npf_inet.c revision 1.51 1 /* $NetBSD: npf_inet.c,v 1.51 2018/08/31 14:16:06 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * Various protocol related helper routines.
34 *
35 * This layer manipulates npf_cache_t structure i.e. caches requested headers
36 * and stores which information was cached in the information bit field.
37 * It is also responsibility of this layer to update or invalidate the cache
38 * on rewrites (e.g. by translation routines).
39 */
40
41 #ifdef _KERNEL
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.51 2018/08/31 14:16:06 maxv Exp $");
44
45 #include <sys/param.h>
46 #include <sys/types.h>
47
48 #include <net/pfil.h>
49 #include <net/if.h>
50 #include <net/ethertypes.h>
51 #include <net/if_ether.h>
52
53 #include <netinet/in_systm.h>
54 #include <netinet/in.h>
55 #include <netinet6/in6_var.h>
56 #include <netinet/ip.h>
57 #include <netinet/ip6.h>
58 #include <netinet/tcp.h>
59 #include <netinet/udp.h>
60 #include <netinet/ip_icmp.h>
61 #endif
62
63 #include "npf_impl.h"
64
65 /*
66 * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
67 */
68
69 uint16_t
70 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
71 {
72 uint32_t sum;
73
74 /*
75 * RFC 1624:
76 * HC' = ~(~HC + ~m + m')
77 *
78 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
79 */
80 sum = ~cksum & 0xffff;
81 sum += (~odatum & 0xffff) + ndatum;
82 sum = (sum >> 16) + (sum & 0xffff);
83 sum += (sum >> 16);
84
85 return ~sum & 0xffff;
86 }
87
88 uint16_t
89 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
90 {
91 uint32_t sum;
92
93 /*
94 * Checksum 32-bit datum as as two 16-bit. Note, the first
95 * 32->16 bit reduction is not necessary.
96 */
97 sum = ~cksum & 0xffff;
98 sum += (~odatum & 0xffff) + (ndatum & 0xffff);
99
100 sum += (~odatum >> 16) + (ndatum >> 16);
101 sum = (sum >> 16) + (sum & 0xffff);
102 sum += (sum >> 16);
103 return ~sum & 0xffff;
104 }
105
106 /*
107 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
108 */
109 uint16_t
110 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
111 const npf_addr_t *naddr)
112 {
113 const uint32_t *oip32 = (const uint32_t *)oaddr;
114 const uint32_t *nip32 = (const uint32_t *)naddr;
115
116 KASSERT(sz % sizeof(uint32_t) == 0);
117 do {
118 cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
119 sz -= sizeof(uint32_t);
120 } while (sz);
121
122 return cksum;
123 }
124
125 /*
126 * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
127 * Note: used for hash function.
128 */
129 uint32_t
130 npf_addr_mix(const int sz, const npf_addr_t *a1, const npf_addr_t *a2)
131 {
132 uint32_t mix = 0;
133
134 KASSERT(sz > 0 && a1 != NULL && a2 != NULL);
135
136 for (int i = 0; i < (sz >> 2); i++) {
137 mix ^= a1->word32[i];
138 mix ^= a2->word32[i];
139 }
140 return mix;
141 }
142
143 /*
144 * npf_addr_mask: apply the mask to a given address and store the result.
145 */
146 void
147 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
148 const int alen, npf_addr_t *out)
149 {
150 const int nwords = alen >> 2;
151 uint_fast8_t length = mask;
152
153 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
154 KASSERT(length <= NPF_MAX_NETMASK);
155
156 for (int i = 0; i < nwords; i++) {
157 uint32_t wordmask;
158
159 if (length >= 32) {
160 wordmask = htonl(0xffffffff);
161 length -= 32;
162 } else if (length) {
163 wordmask = htonl(0xffffffff << (32 - length));
164 length = 0;
165 } else {
166 wordmask = 0;
167 }
168 out->word32[i] = addr->word32[i] & wordmask;
169 }
170 }
171
172 /*
173 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
174 *
175 * => Return 0 if equal and negative/positive if less/greater accordingly.
176 * => Ignore the mask, if NPF_NO_NETMASK is specified.
177 */
178 int
179 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
180 const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
181 {
182 npf_addr_t realaddr1, realaddr2;
183
184 if (mask1 != NPF_NO_NETMASK) {
185 npf_addr_mask(addr1, mask1, alen, &realaddr1);
186 addr1 = &realaddr1;
187 }
188 if (mask2 != NPF_NO_NETMASK) {
189 npf_addr_mask(addr2, mask2, alen, &realaddr2);
190 addr2 = &realaddr2;
191 }
192 return memcmp(addr1, addr2, alen);
193 }
194
195 /*
196 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
197 *
198 * => Returns all values in host byte-order.
199 */
200 int
201 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
202 {
203 const struct tcphdr *th = npc->npc_l4.tcp;
204 u_int thlen;
205
206 KASSERT(npf_iscached(npc, NPC_TCP));
207
208 *seq = ntohl(th->th_seq);
209 *ack = ntohl(th->th_ack);
210 *win = (uint32_t)ntohs(th->th_win);
211 thlen = th->th_off << 2;
212
213 if (npf_iscached(npc, NPC_IP4)) {
214 const struct ip *ip = npc->npc_ip.v4;
215 return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
216 } else if (npf_iscached(npc, NPC_IP6)) {
217 const struct ip6_hdr *ip6 = npc->npc_ip.v6;
218 return ntohs(ip6->ip6_plen) -
219 (npc->npc_hlen - sizeof(*ip6)) - thlen;
220 }
221 return 0;
222 }
223
224 /*
225 * npf_fetch_tcpopts: parse and return TCP options.
226 */
227 bool
228 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
229 {
230 nbuf_t *nbuf = npc->npc_nbuf;
231 const struct tcphdr *th = npc->npc_l4.tcp;
232 int cnt, optlen = 0;
233 uint8_t *cp, opt;
234 uint8_t val;
235 bool ok;
236
237 KASSERT(npf_iscached(npc, NPC_IP46));
238 KASSERT(npf_iscached(npc, NPC_TCP));
239
240 /* Determine if there are any TCP options, get their length. */
241 cnt = (th->th_off << 2) - sizeof(struct tcphdr);
242 if (cnt <= 0) {
243 /* No options. */
244 return false;
245 }
246 KASSERT(cnt <= MAX_TCPOPTLEN);
247
248 /* Fetch all the options at once. */
249 nbuf_reset(nbuf);
250 const int step = npc->npc_hlen + sizeof(struct tcphdr);
251 if ((cp = nbuf_advance(nbuf, step, cnt)) == NULL) {
252 ok = false;
253 goto done;
254 }
255
256 /* Scan the options. */
257 for (; cnt > 0; cnt -= optlen, cp += optlen) {
258 opt = cp[0];
259 if (opt == TCPOPT_EOL)
260 break;
261 if (opt == TCPOPT_NOP)
262 optlen = 1;
263 else {
264 if (cnt < 2)
265 break;
266 optlen = cp[1];
267 if (optlen < 2 || optlen > cnt)
268 break;
269 }
270
271 switch (opt) {
272 case TCPOPT_MAXSEG:
273 if (optlen != TCPOLEN_MAXSEG)
274 continue;
275 if (mss) {
276 memcpy(mss, cp + 2, sizeof(uint16_t));
277 }
278 break;
279 case TCPOPT_WINDOW:
280 if (optlen != TCPOLEN_WINDOW)
281 continue;
282 val = *(cp + 2);
283 *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
284 break;
285 default:
286 break;
287 }
288 }
289
290 ok = true;
291 done:
292 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
293 npf_recache(npc);
294 }
295 return ok;
296 }
297
298 /*
299 * npf_set_mss: set the MSS.
300 */
301 bool
302 npf_set_mss(npf_cache_t *npc, uint16_t mss, uint16_t *old, uint16_t *new,
303 bool *mid)
304 {
305 nbuf_t *nbuf = npc->npc_nbuf;
306 const struct tcphdr *th = npc->npc_l4.tcp;
307 int cnt, optlen = 0;
308 uint8_t *cp, *base, opt;
309 bool ok;
310
311 KASSERT(npf_iscached(npc, NPC_IP46));
312 KASSERT(npf_iscached(npc, NPC_TCP));
313
314 /* Determine if there are any TCP options, get their length. */
315 cnt = (th->th_off << 2) - sizeof(struct tcphdr);
316 if (cnt <= 0) {
317 /* No options. */
318 return false;
319 }
320 KASSERT(cnt <= MAX_TCPOPTLEN);
321
322 /* Fetch all the options at once. */
323 nbuf_reset(nbuf);
324 const int step = npc->npc_hlen + sizeof(struct tcphdr);
325 if ((base = nbuf_advance(nbuf, step, cnt)) == NULL) {
326 ok = false;
327 goto done;
328 }
329
330 /* Scan the options. */
331 for (cp = base; cnt > 0; cnt -= optlen, cp += optlen) {
332 opt = cp[0];
333 if (opt == TCPOPT_EOL)
334 break;
335 if (opt == TCPOPT_NOP)
336 optlen = 1;
337 else {
338 if (cnt < 2)
339 break;
340 optlen = cp[1];
341 if (optlen < 2 || optlen > cnt)
342 break;
343 }
344
345 switch (opt) {
346 case TCPOPT_MAXSEG:
347 if (optlen != TCPOLEN_MAXSEG)
348 continue;
349 if (((cp + 2) - base) % sizeof(uint16_t) != 0) {
350 *mid = true;
351 memcpy(&old[0], cp + 1, sizeof(uint16_t));
352 memcpy(&old[1], cp + 3, sizeof(uint16_t));
353 memcpy(cp + 2, &mss, sizeof(uint16_t));
354 memcpy(&new[0], cp + 1, sizeof(uint16_t));
355 memcpy(&new[1], cp + 3, sizeof(uint16_t));
356 } else {
357 *mid = false;
358 memcpy(cp + 2, &mss, sizeof(uint16_t));
359 }
360 break;
361 default:
362 break;
363 }
364 }
365
366 ok = true;
367 done:
368 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
369 npf_recache(npc);
370 }
371 return ok;
372 }
373
374 static int
375 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
376 {
377 const void *nptr = nbuf_dataptr(nbuf);
378 const uint8_t ver = *(const uint8_t *)nptr;
379 int flags = 0;
380
381 /*
382 * We intentionally don't read the L4 payload after IPPROTO_AH.
383 */
384
385 switch (ver >> 4) {
386 case IPVERSION: {
387 struct ip *ip;
388
389 ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
390 if (ip == NULL) {
391 return NPC_FMTERR;
392 }
393
394 /* Retrieve the complete header. */
395 if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
396 return NPC_FMTERR;
397 }
398 ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
399 if (ip == NULL) {
400 return NPC_FMTERR;
401 }
402
403 if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
404 /* Note fragmentation. */
405 flags |= NPC_IPFRAG;
406 }
407
408 /* Cache: layer 3 - IPv4. */
409 npc->npc_alen = sizeof(struct in_addr);
410 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
411 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
412 npc->npc_hlen = ip->ip_hl << 2;
413 npc->npc_proto = ip->ip_p;
414
415 npc->npc_ip.v4 = ip;
416 flags |= NPC_IP4;
417 break;
418 }
419
420 case (IPV6_VERSION >> 4): {
421 struct ip6_hdr *ip6;
422 struct ip6_ext *ip6e;
423 struct ip6_frag *ip6f;
424 size_t off, hlen;
425 int frag_present;
426
427 ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
428 if (ip6 == NULL) {
429 return NPC_FMTERR;
430 }
431
432 /*
433 * XXX: We don't handle IPv6 Jumbograms.
434 */
435
436 /* Set initial next-protocol value. */
437 hlen = sizeof(struct ip6_hdr);
438 npc->npc_proto = ip6->ip6_nxt;
439 npc->npc_hlen = hlen;
440
441 frag_present = 0;
442
443 /*
444 * Advance by the length of the current header.
445 */
446 off = nbuf_offset(nbuf);
447 while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
448 /*
449 * Determine whether we are going to continue.
450 */
451 switch (npc->npc_proto) {
452 case IPPROTO_HOPOPTS:
453 case IPPROTO_DSTOPTS:
454 case IPPROTO_ROUTING:
455 hlen = (ip6e->ip6e_len + 1) << 3;
456 break;
457 case IPPROTO_FRAGMENT:
458 if (frag_present++)
459 return NPC_FMTERR;
460 ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
461 if (ip6f == NULL)
462 return NPC_FMTERR;
463
464 /* RFC6946: Skip dummy fragments. */
465 if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
466 !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
467 hlen = sizeof(struct ip6_frag);
468 break;
469 }
470
471 hlen = 0;
472 flags |= NPC_IPFRAG;
473
474 break;
475 default:
476 hlen = 0;
477 break;
478 }
479
480 if (!hlen) {
481 break;
482 }
483 npc->npc_proto = ip6e->ip6e_nxt;
484 npc->npc_hlen += hlen;
485 }
486
487 if (ip6e == NULL) {
488 return NPC_FMTERR;
489 }
490
491 /*
492 * Re-fetch the header pointers (nbufs might have been
493 * reallocated). Restore the original offset (if any).
494 */
495 nbuf_reset(nbuf);
496 ip6 = nbuf_dataptr(nbuf);
497 if (off) {
498 nbuf_advance(nbuf, off, 0);
499 }
500
501 /* Cache: layer 3 - IPv6. */
502 npc->npc_alen = sizeof(struct in6_addr);
503 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
504 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;
505
506 npc->npc_ip.v6 = ip6;
507 flags |= NPC_IP6;
508 break;
509 }
510 default:
511 break;
512 }
513 return flags;
514 }
515
516 /*
517 * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
518 * and TCP, UDP or ICMP headers.
519 *
520 * => nbuf offset shall be set accordingly.
521 */
522 int
523 npf_cache_all(npf_cache_t *npc)
524 {
525 nbuf_t *nbuf = npc->npc_nbuf;
526 int flags, l4flags;
527 u_int hlen;
528
529 /*
530 * This routine is a main point where the references are cached,
531 * therefore clear the flag as we reset.
532 */
533 again:
534 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
535
536 /*
537 * First, cache the L3 header (IPv4 or IPv6). If IP packet is
538 * fragmented, then we cannot look into L4.
539 */
540 flags = npf_cache_ip(npc, nbuf);
541 if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
542 (flags & NPC_FMTERR) != 0) {
543 goto out;
544 }
545 hlen = npc->npc_hlen;
546
547 /*
548 * Note: we guarantee that the potential "Query Id" field of the
549 * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
550 * ICMP ALG.
551 */
552 switch (npc->npc_proto) {
553 case IPPROTO_TCP:
554 /* Cache: layer 4 - TCP. */
555 npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
556 sizeof(struct tcphdr));
557 l4flags = NPC_LAYER4 | NPC_TCP;
558 break;
559 case IPPROTO_UDP:
560 /* Cache: layer 4 - UDP. */
561 npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
562 sizeof(struct udphdr));
563 l4flags = NPC_LAYER4 | NPC_UDP;
564 break;
565 case IPPROTO_ICMP:
566 /* Cache: layer 4 - ICMPv4. */
567 npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
568 ICMP_MINLEN);
569 l4flags = NPC_LAYER4 | NPC_ICMP;
570 break;
571 case IPPROTO_ICMPV6:
572 /* Cache: layer 4 - ICMPv6. */
573 npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
574 sizeof(struct icmp6_hdr));
575 l4flags = NPC_LAYER4 | NPC_ICMP;
576 break;
577 default:
578 l4flags = 0;
579 break;
580 }
581
582 /* Error out if nbuf_advance failed. */
583 if (l4flags && npc->npc_l4.hdr == NULL) {
584 goto err;
585 }
586
587 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
588 goto again;
589 }
590
591 flags |= l4flags;
592 npc->npc_info |= flags;
593 return flags;
594
595 err:
596 flags = NPC_FMTERR;
597 out:
598 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
599 npc->npc_info |= flags;
600 return flags;
601 }
602
603 void
604 npf_recache(npf_cache_t *npc)
605 {
606 nbuf_t *nbuf = npc->npc_nbuf;
607 const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
608 int flags __diagused;
609
610 nbuf_reset(nbuf);
611 npc->npc_info = 0;
612 flags = npf_cache_all(npc);
613
614 KASSERT((flags & mflags) == mflags);
615 KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
616 }
617
618 /*
619 * npf_rwrip: rewrite required IP address.
620 */
621 bool
622 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
623 {
624 KASSERT(npf_iscached(npc, NPC_IP46));
625 KASSERT(which == NPF_SRC || which == NPF_DST);
626
627 memcpy(npc->npc_ips[which], addr, npc->npc_alen);
628 return true;
629 }
630
631 /*
632 * npf_rwrport: rewrite required TCP/UDP port.
633 */
634 bool
635 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
636 {
637 const int proto = npc->npc_proto;
638 in_port_t *oport;
639
640 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
641 KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
642 KASSERT(which == NPF_SRC || which == NPF_DST);
643
644 /* Get the offset and store the port in it. */
645 if (proto == IPPROTO_TCP) {
646 struct tcphdr *th = npc->npc_l4.tcp;
647 oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
648 } else {
649 struct udphdr *uh = npc->npc_l4.udp;
650 oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
651 }
652 memcpy(oport, &port, sizeof(in_port_t));
653 return true;
654 }
655
656 /*
657 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
658 */
659 bool
660 npf_rwrcksum(const npf_cache_t *npc, u_int which,
661 const npf_addr_t *addr, const in_port_t port)
662 {
663 const npf_addr_t *oaddr = npc->npc_ips[which];
664 const int proto = npc->npc_proto;
665 const int alen = npc->npc_alen;
666 uint16_t *ocksum;
667 in_port_t oport;
668
669 KASSERT(npf_iscached(npc, NPC_LAYER4));
670 KASSERT(which == NPF_SRC || which == NPF_DST);
671
672 if (npf_iscached(npc, NPC_IP4)) {
673 struct ip *ip = npc->npc_ip.v4;
674 uint16_t ipsum = ip->ip_sum;
675
676 /* Recalculate IPv4 checksum and rewrite. */
677 ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
678 } else {
679 /* No checksum for IPv6. */
680 KASSERT(npf_iscached(npc, NPC_IP6));
681 }
682
683 /* Nothing else to do for ICMP. */
684 if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
685 return true;
686 }
687 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
688
689 /*
690 * Calculate TCP/UDP checksum:
691 * - Skip if UDP and the current checksum is zero.
692 * - Fixup the IP address change.
693 * - Fixup the port change, if required (non-zero).
694 */
695 if (proto == IPPROTO_TCP) {
696 struct tcphdr *th = npc->npc_l4.tcp;
697
698 ocksum = &th->th_sum;
699 oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
700 } else {
701 struct udphdr *uh = npc->npc_l4.udp;
702
703 KASSERT(proto == IPPROTO_UDP);
704 ocksum = &uh->uh_sum;
705 if (*ocksum == 0) {
706 /* No need to update. */
707 return true;
708 }
709 oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
710 }
711
712 uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
713 if (port) {
714 cksum = npf_fixup16_cksum(cksum, oport, port);
715 }
716
717 /* Rewrite TCP/UDP checksum. */
718 memcpy(ocksum, &cksum, sizeof(uint16_t));
719 return true;
720 }
721
722 /*
723 * npf_napt_rwr: perform address and/or port translation.
724 */
725 int
726 npf_napt_rwr(const npf_cache_t *npc, u_int which,
727 const npf_addr_t *addr, const in_addr_t port)
728 {
729 const unsigned proto = npc->npc_proto;
730
731 /*
732 * Rewrite IP and/or TCP/UDP checksums first, since we need the
733 * current (old) address/port for the calculations. Then perform
734 * the address translation i.e. rewrite source or destination.
735 */
736 if (!npf_rwrcksum(npc, which, addr, port)) {
737 return EINVAL;
738 }
739 if (!npf_rwrip(npc, which, addr)) {
740 return EINVAL;
741 }
742 if (port == 0) {
743 /* Done. */
744 return 0;
745 }
746
747 switch (proto) {
748 case IPPROTO_TCP:
749 case IPPROTO_UDP:
750 /* Rewrite source/destination port. */
751 if (!npf_rwrport(npc, which, port)) {
752 return EINVAL;
753 }
754 break;
755 case IPPROTO_ICMP:
756 case IPPROTO_ICMPV6:
757 KASSERT(npf_iscached(npc, NPC_ICMP));
758 /* Nothing. */
759 break;
760 default:
761 return ENOTSUP;
762 }
763 return 0;
764 }
765
766 /*
767 * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
768 */
769
770 int
771 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
772 npf_netmask_t len, uint16_t adj)
773 {
774 npf_addr_t *addr = npc->npc_ips[which];
775 unsigned remnant, word, preflen = len >> 4;
776 uint32_t sum;
777
778 KASSERT(which == NPF_SRC || which == NPF_DST);
779
780 if (!npf_iscached(npc, NPC_IP6)) {
781 return EINVAL;
782 }
783 if (len <= 48) {
784 /*
785 * The word to adjust. Cannot translate the 0xffff
786 * subnet if /48 or shorter.
787 */
788 word = 3;
789 if (addr->word16[word] == 0xffff) {
790 return EINVAL;
791 }
792 } else {
793 /*
794 * Also, all 0s or 1s in the host part are disallowed for
795 * longer than /48 prefixes.
796 */
797 if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
798 (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
799 return EINVAL;
800
801 /* Determine the 16-bit word to adjust. */
802 for (word = 4; word < 8; word++)
803 if (addr->word16[word] != 0xffff)
804 break;
805 }
806
807 /* Rewrite the prefix. */
808 for (unsigned i = 0; i < preflen; i++) {
809 addr->word16[i] = pref->word16[i];
810 }
811
812 /*
813 * If prefix length is within a 16-bit word (not dividable by 16),
814 * then prepare a mask, determine the word and adjust it.
815 */
816 if ((remnant = len - (preflen << 4)) != 0) {
817 const uint16_t wordmask = (1U << remnant) - 1;
818 const unsigned i = preflen;
819
820 addr->word16[i] = (pref->word16[i] & wordmask) |
821 (addr->word16[i] & ~wordmask);
822 }
823
824 /*
825 * Performing 1's complement sum/difference.
826 */
827 sum = addr->word16[word] + adj;
828 while (sum >> 16) {
829 sum = (sum >> 16) + (sum & 0xffff);
830 }
831 if (sum == 0xffff) {
832 /* RFC 1071. */
833 sum = 0x0000;
834 }
835 addr->word16[word] = sum;
836 return 0;
837 }
838
839 #if defined(DDB) || defined(_NPF_TESTING)
840
841 const char *
842 npf_addr_dump(const npf_addr_t *addr, int alen)
843 {
844 if (alen == sizeof(struct in_addr)) {
845 struct in_addr ip;
846 memcpy(&ip, addr, alen);
847 return inet_ntoa(ip);
848 }
849 return "[IPv6]";
850 }
851
852 #endif
853