:
284 break;
285 }
286 }
287
288 ok = true;
289 done:
290 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
291 npf_recache(npc);
292 }
293 return ok;
294 }
295
296 /*
297 * npf_set_mss: set the MSS.
298 */
299 bool
300 npf_set_mss(npf_cache_t *npc, uint16_t mss, uint16_t *old, uint16_t *new,
301 bool *mid)
302 {
303 nbuf_t *nbuf = npc->npc_nbuf;
304 const struct tcphdr *th = npc->npc_l4.tcp;
305 int cnt, optlen = 0;
306 uint8_t *cp, *base, opt;
307 bool ok;
308
309 KASSERT(npf_iscached(npc, NPC_IP46));
310 KASSERT(npf_iscached(npc, NPC_TCP));
311
312 /* Determine if there are any TCP options, get their length. */
313 cnt = (th->th_off << 2) - sizeof(struct tcphdr);
314 if (cnt <= 0) {
315 /* No options. */
316 return false;
317 }
318 KASSERT(cnt <= MAX_TCPOPTLEN);
319
320 /* Fetch all the options at once. */
321 nbuf_reset(nbuf);
322 const int step = npc->npc_hlen + sizeof(struct tcphdr);
323 if ((base = nbuf_advance(nbuf, step, cnt)) == NULL) {
324 ok = false;
325 goto done;
326 }
327
328 /* Scan the options. */
329 for (cp = base; cnt > 0; cnt -= optlen, cp += optlen) {
330 opt = cp[0];
331 if (opt == TCPOPT_EOL)
332 break;
333 if (opt == TCPOPT_NOP)
334 optlen = 1;
335 else {
336 if (cnt < 2)
337 break;
338 optlen = cp[1];
339 if (optlen < 2 || optlen > cnt)
340 break;
341 }
342
343 switch (opt) {
344 case TCPOPT_MAXSEG:
345 if (optlen != TCPOLEN_MAXSEG)
346 continue;
347 if (((cp + 2) - base) % sizeof(uint16_t) != 0) {
348 *mid = true;
349 memcpy(&old[0], cp + 1, sizeof(uint16_t));
350 memcpy(&old[1], cp + 3, sizeof(uint16_t));
351 memcpy(cp + 2, &mss, sizeof(uint16_t));
352 memcpy(&new[0], cp + 1, sizeof(uint16_t));
353 memcpy(&new[1], cp + 3, sizeof(uint16_t));
354 } else {
355 *mid = false;
356 memcpy(cp + 2, &mss, sizeof(uint16_t));
357 }
358 break;
359 default:
360 break;
361 }
362 }
363
364 ok = true;
365 done:
366 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
367 npf_recache(npc);
368 }
369 return ok;
370 }
371
372 static int
373 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
374 {
375 const void *nptr = nbuf_dataptr(nbuf);
376 const uint8_t ver = *(const uint8_t *)nptr;
377 int flags = 0;
378
379 /*
380 * We intentionally don't read the L4 payload after IPPROTO_AH.
381 */
382
383 switch (ver >> 4) {
384 case IPVERSION: {
385 struct ip *ip;
386
387 ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
388 if (ip == NULL) {
389 return NPC_FMTERR;
390 }
391
392 /* Retrieve the complete header. */
393 if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
394 return NPC_FMTERR;
395 }
396 ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
397 if (ip == NULL) {
398 return NPC_FMTERR;
399 }
400
401 if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
402 /* Note fragmentation. */
403 flags |= NPC_IPFRAG;
404 }
405
406 /* Cache: layer 3 - IPv4. */
407 npc->npc_alen = sizeof(struct in_addr);
408 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
409 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
410 npc->npc_hlen = ip->ip_hl << 2;
411 npc->npc_proto = ip->ip_p;
412
413 npc->npc_ip.v4 = ip;
414 flags |= NPC_IP4;
415 break;
416 }
417
418 case (IPV6_VERSION >> 4): {
419 struct ip6_hdr *ip6;
420 struct ip6_ext *ip6e;
421 struct ip6_frag *ip6f;
422 size_t off, hlen;
423 int frag_present;
424
425 ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
426 if (ip6 == NULL) {
427 return NPC_FMTERR;
428 }
429
430 /*
431 * XXX: We don't handle IPv6 Jumbograms.
432 */
433
434 /* Set initial next-protocol value. */
435 hlen = sizeof(struct ip6_hdr);
436 npc->npc_proto = ip6->ip6_nxt;
437 npc->npc_hlen = hlen;
438
439 frag_present = 0;
440
441 /*
442 * Advance by the length of the current header.
443 */
444 off = nbuf_offset(nbuf);
445 while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
446 /*
447 * Determine whether we are going to continue.
448 */
449 switch (npc->npc_proto) {
450 case IPPROTO_HOPOPTS:
451 case IPPROTO_DSTOPTS:
452 case IPPROTO_ROUTING:
453 hlen = (ip6e->ip6e_len + 1) << 3;
454 break;
455 case IPPROTO_FRAGMENT:
456 if (frag_present++)
457 return NPC_FMTERR;
458 ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
459 if (ip6f == NULL)
460 return NPC_FMTERR;
461
462 /* RFC6946: Skip dummy fragments. */
463 if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
464 !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
465 hlen = sizeof(struct ip6_frag);
466 break;
467 }
468
469 hlen = 0;
470 flags |= NPC_IPFRAG;
471
472 break;
473 default:
474 hlen = 0;
475 break;
476 }
477
478 if (!hlen) {
479 break;
480 }
481 npc->npc_proto = ip6e->ip6e_nxt;
482 npc->npc_hlen += hlen;
483 }
484
485 if (ip6e == NULL) {
486 return NPC_FMTERR;
487 }
488
489 /*
490 * Re-fetch the header pointers (nbufs might have been
491 * reallocated). Restore the original offset (if any).
492 */
493 nbuf_reset(nbuf);
494 ip6 = nbuf_dataptr(nbuf);
495 if (off) {
496 nbuf_advance(nbuf, off, 0);
497 }
498
499 /* Cache: layer 3 - IPv6. */
500 npc->npc_alen = sizeof(struct in6_addr);
501 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
502 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;
503
504 npc->npc_ip.v6 = ip6;
505 flags |= NPC_IP6;
506 break;
507 }
508 default:
509 break;
510 }
511 return flags;
512 }
513
514 /*
515 * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
516 * and TCP, UDP or ICMP headers.
517 *
518 * => nbuf offset shall be set accordingly.
519 */
520 int
521 npf_cache_all(npf_cache_t *npc)
522 {
523 nbuf_t *nbuf = npc->npc_nbuf;
524 int flags, l4flags;
525 u_int hlen;
526
527 /*
528 * This routine is a main point where the references are cached,
529 * therefore clear the flag as we reset.
530 */
531 again:
532 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
533
534 /*
535 * First, cache the L3 header (IPv4 or IPv6). If IP packet is
536 * fragmented, then we cannot look into L4.
537 */
538 flags = npf_cache_ip(npc, nbuf);
539 if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
540 (flags & NPC_FMTERR) != 0) {
541 goto out;
542 }
543 hlen = npc->npc_hlen;
544
545 /*
546 * Note: we guarantee that the potential "Query Id" field of the
547 * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
548 * ICMP ALG.
549 */
550 switch (npc->npc_proto) {
551 case IPPROTO_TCP:
552 /* Cache: layer 4 - TCP. */
553 npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
554 sizeof(struct tcphdr));
555 l4flags = NPC_LAYER4 | NPC_TCP;
556 break;
557 case IPPROTO_UDP:
558 /* Cache: layer 4 - UDP. */
559 npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
560 sizeof(struct udphdr));
561 l4flags = NPC_LAYER4 | NPC_UDP;
562 break;
563 case IPPROTO_ICMP:
564 /* Cache: layer 4 - ICMPv4. */
565 npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
566 ICMP_MINLEN);
567 l4flags = NPC_LAYER4 | NPC_ICMP;
568 break;
569 case IPPROTO_ICMPV6:
570 /* Cache: layer 4 - ICMPv6. */
571 npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
572 sizeof(struct icmp6_hdr));
573 l4flags = NPC_LAYER4 | NPC_ICMP;
574 break;
575 default:
576 l4flags = 0;
577 break;
578 }
579
580 /* Error out if nbuf_advance failed. */
581 if (l4flags && npc->npc_l4.hdr == NULL) {
582 goto err;
583 }
584
585 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
586 goto again;
587 }
588
589 flags |= l4flags;
590 npc->npc_info |= flags;
591 return flags;
592
593 err:
594 flags = NPC_FMTERR;
595 out:
596 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
597 npc->npc_info |= flags;
598 return flags;
599 }
600
601 void
602 npf_recache(npf_cache_t *npc)
603 {
604 nbuf_t *nbuf = npc->npc_nbuf;
605 const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
606 int flags __diagused;
607
608 nbuf_reset(nbuf);
609 npc->npc_info = 0;
610 flags = npf_cache_all(npc);
611
612 KASSERT((flags & mflags) == mflags);
613 KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
614 }
615
616 /*
617 * npf_rwrip: rewrite required IP address.
618 */
619 bool
620 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
621 {
622 KASSERT(npf_iscached(npc, NPC_IP46));
623 KASSERT(which == NPF_SRC || which == NPF_DST);
624
625 memcpy(npc->npc_ips[which], addr, npc->npc_alen);
626 return true;
627 }
628
629 /*
630 * npf_rwrport: rewrite required TCP/UDP port.
631 */
632 bool
633 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
634 {
635 const int proto = npc->npc_proto;
636 in_port_t *oport;
637
638 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
639 KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
640 KASSERT(which == NPF_SRC || which == NPF_DST);
641
642 /* Get the offset and store the port in it. */
643 if (proto == IPPROTO_TCP) {
644 struct tcphdr *th = npc->npc_l4.tcp;
645 oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
646 } else {
647 struct udphdr *uh = npc->npc_l4.udp;
648 oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
649 }
650 memcpy(oport, &port, sizeof(in_port_t));
651 return true;
652 }
653
654 /*
655 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
656 */
657 bool
658 npf_rwrcksum(const npf_cache_t *npc, u_int which,
659 const npf_addr_t *addr, const in_port_t port)
660 {
661 const npf_addr_t *oaddr = npc->npc_ips[which];
662 const int proto = npc->npc_proto;
663 const int alen = npc->npc_alen;
664 uint16_t *ocksum;
665 in_port_t oport;
666
667 KASSERT(npf_iscached(npc, NPC_LAYER4));
668 KASSERT(which == NPF_SRC || which == NPF_DST);
669
670 if (npf_iscached(npc, NPC_IP4)) {
671 struct ip *ip = npc->npc_ip.v4;
672 uint16_t ipsum = ip->ip_sum;
673
674 /* Recalculate IPv4 checksum and rewrite. */
675 ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
676 } else {
677 /* No checksum for IPv6. */
678 KASSERT(npf_iscached(npc, NPC_IP6));
679 }
680
681 /* Nothing else to do for ICMP. */
682 if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
683 return true;
684 }
685 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
686
687 /*
688 * Calculate TCP/UDP checksum:
689 * - Skip if UDP and the current checksum is zero.
690 * - Fixup the IP address change.
691 * - Fixup the port change, if required (non-zero).
692 */
693 if (proto == IPPROTO_TCP) {
694 struct tcphdr *th = npc->npc_l4.tcp;
695
696 ocksum = &th->th_sum;
697 oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
698 } else {
699 struct udphdr *uh = npc->npc_l4.udp;
700
701 KASSERT(proto == IPPROTO_UDP);
702 ocksum = &uh->uh_sum;
703 if (*ocksum == 0) {
704 /* No need to update. */
705 return true;
706 }
707 oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
708 }
709
710 uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
711 if (port) {
712 cksum = npf_fixup16_cksum(cksum, oport, port);
713 }
714
715 /* Rewrite TCP/UDP checksum. */
716 memcpy(ocksum, &cksum, sizeof(uint16_t));
717 return true;
718 }
719
720 /*
721 * npf_napt_rwr: perform address and/or port translation.
722 */
723 int
724 npf_napt_rwr(const npf_cache_t *npc, u_int which,
725 const npf_addr_t *addr, const in_addr_t port)
726 {
727 const unsigned proto = npc->npc_proto;
728
729 /*
730 * Rewrite IP and/or TCP/UDP checksums first, since we need the
731 * current (old) address/port for the calculations. Then perform
732 * the address translation i.e. rewrite source or destination.
733 */
734 if (!npf_rwrcksum(npc, which, addr, port)) {
735 return EINVAL;
736 }
737 if (!npf_rwrip(npc, which, addr)) {
738 return EINVAL;
739 }
740 if (port == 0) {
741 /* Done. */
742 return 0;
743 }
744
745 switch (proto) {
746 case IPPROTO_TCP:
747 case IPPROTO_UDP:
748 /* Rewrite source/destination port. */
749 if (!npf_rwrport(npc, which, port)) {
750 return EINVAL;
751 }
752 break;
753 case IPPROTO_ICMP:
754 case IPPROTO_ICMPV6:
755 KASSERT(npf_iscached(npc, NPC_ICMP));
756 /* Nothing. */
757 break;
758 default:
759 return ENOTSUP;
760 }
761 return 0;
762 }
763
764 /*
765 * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
766 */
767
768 int
769 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
770 npf_netmask_t len, uint16_t adj)
771 {
772 npf_addr_t *addr = npc->npc_ips[which];
773 unsigned remnant, word, preflen = len >> 4;
774 uint32_t sum;
775
776 KASSERT(which == NPF_SRC || which == NPF_DST);
777
778 if (!npf_iscached(npc, NPC_IP6)) {
779 return EINVAL;
780 }
781 if (len <= 48) {
782 /*
783 * The word to adjust. Cannot translate the 0xffff
784 * subnet if /48 or shorter.
785 */
786 word = 3;
787 if (addr->word16[word] == 0xffff) {
788 return EINVAL;
789 }
790 } else {
791 /*
792 * Also, all 0s or 1s in the host part are disallowed for
793 * longer than /48 prefixes.
794 */
795 if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
796 (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
797 return EINVAL;
798
799 /* Determine the 16-bit word to adjust. */
800 for (word = 4; word < 8; word++)
801 if (addr->word16[word] != 0xffff)
802 break;
803 }
804
805 /* Rewrite the prefix. */
806 for (unsigned i = 0; i < preflen; i++) {
807 addr->word16[i] = pref->word16[i];
808 }
809
810 /*
811 * If prefix length is within a 16-bit word (not dividable by 16),
812 * then prepare a mask, determine the word and adjust it.
813 */
814 if ((remnant = len - (preflen << 4)) != 0) {
815 const uint16_t wordmask = (1U << remnant) - 1;
816 const unsigned i = preflen;
817
818 addr->word16[i] = (pref->word16[i] & wordmask) |
819 (addr->word16[i] & ~wordmask);
820 }
821
822 /*
823 * Performing 1's complement sum/difference.
824 */
825 sum = addr->word16[word] + adj;
826 while (sum >> 16) {
827 sum = (sum >> 16) + (sum & 0xffff);
828 }
829 if (sum == 0xffff) {
830 /* RFC 1071. */
831 sum = 0x0000;
832 }
833 addr->word16[word] = sum;
834 return 0;
835 }
836
837 #if defined(DDB) || defined(_NPF_TESTING)
838
839 const char *
840 npf_addr_dump(const npf_addr_t *addr, int alen)
841 {
842 if (alen == sizeof(struct in_addr)) {
843 struct in_addr ip;
844 memcpy(&ip, addr, alen);
845 return inet_ntoa(ip);
846 }
847 return "[IPv6]";
848 }
849
850 #endif
851