npf_inet.c revision 1.48 1 /* $NetBSD: npf_inet.c,v 1.48 2018/04/06 14:50:55 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Various protocol related helper routines.
34 *
35 * This layer manipulates npf_cache_t structure i.e. caches requested headers
36 * and stores which information was cached in the information bit field.
37 * It is also responsibility of this layer to update or invalidate the cache
38 * on rewrites (e.g. by translation routines).
39 */
40
41 #ifdef _KERNEL
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.48 2018/04/06 14:50:55 maxv Exp $");
44
45 #include <sys/param.h>
46 #include <sys/types.h>
47
48 #include <net/pfil.h>
49 #include <net/if.h>
50 #include <net/ethertypes.h>
51 #include <net/if_ether.h>
52
53 #include <netinet/in_systm.h>
54 #include <netinet/in.h>
55 #include <netinet6/in6_var.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <netinet/ip_icmp.h>
61 #endif
62
63 #include "npf_impl.h"
64
65 /*
66 * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
67 */
68
69 uint16_t
70 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
71 {
72 uint32_t sum;
73
74 /*
75 * RFC 1624:
76 * HC' = ~(~HC + ~m + m')
77 *
78 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
79 */
80 sum = ~cksum & 0xffff;
81 sum += (~odatum & 0xffff) + ndatum;
82 sum = (sum >> 16) + (sum & 0xffff);
83 sum += (sum >> 16);
84
85 return ~sum & 0xffff;
86 }
87
88 uint16_t
89 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
90 {
91 uint32_t sum;
92
93 /*
94 * Checksum 32-bit datum as as two 16-bit. Note, the first
95 * 32->16 bit reduction is not necessary.
96 */
97 sum = ~cksum & 0xffff;
98 sum += (~odatum & 0xffff) + (ndatum & 0xffff);
99
100 sum += (~odatum >> 16) + (ndatum >> 16);
101 sum = (sum >> 16) + (sum & 0xffff);
102 sum += (sum >> 16);
103 return ~sum & 0xffff;
104 }
105
106 /*
107 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
108 */
109 uint16_t
110 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
111 const npf_addr_t *naddr)
112 {
113 const uint32_t *oip32 = (const uint32_t *)oaddr;
114 const uint32_t *nip32 = (const uint32_t *)naddr;
115
116 KASSERT(sz % sizeof(uint32_t) == 0);
117 do {
118 cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
119 sz -= sizeof(uint32_t);
120 } while (sz);
121
122 return cksum;
123 }
124
125 /*
126 * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
127 * Note: used for hash function.
128 */
129 uint32_t
130 npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
131 {
132 uint32_t mix = 0;
133
134 KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
135
136 for (int i = 0; i < (sz >> 2); i++) {
137 mix ^= a1->word32[i];
138 mix ^= a2->word32[i];
139 }
140 return mix;
141 }
142
143 /*
144 * npf_addr_mask: apply the mask to a given address and store the result.
145 */
146 void
147 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
148 const int alen, npf_addr_t *out)
149 {
150 const int nwords = alen >> 2;
151 uint_fast8_t length = mask;
152
153 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
154 KASSERT(length <= NPF_MAX_NETMASK);
155
156 for (int i = 0; i < nwords; i++) {
157 uint32_t wordmask;
158
159 if (length >= 32) {
160 wordmask = htonl(0xffffffff);
161 length -= 32;
162 } else if (length) {
163 wordmask = htonl(0xffffffff << (32 - length));
164 length = 0;
165 } else {
166 wordmask = 0;
167 }
168 out->word32[i] = addr->word32[i] & wordmask;
169 }
170 }
171
172 /*
173 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
174 *
175 * => Return 0 if equal and negative/positive if less/greater accordingly.
176 * => Ignore the mask, if NPF_NO_NETMASK is specified.
177 */
178 int
179 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
180 const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
181 {
182 npf_addr_t realaddr1, realaddr2;
183
184 if (mask1 != NPF_NO_NETMASK) {
185 npf_addr_mask(addr1, mask1, alen, &realaddr1);
186 addr1 = &realaddr1;
187 }
188 if (mask2 != NPF_NO_NETMASK) {
189 npf_addr_mask(addr2, mask2, alen, &realaddr2);
190 addr2 = &realaddr2;
191 }
192 return memcmp(addr1, addr2, alen);
193 }
194
195 /*
196 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
197 *
198 * => Returns all values in host byte-order.
199 */
200 int
201 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
202 {
203 const struct tcphdr *th = npc->npc_l4.tcp;
204 u_int thlen;
205
206 KASSERT(npf_iscached(npc, NPC_TCP));
207
208 *seq = ntohl(th->th_seq);
209 *ack = ntohl(th->th_ack);
210 *win = (uint32_t)ntohs(th->th_win);
211 thlen = th->th_off << 2;
212
213 if (npf_iscached(npc, NPC_IP4)) {
214 const struct ip *ip = npc->npc_ip.v4;
215 return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
216 } else if (npf_iscached(npc, NPC_IP6)) {
217 const struct ip6_hdr *ip6 = npc->npc_ip.v6;
218 return ntohs(ip6->ip6_plen) -
219 (npc->npc_hlen - sizeof(*ip6)) - thlen;
220 }
221 return 0;
222 }
223
224 /*
225 * npf_fetch_tcpopts: parse and return TCP options.
226 */
227 bool
228 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
229 {
230 nbuf_t *nbuf = npc->npc_nbuf;
231 const struct tcphdr *th = npc->npc_l4.tcp;
232 int topts_len, step;
233 bool setmss = false;
234 uint8_t *nptr;
235 uint8_t val;
236 bool ok;
237
238 KASSERT(npf_iscached(npc, NPC_IP46));
239 KASSERT(npf_iscached(npc, NPC_TCP));
240
241 /* Determine if there are any TCP options, get their length. */
242 topts_len = (th->th_off << 2) - sizeof(struct tcphdr);
243 if (topts_len <= 0) {
244 /* No options. */
245 return false;
246 }
247 KASSERT(topts_len <= MAX_TCPOPTLEN);
248
249 /* Determine if we want to set or get the mss. */
250 if (mss) {
251 setmss = (*mss != 0);
252 }
253
254 /* First step: IP and TCP header up to options. */
255 step = npc->npc_hlen + sizeof(struct tcphdr);
256 nbuf_reset(nbuf);
257 next:
258 if ((nptr = nbuf_advance(nbuf, step, 1)) == NULL) {
259 ok = false;
260 goto done;
261 }
262 val = *nptr;
263
264 switch (val) {
265 case TCPOPT_EOL:
266 /* Done. */
267 ok = true;
268 goto done;
269 case TCPOPT_NOP:
270 topts_len--;
271 step = 1;
272 break;
273 case TCPOPT_MAXSEG:
274 if ((nptr = nbuf_ensure_contig(nbuf, TCPOLEN_MAXSEG)) == NULL) {
275 ok = false;
276 goto done;
277 }
278 if (mss) {
279 if (setmss) {
280 memcpy(nptr + 2, mss, sizeof(uint16_t));
281 } else {
282 memcpy(mss, nptr + 2, sizeof(uint16_t));
283 }
284 }
285 topts_len -= TCPOLEN_MAXSEG;
286 step = TCPOLEN_MAXSEG;
287 break;
288 case TCPOPT_WINDOW:
289 /* TCP Window Scaling (RFC 1323). */
290 if ((nptr = nbuf_ensure_contig(nbuf, TCPOLEN_WINDOW)) == NULL) {
291 ok = false;
292 goto done;
293 }
294 val = *(nptr + 2);
295 *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
296 topts_len -= TCPOLEN_WINDOW;
297 step = TCPOLEN_WINDOW;
298 break;
299 default:
300 if ((nptr = nbuf_ensure_contig(nbuf, 2)) == NULL) {
301 ok = false;
302 goto done;
303 }
304 val = *(nptr + 1);
305 if (val < 2 || val > topts_len) {
306 ok = false;
307 goto done;
308 }
309 topts_len -= val;
310 step = val;
311 }
312
313 /* Any options left? */
314 if (__predict_true(topts_len > 0)) {
315 goto next;
316 }
317 ok = true;
318 done:
319 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
320 npf_recache(npc);
321 }
322 return ok;
323 }
324
325 static int
326 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
327 {
328 const void *nptr = nbuf_dataptr(nbuf);
329 const uint8_t ver = *(const uint8_t *)nptr;
330 int flags = 0;
331
332 /*
333 * We intentionally don't read the L4 payload after IPPROTO_AH.
334 */
335
336 switch (ver >> 4) {
337 case IPVERSION: {
338 struct ip *ip;
339
340 ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
341 if (ip == NULL) {
342 return NPC_FMTERR;
343 }
344
345 /* Retrieve the complete header. */
346 if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
347 return NPC_FMTERR;
348 }
349 ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
350 if (ip == NULL) {
351 return NPC_FMTERR;
352 }
353
354 if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
355 /* Note fragmentation. */
356 flags |= NPC_IPFRAG;
357 }
358
359 /* Cache: layer 3 - IPv4. */
360 npc->npc_alen = sizeof(struct in_addr);
361 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
362 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
363 npc->npc_hlen = ip->ip_hl << 2;
364 npc->npc_proto = ip->ip_p;
365
366 npc->npc_ip.v4 = ip;
367 flags |= NPC_IP4;
368 break;
369 }
370
371 case (IPV6_VERSION >> 4): {
372 struct ip6_hdr *ip6;
373 struct ip6_ext *ip6e;
374 struct ip6_frag *ip6f;
375 size_t off, hlen;
376 int frag_present;
377
378 ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
379 if (ip6 == NULL) {
380 return NPC_FMTERR;
381 }
382
383 /*
384 * XXX: We don't handle IPv6 Jumbograms.
385 */
386
387 /* Set initial next-protocol value. */
388 hlen = sizeof(struct ip6_hdr);
389 npc->npc_proto = ip6->ip6_nxt;
390 npc->npc_hlen = hlen;
391
392 frag_present = 0;
393
394 /*
395 * Advance by the length of the current header.
396 */
397 off = nbuf_offset(nbuf);
398 while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
399 /*
400 * Determine whether we are going to continue.
401 */
402 switch (npc->npc_proto) {
403 case IPPROTO_HOPOPTS:
404 case IPPROTO_DSTOPTS:
405 case IPPROTO_ROUTING:
406 hlen = (ip6e->ip6e_len + 1) << 3;
407 break;
408 case IPPROTO_FRAGMENT:
409 if (frag_present++)
410 return NPC_FMTERR;
411 ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
412 if (ip6f == NULL)
413 return NPC_FMTERR;
414
415 /* RFC6946: Skip dummy fragments. */
416 if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
417 !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
418 hlen = sizeof(struct ip6_frag);
419 break;
420 }
421
422 hlen = 0;
423 flags |= NPC_IPFRAG;
424
425 break;
426 default:
427 hlen = 0;
428 break;
429 }
430
431 if (!hlen) {
432 break;
433 }
434 npc->npc_proto = ip6e->ip6e_nxt;
435 npc->npc_hlen += hlen;
436 }
437
438 if (ip6e == NULL) {
439 return NPC_FMTERR;
440 }
441
442 /*
443 * Re-fetch the header pointers (nbufs might have been
444 * reallocated). Restore the original offset (if any).
445 */
446 nbuf_reset(nbuf);
447 ip6 = nbuf_dataptr(nbuf);
448 if (off) {
449 nbuf_advance(nbuf, off, 0);
450 }
451
452 /* Cache: layer 3 - IPv6. */
453 npc->npc_alen = sizeof(struct in6_addr);
454 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
455 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;
456
457 npc->npc_ip.v6 = ip6;
458 flags |= NPC_IP6;
459 break;
460 }
461 default:
462 break;
463 }
464 return flags;
465 }
466
467 /*
468 * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
469 * and TCP, UDP or ICMP headers.
470 *
471 * => nbuf offset shall be set accordingly.
472 */
473 int
474 npf_cache_all(npf_cache_t *npc)
475 {
476 nbuf_t *nbuf = npc->npc_nbuf;
477 int flags, l4flags;
478 u_int hlen;
479
480 /*
481 * This routine is a main point where the references are cached,
482 * therefore clear the flag as we reset.
483 */
484 again:
485 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
486
487 /*
488 * First, cache the L3 header (IPv4 or IPv6). If IP packet is
489 * fragmented, then we cannot look into L4.
490 */
491 flags = npf_cache_ip(npc, nbuf);
492 if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
493 (flags & NPC_FMTERR) != 0) {
494 goto out;
495 }
496 hlen = npc->npc_hlen;
497
498 /*
499 * Note: we guarantee that the potential "Query Id" field of the
500 * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
501 * ICMP ALG.
502 */
503 switch (npc->npc_proto) {
504 case IPPROTO_TCP:
505 /* Cache: layer 4 - TCP. */
506 npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
507 sizeof(struct tcphdr));
508 l4flags = NPC_LAYER4 | NPC_TCP;
509 break;
510 case IPPROTO_UDP:
511 /* Cache: layer 4 - UDP. */
512 npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
513 sizeof(struct udphdr));
514 l4flags = NPC_LAYER4 | NPC_UDP;
515 break;
516 case IPPROTO_ICMP:
517 /* Cache: layer 4 - ICMPv4. */
518 npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
519 ICMP_MINLEN);
520 l4flags = NPC_LAYER4 | NPC_ICMP;
521 break;
522 case IPPROTO_ICMPV6:
523 /* Cache: layer 4 - ICMPv6. */
524 npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
525 sizeof(struct icmp6_hdr));
526 l4flags = NPC_LAYER4 | NPC_ICMP;
527 break;
528 default:
529 l4flags = 0;
530 break;
531 }
532
533 /* Error out if nbuf_advance failed. */
534 if (l4flags && npc->npc_l4.hdr == NULL) {
535 goto err;
536 }
537
538 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
539 goto again;
540 }
541
542 flags |= l4flags;
543 npc->npc_info |= flags;
544 return flags;
545
546 err:
547 flags = NPC_FMTERR;
548 out:
549 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
550 npc->npc_info |= flags;
551 return flags;
552 }
553
554 void
555 npf_recache(npf_cache_t *npc)
556 {
557 nbuf_t *nbuf = npc->npc_nbuf;
558 const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
559 int flags __diagused;
560
561 nbuf_reset(nbuf);
562 npc->npc_info = 0;
563 flags = npf_cache_all(npc);
564
565 KASSERT((flags & mflags) == mflags);
566 KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
567 }
568
569 /*
570 * npf_rwrip: rewrite required IP address.
571 */
572 bool
573 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
574 {
575 KASSERT(npf_iscached(npc, NPC_IP46));
576 KASSERT(which == NPF_SRC || which == NPF_DST);
577
578 memcpy(npc->npc_ips[which], addr, npc->npc_alen);
579 return true;
580 }
581
582 /*
583 * npf_rwrport: rewrite required TCP/UDP port.
584 */
585 bool
586 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
587 {
588 const int proto = npc->npc_proto;
589 in_port_t *oport;
590
591 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
592 KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
593 KASSERT(which == NPF_SRC || which == NPF_DST);
594
595 /* Get the offset and store the port in it. */
596 if (proto == IPPROTO_TCP) {
597 struct tcphdr *th = npc->npc_l4.tcp;
598 oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
599 } else {
600 struct udphdr *uh = npc->npc_l4.udp;
601 oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
602 }
603 memcpy(oport, &port, sizeof(in_port_t));
604 return true;
605 }
606
607 /*
608 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
609 */
610 bool
611 npf_rwrcksum(const npf_cache_t *npc, u_int which,
612 const npf_addr_t *addr, const in_port_t port)
613 {
614 const npf_addr_t *oaddr = npc->npc_ips[which];
615 const int proto = npc->npc_proto;
616 const int alen = npc->npc_alen;
617 uint16_t *ocksum;
618 in_port_t oport;
619
620 KASSERT(npf_iscached(npc, NPC_LAYER4));
621 KASSERT(which == NPF_SRC || which == NPF_DST);
622
623 if (npf_iscached(npc, NPC_IP4)) {
624 struct ip *ip = npc->npc_ip.v4;
625 uint16_t ipsum = ip->ip_sum;
626
627 /* Recalculate IPv4 checksum and rewrite. */
628 ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
629 } else {
630 /* No checksum for IPv6. */
631 KASSERT(npf_iscached(npc, NPC_IP6));
632 }
633
634 /* Nothing else to do for ICMP. */
635 if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
636 return true;
637 }
638 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
639
640 /*
641 * Calculate TCP/UDP checksum:
642 * - Skip if UDP and the current checksum is zero.
643 * - Fixup the IP address change.
644 * - Fixup the port change, if required (non-zero).
645 */
646 if (proto == IPPROTO_TCP) {
647 struct tcphdr *th = npc->npc_l4.tcp;
648
649 ocksum = &th->th_sum;
650 oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
651 } else {
652 struct udphdr *uh = npc->npc_l4.udp;
653
654 KASSERT(proto == IPPROTO_UDP);
655 ocksum = &uh->uh_sum;
656 if (*ocksum == 0) {
657 /* No need to update. */
658 return true;
659 }
660 oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
661 }
662
663 uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
664 if (port) {
665 cksum = npf_fixup16_cksum(cksum, oport, port);
666 }
667
668 /* Rewrite TCP/UDP checksum. */
669 memcpy(ocksum, &cksum, sizeof(uint16_t));
670 return true;
671 }
672
673 /*
674 * npf_napt_rwr: perform address and/or port translation.
675 */
676 int
677 npf_napt_rwr(const npf_cache_t *npc, u_int which,
678 const npf_addr_t *addr, const in_addr_t port)
679 {
680 const unsigned proto = npc->npc_proto;
681
682 /*
683 * Rewrite IP and/or TCP/UDP checksums first, since we need the
684 * current (old) address/port for the calculations. Then perform
685 * the address translation i.e. rewrite source or destination.
686 */
687 if (!npf_rwrcksum(npc, which, addr, port)) {
688 return EINVAL;
689 }
690 if (!npf_rwrip(npc, which, addr)) {
691 return EINVAL;
692 }
693 if (port == 0) {
694 /* Done. */
695 return 0;
696 }
697
698 switch (proto) {
699 case IPPROTO_TCP:
700 case IPPROTO_UDP:
701 /* Rewrite source/destination port. */
702 if (!npf_rwrport(npc, which, port)) {
703 return EINVAL;
704 }
705 break;
706 case IPPROTO_ICMP:
707 case IPPROTO_ICMPV6:
708 KASSERT(npf_iscached(npc, NPC_ICMP));
709 /* Nothing. */
710 break;
711 default:
712 return ENOTSUP;
713 }
714 return 0;
715 }
716
717 /*
718 * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
719 */
720
721 int
722 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
723 npf_netmask_t len, uint16_t adj)
724 {
725 npf_addr_t *addr = npc->npc_ips[which];
726 unsigned remnant, word, preflen = len >> 4;
727 uint32_t sum;
728
729 KASSERT(which == NPF_SRC || which == NPF_DST);
730
731 if (!npf_iscached(npc, NPC_IP6)) {
732 return EINVAL;
733 }
734 if (len <= 48) {
735 /*
736 * The word to adjust. Cannot translate the 0xffff
737 * subnet if /48 or shorter.
738 */
739 word = 3;
740 if (addr->word16[word] == 0xffff) {
741 return EINVAL;
742 }
743 } else {
744 /*
745 * Also, all 0s or 1s in the host part are disallowed for
746 * longer than /48 prefixes.
747 */
748 if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
749 (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
750 return EINVAL;
751
752 /* Determine the 16-bit word to adjust. */
753 for (word = 4; word < 8; word++)
754 if (addr->word16[word] != 0xffff)
755 break;
756 }
757
758 /* Rewrite the prefix. */
759 for (unsigned i = 0; i < preflen; i++) {
760 addr->word16[i] = pref->word16[i];
761 }
762
763 /*
764 * If prefix length is within a 16-bit word (not dividable by 16),
765 * then prepare a mask, determine the word and adjust it.
766 */
767 if ((remnant = len - (preflen << 4)) != 0) {
768 const uint16_t wordmask = (1U << remnant) - 1;
769 const unsigned i = preflen;
770
771 addr->word16[i] = (pref->word16[i] & wordmask) |
772 (addr->word16[i] & ~wordmask);
773 }
774
775 /*
776 * Performing 1's complement sum/difference.
777 */
778 sum = addr->word16[word] + adj;
779 while (sum >> 16) {
780 sum = (sum >> 16) + (sum & 0xffff);
781 }
782 if (sum == 0xffff) {
783 /* RFC 1071. */
784 sum = 0x0000;
785 }
786 addr->word16[word] = sum;
787 return 0;
788 }
789
790 #if defined(DDB) || defined(_NPF_TESTING)
791
792 const char *
793 npf_addr_dump(const npf_addr_t *addr, int alen)
794 {
795 if (alen == sizeof(struct in_addr)) {
796 struct in_addr ip;
797 memcpy(&ip, addr, alen);
798 return inet_ntoa(ip);
799 }
800 return "[IPv6]";
801 }
802
803 #endif
804