npf_inet.c revision 1.50 1 /* $NetBSD: npf_inet.c,v 1.50 2018/04/08 05:51:45 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Various protocol related helper routines.
34 *
35 * This layer manipulates npf_cache_t structure i.e. caches requested headers
36 * and stores which information was cached in the information bit field.
37 * It is also responsibility of this layer to update or invalidate the cache
38 * on rewrites (e.g. by translation routines).
39 */
40
41 #ifdef _KERNEL
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.50 2018/04/08 05:51:45 maxv Exp $");
44
45 #include <sys/param.h>
46 #include <sys/types.h>
47
48 #include <net/pfil.h>
49 #include <net/if.h>
50 #include <net/ethertypes.h>
51 #include <net/if_ether.h>
52
53 #include <netinet/in_systm.h>
54 #include <netinet/in.h>
55 #include <netinet6/in6_var.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <netinet/ip_icmp.h>
61 #endif
62
63 #include "npf_impl.h"
64
65 /*
66 * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
67 */
68
69 uint16_t
70 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
71 {
72 uint32_t sum;
73
74 /*
75 * RFC 1624:
76 * HC' = ~(~HC + ~m + m')
77 *
78 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
79 */
80 sum = ~cksum & 0xffff;
81 sum += (~odatum & 0xffff) + ndatum;
82 sum = (sum >> 16) + (sum & 0xffff);
83 sum += (sum >> 16);
84
85 return ~sum & 0xffff;
86 }
87
88 uint16_t
89 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
90 {
91 uint32_t sum;
92
93 /*
94 * Checksum 32-bit datum as as two 16-bit. Note, the first
95 * 32->16 bit reduction is not necessary.
96 */
97 sum = ~cksum & 0xffff;
98 sum += (~odatum & 0xffff) + (ndatum & 0xffff);
99
100 sum += (~odatum >> 16) + (ndatum >> 16);
101 sum = (sum >> 16) + (sum & 0xffff);
102 sum += (sum >> 16);
103 return ~sum & 0xffff;
104 }
105
106 /*
107 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
108 */
109 uint16_t
110 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
111 const npf_addr_t *naddr)
112 {
113 const uint32_t *oip32 = (const uint32_t *)oaddr;
114 const uint32_t *nip32 = (const uint32_t *)naddr;
115
116 KASSERT(sz % sizeof(uint32_t) == 0);
117 do {
118 cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
119 sz -= sizeof(uint32_t);
120 } while (sz);
121
122 return cksum;
123 }
124
125 /*
126 * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
127 * Note: used for hash function.
128 */
129 uint32_t
130 npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
131 {
132 uint32_t mix = 0;
133
134 KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
135
136 for (int i = 0; i < (sz >> 2); i++) {
137 mix ^= a1->word32[i];
138 mix ^= a2->word32[i];
139 }
140 return mix;
141 }
142
143 /*
144 * npf_addr_mask: apply the mask to a given address and store the result.
145 */
146 void
147 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
148 const int alen, npf_addr_t *out)
149 {
150 const int nwords = alen >> 2;
151 uint_fast8_t length = mask;
152
153 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
154 KASSERT(length <= NPF_MAX_NETMASK);
155
156 for (int i = 0; i < nwords; i++) {
157 uint32_t wordmask;
158
159 if (length >= 32) {
160 wordmask = htonl(0xffffffff);
161 length -= 32;
162 } else if (length) {
163 wordmask = htonl(0xffffffff << (32 - length));
164 length = 0;
165 } else {
166 wordmask = 0;
167 }
168 out->word32[i] = addr->word32[i] & wordmask;
169 }
170 }
171
172 /*
173 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
174 *
175 * => Return 0 if equal and negative/positive if less/greater accordingly.
176 * => Ignore the mask, if NPF_NO_NETMASK is specified.
177 */
178 int
179 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
180 const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
181 {
182 npf_addr_t realaddr1, realaddr2;
183
184 if (mask1 != NPF_NO_NETMASK) {
185 npf_addr_mask(addr1, mask1, alen, &realaddr1);
186 addr1 = &realaddr1;
187 }
188 if (mask2 != NPF_NO_NETMASK) {
189 npf_addr_mask(addr2, mask2, alen, &realaddr2);
190 addr2 = &realaddr2;
191 }
192 return memcmp(addr1, addr2, alen);
193 }
194
195 /*
196 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
197 *
198 * => Returns all values in host byte-order.
199 */
200 int
201 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
202 {
203 const struct tcphdr *th = npc->npc_l4.tcp;
204 u_int thlen;
205
206 KASSERT(npf_iscached(npc, NPC_TCP));
207
208 *seq = ntohl(th->th_seq);
209 *ack = ntohl(th->th_ack);
210 *win = (uint32_t)ntohs(th->th_win);
211 thlen = th->th_off << 2;
212
213 if (npf_iscached(npc, NPC_IP4)) {
214 const struct ip *ip = npc->npc_ip.v4;
215 return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
216 } else if (npf_iscached(npc, NPC_IP6)) {
217 const struct ip6_hdr *ip6 = npc->npc_ip.v6;
218 return ntohs(ip6->ip6_plen) -
219 (npc->npc_hlen - sizeof(*ip6)) - thlen;
220 }
221 return 0;
222 }
223
224 /*
225 * npf_fetch_tcpopts: parse and return TCP options.
226 */
227 bool
228 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
229 {
230 nbuf_t *nbuf = npc->npc_nbuf;
231 const struct tcphdr *th = npc->npc_l4.tcp;
232 int cnt, optlen = 0;
233 bool setmss = false;
234 uint8_t *cp, opt;
235 uint8_t val;
236 bool ok;
237
238 KASSERT(npf_iscached(npc, NPC_IP46));
239 KASSERT(npf_iscached(npc, NPC_TCP));
240
241 /* Determine if there are any TCP options, get their length. */
242 cnt = (th->th_off << 2) - sizeof(struct tcphdr);
243 if (cnt <= 0) {
244 /* No options. */
245 return false;
246 }
247 KASSERT(cnt <= MAX_TCPOPTLEN);
248
249 /* Determine if we want to set or get the mss. */
250 if (mss) {
251 setmss = (*mss != 0);
252 }
253
254 /* Fetch all the options at once. */
255 nbuf_reset(nbuf);
256 const int step = npc->npc_hlen + sizeof(struct tcphdr);
257 if ((cp = nbuf_advance(nbuf, step, cnt)) == NULL) {
258 ok = false;
259 goto done;
260 }
261
262 /* Scan the options. */
263 for (; cnt > 0; cnt -= optlen, cp += optlen) {
264 opt = cp[0];
265 if (opt == TCPOPT_EOL)
266 break;
267 if (opt == TCPOPT_NOP)
268 optlen = 1;
269 else {
270 if (cnt < 2)
271 break;
272 optlen = cp[1];
273 if (optlen < 2 || optlen > cnt)
274 break;
275 }
276
277 switch (opt) {
278 case TCPOPT_MAXSEG:
279 if (optlen != TCPOLEN_MAXSEG)
280 continue;
281 if (mss) {
282 if (setmss) {
283 memcpy(cp + 2, mss, sizeof(uint16_t));
284 } else {
285 memcpy(mss, cp + 2, sizeof(uint16_t));
286 }
287 }
288 break;
289 case TCPOPT_WINDOW:
290 if (optlen != TCPOLEN_WINDOW)
291 continue;
292 val = *(cp + 2);
293 *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
294 break;
295 default:
296 break;
297 }
298 }
299
300 ok = true;
301 done:
302 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
303 npf_recache(npc);
304 }
305 return ok;
306 }
307
308 static int
309 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
310 {
311 const void *nptr = nbuf_dataptr(nbuf);
312 const uint8_t ver = *(const uint8_t *)nptr;
313 int flags = 0;
314
315 /*
316 * We intentionally don't read the L4 payload after IPPROTO_AH.
317 */
318
319 switch (ver >> 4) {
320 case IPVERSION: {
321 struct ip *ip;
322
323 ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
324 if (ip == NULL) {
325 return NPC_FMTERR;
326 }
327
328 /* Retrieve the complete header. */
329 if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
330 return NPC_FMTERR;
331 }
332 ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
333 if (ip == NULL) {
334 return NPC_FMTERR;
335 }
336
337 if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
338 /* Note fragmentation. */
339 flags |= NPC_IPFRAG;
340 }
341
342 /* Cache: layer 3 - IPv4. */
343 npc->npc_alen = sizeof(struct in_addr);
344 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
345 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
346 npc->npc_hlen = ip->ip_hl << 2;
347 npc->npc_proto = ip->ip_p;
348
349 npc->npc_ip.v4 = ip;
350 flags |= NPC_IP4;
351 break;
352 }
353
354 case (IPV6_VERSION >> 4): {
355 struct ip6_hdr *ip6;
356 struct ip6_ext *ip6e;
357 struct ip6_frag *ip6f;
358 size_t off, hlen;
359 int frag_present;
360
361 ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
362 if (ip6 == NULL) {
363 return NPC_FMTERR;
364 }
365
366 /*
367 * XXX: We don't handle IPv6 Jumbograms.
368 */
369
370 /* Set initial next-protocol value. */
371 hlen = sizeof(struct ip6_hdr);
372 npc->npc_proto = ip6->ip6_nxt;
373 npc->npc_hlen = hlen;
374
375 frag_present = 0;
376
377 /*
378 * Advance by the length of the current header.
379 */
380 off = nbuf_offset(nbuf);
381 while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
382 /*
383 * Determine whether we are going to continue.
384 */
385 switch (npc->npc_proto) {
386 case IPPROTO_HOPOPTS:
387 case IPPROTO_DSTOPTS:
388 case IPPROTO_ROUTING:
389 hlen = (ip6e->ip6e_len + 1) << 3;
390 break;
391 case IPPROTO_FRAGMENT:
392 if (frag_present++)
393 return NPC_FMTERR;
394 ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
395 if (ip6f == NULL)
396 return NPC_FMTERR;
397
398 /* RFC6946: Skip dummy fragments. */
399 if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
400 !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
401 hlen = sizeof(struct ip6_frag);
402 break;
403 }
404
405 hlen = 0;
406 flags |= NPC_IPFRAG;
407
408 break;
409 default:
410 hlen = 0;
411 break;
412 }
413
414 if (!hlen) {
415 break;
416 }
417 npc->npc_proto = ip6e->ip6e_nxt;
418 npc->npc_hlen += hlen;
419 }
420
421 if (ip6e == NULL) {
422 return NPC_FMTERR;
423 }
424
425 /*
426 * Re-fetch the header pointers (nbufs might have been
427 * reallocated). Restore the original offset (if any).
428 */
429 nbuf_reset(nbuf);
430 ip6 = nbuf_dataptr(nbuf);
431 if (off) {
432 nbuf_advance(nbuf, off, 0);
433 }
434
435 /* Cache: layer 3 - IPv6. */
436 npc->npc_alen = sizeof(struct in6_addr);
437 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
438 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;
439
440 npc->npc_ip.v6 = ip6;
441 flags |= NPC_IP6;
442 break;
443 }
444 default:
445 break;
446 }
447 return flags;
448 }
449
450 /*
451 * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
452 * and TCP, UDP or ICMP headers.
453 *
454 * => nbuf offset shall be set accordingly.
455 */
456 int
457 npf_cache_all(npf_cache_t *npc)
458 {
459 nbuf_t *nbuf = npc->npc_nbuf;
460 int flags, l4flags;
461 u_int hlen;
462
463 /*
464 * This routine is a main point where the references are cached,
465 * therefore clear the flag as we reset.
466 */
467 again:
468 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
469
470 /*
471 * First, cache the L3 header (IPv4 or IPv6). If IP packet is
472 * fragmented, then we cannot look into L4.
473 */
474 flags = npf_cache_ip(npc, nbuf);
475 if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
476 (flags & NPC_FMTERR) != 0) {
477 goto out;
478 }
479 hlen = npc->npc_hlen;
480
481 /*
482 * Note: we guarantee that the potential "Query Id" field of the
483 * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
484 * ICMP ALG.
485 */
486 switch (npc->npc_proto) {
487 case IPPROTO_TCP:
488 /* Cache: layer 4 - TCP. */
489 npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
490 sizeof(struct tcphdr));
491 l4flags = NPC_LAYER4 | NPC_TCP;
492 break;
493 case IPPROTO_UDP:
494 /* Cache: layer 4 - UDP. */
495 npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
496 sizeof(struct udphdr));
497 l4flags = NPC_LAYER4 | NPC_UDP;
498 break;
499 case IPPROTO_ICMP:
500 /* Cache: layer 4 - ICMPv4. */
501 npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
502 ICMP_MINLEN);
503 l4flags = NPC_LAYER4 | NPC_ICMP;
504 break;
505 case IPPROTO_ICMPV6:
506 /* Cache: layer 4 - ICMPv6. */
507 npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
508 sizeof(struct icmp6_hdr));
509 l4flags = NPC_LAYER4 | NPC_ICMP;
510 break;
511 default:
512 l4flags = 0;
513 break;
514 }
515
516 /* Error out if nbuf_advance failed. */
517 if (l4flags && npc->npc_l4.hdr == NULL) {
518 goto err;
519 }
520
521 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
522 goto again;
523 }
524
525 flags |= l4flags;
526 npc->npc_info |= flags;
527 return flags;
528
529 err:
530 flags = NPC_FMTERR;
531 out:
532 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
533 npc->npc_info |= flags;
534 return flags;
535 }
536
537 void
538 npf_recache(npf_cache_t *npc)
539 {
540 nbuf_t *nbuf = npc->npc_nbuf;
541 const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
542 int flags __diagused;
543
544 nbuf_reset(nbuf);
545 npc->npc_info = 0;
546 flags = npf_cache_all(npc);
547
548 KASSERT((flags & mflags) == mflags);
549 KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
550 }
551
552 /*
553 * npf_rwrip: rewrite required IP address.
554 */
555 bool
556 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
557 {
558 KASSERT(npf_iscached(npc, NPC_IP46));
559 KASSERT(which == NPF_SRC || which == NPF_DST);
560
561 memcpy(npc->npc_ips[which], addr, npc->npc_alen);
562 return true;
563 }
564
565 /*
566 * npf_rwrport: rewrite required TCP/UDP port.
567 */
568 bool
569 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
570 {
571 const int proto = npc->npc_proto;
572 in_port_t *oport;
573
574 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
575 KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
576 KASSERT(which == NPF_SRC || which == NPF_DST);
577
578 /* Get the offset and store the port in it. */
579 if (proto == IPPROTO_TCP) {
580 struct tcphdr *th = npc->npc_l4.tcp;
581 oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
582 } else {
583 struct udphdr *uh = npc->npc_l4.udp;
584 oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
585 }
586 memcpy(oport, &port, sizeof(in_port_t));
587 return true;
588 }
589
590 /*
591 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
592 */
593 bool
594 npf_rwrcksum(const npf_cache_t *npc, u_int which,
595 const npf_addr_t *addr, const in_port_t port)
596 {
597 const npf_addr_t *oaddr = npc->npc_ips[which];
598 const int proto = npc->npc_proto;
599 const int alen = npc->npc_alen;
600 uint16_t *ocksum;
601 in_port_t oport;
602
603 KASSERT(npf_iscached(npc, NPC_LAYER4));
604 KASSERT(which == NPF_SRC || which == NPF_DST);
605
606 if (npf_iscached(npc, NPC_IP4)) {
607 struct ip *ip = npc->npc_ip.v4;
608 uint16_t ipsum = ip->ip_sum;
609
610 /* Recalculate IPv4 checksum and rewrite. */
611 ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
612 } else {
613 /* No checksum for IPv6. */
614 KASSERT(npf_iscached(npc, NPC_IP6));
615 }
616
617 /* Nothing else to do for ICMP. */
618 if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
619 return true;
620 }
621 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
622
623 /*
624 * Calculate TCP/UDP checksum:
625 * - Skip if UDP and the current checksum is zero.
626 * - Fixup the IP address change.
627 * - Fixup the port change, if required (non-zero).
628 */
629 if (proto == IPPROTO_TCP) {
630 struct tcphdr *th = npc->npc_l4.tcp;
631
632 ocksum = &th->th_sum;
633 oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
634 } else {
635 struct udphdr *uh = npc->npc_l4.udp;
636
637 KASSERT(proto == IPPROTO_UDP);
638 ocksum = &uh->uh_sum;
639 if (*ocksum == 0) {
640 /* No need to update. */
641 return true;
642 }
643 oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
644 }
645
646 uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
647 if (port) {
648 cksum = npf_fixup16_cksum(cksum, oport, port);
649 }
650
651 /* Rewrite TCP/UDP checksum. */
652 memcpy(ocksum, &cksum, sizeof(uint16_t));
653 return true;
654 }
655
656 /*
657 * npf_napt_rwr: perform address and/or port translation.
658 */
659 int
660 npf_napt_rwr(const npf_cache_t *npc, u_int which,
661 const npf_addr_t *addr, const in_addr_t port)
662 {
663 const unsigned proto = npc->npc_proto;
664
665 /*
666 * Rewrite IP and/or TCP/UDP checksums first, since we need the
667 * current (old) address/port for the calculations. Then perform
668 * the address translation i.e. rewrite source or destination.
669 */
670 if (!npf_rwrcksum(npc, which, addr, port)) {
671 return EINVAL;
672 }
673 if (!npf_rwrip(npc, which, addr)) {
674 return EINVAL;
675 }
676 if (port == 0) {
677 /* Done. */
678 return 0;
679 }
680
681 switch (proto) {
682 case IPPROTO_TCP:
683 case IPPROTO_UDP:
684 /* Rewrite source/destination port. */
685 if (!npf_rwrport(npc, which, port)) {
686 return EINVAL;
687 }
688 break;
689 case IPPROTO_ICMP:
690 case IPPROTO_ICMPV6:
691 KASSERT(npf_iscached(npc, NPC_ICMP));
692 /* Nothing. */
693 break;
694 default:
695 return ENOTSUP;
696 }
697 return 0;
698 }
699
700 /*
701 * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
702 */
703
704 int
705 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
706 npf_netmask_t len, uint16_t adj)
707 {
708 npf_addr_t *addr = npc->npc_ips[which];
709 unsigned remnant, word, preflen = len >> 4;
710 uint32_t sum;
711
712 KASSERT(which == NPF_SRC || which == NPF_DST);
713
714 if (!npf_iscached(npc, NPC_IP6)) {
715 return EINVAL;
716 }
717 if (len <= 48) {
718 /*
719 * The word to adjust. Cannot translate the 0xffff
720 * subnet if /48 or shorter.
721 */
722 word = 3;
723 if (addr->word16[word] == 0xffff) {
724 return EINVAL;
725 }
726 } else {
727 /*
728 * Also, all 0s or 1s in the host part are disallowed for
729 * longer than /48 prefixes.
730 */
731 if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
732 (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
733 return EINVAL;
734
735 /* Determine the 16-bit word to adjust. */
736 for (word = 4; word < 8; word++)
737 if (addr->word16[word] != 0xffff)
738 break;
739 }
740
741 /* Rewrite the prefix. */
742 for (unsigned i = 0; i < preflen; i++) {
743 addr->word16[i] = pref->word16[i];
744 }
745
746 /*
747 * If prefix length is within a 16-bit word (not dividable by 16),
748 * then prepare a mask, determine the word and adjust it.
749 */
750 if ((remnant = len - (preflen << 4)) != 0) {
751 const uint16_t wordmask = (1U << remnant) - 1;
752 const unsigned i = preflen;
753
754 addr->word16[i] = (pref->word16[i] & wordmask) |
755 (addr->word16[i] & ~wordmask);
756 }
757
758 /*
759 * Performing 1's complement sum/difference.
760 */
761 sum = addr->word16[word] + adj;
762 while (sum >> 16) {
763 sum = (sum >> 16) + (sum & 0xffff);
764 }
765 if (sum == 0xffff) {
766 /* RFC 1071. */
767 sum = 0x0000;
768 }
769 addr->word16[word] = sum;
770 return 0;
771 }
772
773 #if defined(DDB) || defined(_NPF_TESTING)
774
775 const char *
776 npf_addr_dump(const npf_addr_t *addr, int alen)
777 {
778 if (alen == sizeof(struct in_addr)) {
779 struct in_addr ip;
780 memcpy(&ip, addr, alen);
781 return inet_ntoa(ip);
782 }
783 return "[IPv6]";
784 }
785
786 #endif
787