npf_inet.c revision 1.53 1 /*-
2 * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This material is based upon work partially supported by The
6 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 /*
31 * Various protocol related helper routines.
32 *
33 * This layer manipulates npf_cache_t structure i.e. caches requested headers
34 * and stores which information was cached in the information bit field.
35 * It is also responsibility of this layer to update or invalidate the cache
36 * on rewrites (e.g. by translation routines).
37 */
38
39 #ifdef _KERNEL
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.53 2019/01/19 21:19:32 rmind Exp $");
42
43 #include <sys/param.h>
44 #include <sys/types.h>
45
46 #include <net/pfil.h>
47 #include <net/if.h>
48 #include <net/ethertypes.h>
49 #include <net/if_ether.h>
50
51 #include <netinet/in_systm.h>
52 #include <netinet/in.h>
53 #include <netinet6/in6_var.h>
54 #include <netinet/ip.h>
55 #include <netinet/ip6.h>
56 #include <netinet/tcp.h>
57 #include <netinet/udp.h>
58 #include <netinet/ip_icmp.h>
59 #endif
60
61 #include "npf_impl.h"
62
63 /*
64 * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
65 */
66
67 uint16_t
68 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
69 {
70 uint32_t sum;
71
72 /*
73 * RFC 1624:
74 * HC' = ~(~HC + ~m + m')
75 *
76 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
77 */
78 sum = ~cksum & 0xffff;
79 sum += (~odatum & 0xffff) + ndatum;
80 sum = (sum >> 16) + (sum & 0xffff);
81 sum += (sum >> 16);
82
83 return ~sum & 0xffff;
84 }
85
86 uint16_t
87 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
88 {
89 uint32_t sum;
90
91 /*
92 * Checksum 32-bit datum as as two 16-bit. Note, the first
93 * 32->16 bit reduction is not necessary.
94 */
95 sum = ~cksum & 0xffff;
96 sum += (~odatum & 0xffff) + (ndatum & 0xffff);
97
98 sum += (~odatum >> 16) + (ndatum >> 16);
99 sum = (sum >> 16) + (sum & 0xffff);
100 sum += (sum >> 16);
101 return ~sum & 0xffff;
102 }
103
104 /*
105 * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
106 */
107 uint16_t
108 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
109 const npf_addr_t *naddr)
110 {
111 const uint32_t *oip32 = (const uint32_t *)oaddr;
112 const uint32_t *nip32 = (const uint32_t *)naddr;
113
114 KASSERT(sz % sizeof(uint32_t) == 0);
115 do {
116 cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
117 sz -= sizeof(uint32_t);
118 } while (sz);
119
120 return cksum;
121 }
122
123 /*
124 * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
125 * Note: used for hash function.
126 */
127 uint32_t
128 npf_addr_mix(const int alen, const npf_addr_t *a1, const npf_addr_t *a2)
129 {
130 const int nwords = alen >> 2;
131 uint32_t mix = 0;
132
133 KASSERT(alen > 0 && a1 != NULL && a2 != NULL);
134
135 for (int i = 0; i < nwords; i++) {
136 mix ^= a1->word32[i];
137 mix ^= a2->word32[i];
138 }
139 return mix;
140 }
141
142 /*
143 * npf_addr_mask: apply the mask to a given address and store the result.
144 */
145 void
146 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
147 const int alen, npf_addr_t *out)
148 {
149 const int nwords = alen >> 2;
150 uint_fast8_t length = mask;
151
152 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
153 KASSERT(length <= NPF_MAX_NETMASK);
154
155 for (int i = 0; i < nwords; i++) {
156 uint32_t wordmask;
157
158 if (length >= 32) {
159 wordmask = htonl(0xffffffff);
160 length -= 32;
161 } else if (length) {
162 wordmask = htonl(0xffffffff << (32 - length));
163 length = 0;
164 } else {
165 wordmask = 0;
166 }
167 out->word32[i] = addr->word32[i] & wordmask;
168 }
169 }
170
171 /*
172 * npf_addr_bitor: bitwise OR the host part (given the netmask).
173 * Zero mask can be used to OR the entire address.
174 */
175 void
176 npf_addr_bitor(const npf_addr_t *addr, const npf_netmask_t mask,
177 const int alen, npf_addr_t *out)
178 {
179 const int nwords = alen >> 2;
180 uint_fast8_t length = mask;
181
182 /* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
183 KASSERT(length <= NPF_MAX_NETMASK);
184
185 for (int i = 0; i < nwords; i++) {
186 uint32_t wordmask;
187
188 if (length >= 32) {
189 wordmask = htonl(0xffffffff);
190 length -= 32;
191 } else if (length) {
192 wordmask = htonl(0xffffffff << (32 - length));
193 length = 0;
194 } else {
195 wordmask = 0;
196 }
197 out->word32[i] |= addr->word32[i] & ~wordmask;
198 }
199 }
200
201 /*
202 * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
203 *
204 * => Return 0 if equal and negative/positive if less/greater accordingly.
205 * => Ignore the mask, if NPF_NO_NETMASK is specified.
206 */
207 int
208 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
209 const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
210 {
211 npf_addr_t realaddr1, realaddr2;
212
213 if (mask1 != NPF_NO_NETMASK) {
214 npf_addr_mask(addr1, mask1, alen, &realaddr1);
215 addr1 = &realaddr1;
216 }
217 if (mask2 != NPF_NO_NETMASK) {
218 npf_addr_mask(addr2, mask2, alen, &realaddr2);
219 addr2 = &realaddr2;
220 }
221 return memcmp(addr1, addr2, alen);
222 }
223
224 /*
225 * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
226 *
227 * => Returns all values in host byte-order.
228 */
229 int
230 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
231 {
232 const struct tcphdr *th = npc->npc_l4.tcp;
233 u_int thlen;
234
235 KASSERT(npf_iscached(npc, NPC_TCP));
236
237 *seq = ntohl(th->th_seq);
238 *ack = ntohl(th->th_ack);
239 *win = (uint32_t)ntohs(th->th_win);
240 thlen = th->th_off << 2;
241
242 if (npf_iscached(npc, NPC_IP4)) {
243 const struct ip *ip = npc->npc_ip.v4;
244 return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
245 } else if (npf_iscached(npc, NPC_IP6)) {
246 const struct ip6_hdr *ip6 = npc->npc_ip.v6;
247 return ntohs(ip6->ip6_plen) -
248 (npc->npc_hlen - sizeof(*ip6)) - thlen;
249 }
250 return 0;
251 }
252
253 /*
254 * npf_fetch_tcpopts: parse and return TCP options.
255 */
256 bool
257 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
258 {
259 nbuf_t *nbuf = npc->npc_nbuf;
260 const struct tcphdr *th = npc->npc_l4.tcp;
261 int cnt, optlen = 0;
262 uint8_t *cp, opt;
263 uint8_t val;
264 bool ok;
265
266 KASSERT(npf_iscached(npc, NPC_IP46));
267 KASSERT(npf_iscached(npc, NPC_TCP));
268
269 /* Determine if there are any TCP options, get their length. */
270 cnt = (th->th_off << 2) - sizeof(struct tcphdr);
271 if (cnt <= 0) {
272 /* No options. */
273 return false;
274 }
275 KASSERT(cnt <= MAX_TCPOPTLEN);
276
277 /* Fetch all the options at once. */
278 nbuf_reset(nbuf);
279 const int step = npc->npc_hlen + sizeof(struct tcphdr);
280 if ((cp = nbuf_advance(nbuf, step, cnt)) == NULL) {
281 ok = false;
282 goto done;
283 }
284
285 /* Scan the options. */
286 for (; cnt > 0; cnt -= optlen, cp += optlen) {
287 opt = cp[0];
288 if (opt == TCPOPT_EOL)
289 break;
290 if (opt == TCPOPT_NOP)
291 optlen = 1;
292 else {
293 if (cnt < 2)
294 break;
295 optlen = cp[1];
296 if (optlen < 2 || optlen > cnt)
297 break;
298 }
299
300 switch (opt) {
301 case TCPOPT_MAXSEG:
302 if (optlen != TCPOLEN_MAXSEG)
303 continue;
304 if (mss) {
305 memcpy(mss, cp + 2, sizeof(uint16_t));
306 }
307 break;
308 case TCPOPT_WINDOW:
309 if (optlen != TCPOLEN_WINDOW)
310 continue;
311 val = *(cp + 2);
312 *wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
313 break;
314 default:
315 break;
316 }
317 }
318
319 ok = true;
320 done:
321 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
322 npf_recache(npc);
323 }
324 return ok;
325 }
326
327 /*
328 * npf_set_mss: set the MSS.
329 */
330 bool
331 npf_set_mss(npf_cache_t *npc, uint16_t mss, uint16_t *old, uint16_t *new,
332 bool *mid)
333 {
334 nbuf_t *nbuf = npc->npc_nbuf;
335 const struct tcphdr *th = npc->npc_l4.tcp;
336 int cnt, optlen = 0;
337 uint8_t *cp, *base, opt;
338 bool ok;
339
340 KASSERT(npf_iscached(npc, NPC_IP46));
341 KASSERT(npf_iscached(npc, NPC_TCP));
342
343 /* Determine if there are any TCP options, get their length. */
344 cnt = (th->th_off << 2) - sizeof(struct tcphdr);
345 if (cnt <= 0) {
346 /* No options. */
347 return false;
348 }
349 KASSERT(cnt <= MAX_TCPOPTLEN);
350
351 /* Fetch all the options at once. */
352 nbuf_reset(nbuf);
353 const int step = npc->npc_hlen + sizeof(struct tcphdr);
354 if ((base = nbuf_advance(nbuf, step, cnt)) == NULL) {
355 ok = false;
356 goto done;
357 }
358
359 /* Scan the options. */
360 for (cp = base; cnt > 0; cnt -= optlen, cp += optlen) {
361 opt = cp[0];
362 if (opt == TCPOPT_EOL)
363 break;
364 if (opt == TCPOPT_NOP)
365 optlen = 1;
366 else {
367 if (cnt < 2)
368 break;
369 optlen = cp[1];
370 if (optlen < 2 || optlen > cnt)
371 break;
372 }
373
374 switch (opt) {
375 case TCPOPT_MAXSEG:
376 if (optlen != TCPOLEN_MAXSEG)
377 continue;
378 if (((cp + 2) - base) % sizeof(uint16_t) != 0) {
379 *mid = true;
380 memcpy(&old[0], cp + 1, sizeof(uint16_t));
381 memcpy(&old[1], cp + 3, sizeof(uint16_t));
382 memcpy(cp + 2, &mss, sizeof(uint16_t));
383 memcpy(&new[0], cp + 1, sizeof(uint16_t));
384 memcpy(&new[1], cp + 3, sizeof(uint16_t));
385 } else {
386 *mid = false;
387 memcpy(cp + 2, &mss, sizeof(uint16_t));
388 }
389 break;
390 default:
391 break;
392 }
393 }
394
395 ok = true;
396 done:
397 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
398 npf_recache(npc);
399 }
400 return ok;
401 }
402
403 static int
404 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
405 {
406 const void *nptr = nbuf_dataptr(nbuf);
407 const uint8_t ver = *(const uint8_t *)nptr;
408 int flags = 0;
409
410 /*
411 * We intentionally don't read the L4 payload after IPPROTO_AH.
412 */
413
414 switch (ver >> 4) {
415 case IPVERSION: {
416 struct ip *ip;
417
418 ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
419 if (ip == NULL) {
420 return NPC_FMTERR;
421 }
422
423 /* Retrieve the complete header. */
424 if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
425 return NPC_FMTERR;
426 }
427 ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
428 if (ip == NULL) {
429 return NPC_FMTERR;
430 }
431
432 if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
433 /* Note fragmentation. */
434 flags |= NPC_IPFRAG;
435 }
436
437 /* Cache: layer 3 - IPv4. */
438 npc->npc_alen = sizeof(struct in_addr);
439 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
440 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
441 npc->npc_hlen = ip->ip_hl << 2;
442 npc->npc_proto = ip->ip_p;
443
444 npc->npc_ip.v4 = ip;
445 flags |= NPC_IP4;
446 break;
447 }
448
449 case (IPV6_VERSION >> 4): {
450 struct ip6_hdr *ip6;
451 struct ip6_ext *ip6e;
452 struct ip6_frag *ip6f;
453 size_t off, hlen;
454 int frag_present;
455
456 ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
457 if (ip6 == NULL) {
458 return NPC_FMTERR;
459 }
460
461 /*
462 * XXX: We don't handle IPv6 Jumbograms.
463 */
464
465 /* Set initial next-protocol value. */
466 hlen = sizeof(struct ip6_hdr);
467 npc->npc_proto = ip6->ip6_nxt;
468 npc->npc_hlen = hlen;
469
470 frag_present = 0;
471
472 /*
473 * Advance by the length of the current header.
474 */
475 off = nbuf_offset(nbuf);
476 while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
477 /*
478 * Determine whether we are going to continue.
479 */
480 switch (npc->npc_proto) {
481 case IPPROTO_HOPOPTS:
482 case IPPROTO_DSTOPTS:
483 case IPPROTO_ROUTING:
484 hlen = (ip6e->ip6e_len + 1) << 3;
485 break;
486 case IPPROTO_FRAGMENT:
487 if (frag_present++)
488 return NPC_FMTERR;
489 ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
490 if (ip6f == NULL)
491 return NPC_FMTERR;
492
493 /* RFC6946: Skip dummy fragments. */
494 if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
495 !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
496 hlen = sizeof(struct ip6_frag);
497 break;
498 }
499
500 hlen = 0;
501 flags |= NPC_IPFRAG;
502
503 break;
504 default:
505 hlen = 0;
506 break;
507 }
508
509 if (!hlen) {
510 break;
511 }
512 npc->npc_proto = ip6e->ip6e_nxt;
513 npc->npc_hlen += hlen;
514 }
515
516 if (ip6e == NULL) {
517 return NPC_FMTERR;
518 }
519
520 /*
521 * Re-fetch the header pointers (nbufs might have been
522 * reallocated). Restore the original offset (if any).
523 */
524 nbuf_reset(nbuf);
525 ip6 = nbuf_dataptr(nbuf);
526 if (off) {
527 nbuf_advance(nbuf, off, 0);
528 }
529
530 /* Cache: layer 3 - IPv6. */
531 npc->npc_alen = sizeof(struct in6_addr);
532 npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
533 npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;
534
535 npc->npc_ip.v6 = ip6;
536 flags |= NPC_IP6;
537 break;
538 }
539 default:
540 break;
541 }
542 return flags;
543 }
544
545 /*
546 * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
547 * and TCP, UDP or ICMP headers.
548 *
549 * => nbuf offset shall be set accordingly.
550 */
551 int
552 npf_cache_all(npf_cache_t *npc)
553 {
554 nbuf_t *nbuf = npc->npc_nbuf;
555 int flags, l4flags;
556 u_int hlen;
557
558 /*
559 * This routine is a main point where the references are cached,
560 * therefore clear the flag as we reset.
561 */
562 again:
563 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
564
565 /*
566 * First, cache the L3 header (IPv4 or IPv6). If IP packet is
567 * fragmented, then we cannot look into L4.
568 */
569 flags = npf_cache_ip(npc, nbuf);
570 if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
571 (flags & NPC_FMTERR) != 0) {
572 goto out;
573 }
574 hlen = npc->npc_hlen;
575
576 /*
577 * Note: we guarantee that the potential "Query Id" field of the
578 * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
579 * ICMP ALG.
580 */
581 switch (npc->npc_proto) {
582 case IPPROTO_TCP:
583 /* Cache: layer 4 - TCP. */
584 npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
585 sizeof(struct tcphdr));
586 l4flags = NPC_LAYER4 | NPC_TCP;
587 break;
588 case IPPROTO_UDP:
589 /* Cache: layer 4 - UDP. */
590 npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
591 sizeof(struct udphdr));
592 l4flags = NPC_LAYER4 | NPC_UDP;
593 break;
594 case IPPROTO_ICMP:
595 /* Cache: layer 4 - ICMPv4. */
596 npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
597 ICMP_MINLEN);
598 l4flags = NPC_LAYER4 | NPC_ICMP;
599 break;
600 case IPPROTO_ICMPV6:
601 /* Cache: layer 4 - ICMPv6. */
602 npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
603 sizeof(struct icmp6_hdr));
604 l4flags = NPC_LAYER4 | NPC_ICMP;
605 break;
606 default:
607 l4flags = 0;
608 break;
609 }
610
611 /* Error out if nbuf_advance failed. */
612 if (l4flags && npc->npc_l4.hdr == NULL) {
613 goto err;
614 }
615
616 if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
617 goto again;
618 }
619
620 flags |= l4flags;
621 npc->npc_info |= flags;
622 return flags;
623
624 err:
625 flags = NPC_FMTERR;
626 out:
627 nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
628 npc->npc_info |= flags;
629 return flags;
630 }
631
632 void
633 npf_recache(npf_cache_t *npc)
634 {
635 nbuf_t *nbuf = npc->npc_nbuf;
636 const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
637 int flags __diagused;
638
639 nbuf_reset(nbuf);
640 npc->npc_info = 0;
641 flags = npf_cache_all(npc);
642
643 KASSERT((flags & mflags) == mflags);
644 KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
645 }
646
647 /*
648 * npf_rwrip: rewrite required IP address.
649 */
650 bool
651 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
652 {
653 KASSERT(npf_iscached(npc, NPC_IP46));
654 KASSERT(which == NPF_SRC || which == NPF_DST);
655
656 memcpy(npc->npc_ips[which], addr, npc->npc_alen);
657 return true;
658 }
659
660 /*
661 * npf_rwrport: rewrite required TCP/UDP port.
662 */
663 bool
664 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
665 {
666 const int proto = npc->npc_proto;
667 in_port_t *oport;
668
669 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
670 KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
671 KASSERT(which == NPF_SRC || which == NPF_DST);
672
673 /* Get the offset and store the port in it. */
674 if (proto == IPPROTO_TCP) {
675 struct tcphdr *th = npc->npc_l4.tcp;
676 oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
677 } else {
678 struct udphdr *uh = npc->npc_l4.udp;
679 oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
680 }
681 memcpy(oport, &port, sizeof(in_port_t));
682 return true;
683 }
684
685 /*
686 * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
687 */
688 bool
689 npf_rwrcksum(const npf_cache_t *npc, u_int which,
690 const npf_addr_t *addr, const in_port_t port)
691 {
692 const npf_addr_t *oaddr = npc->npc_ips[which];
693 const int proto = npc->npc_proto;
694 const int alen = npc->npc_alen;
695 uint16_t *ocksum;
696 in_port_t oport;
697
698 KASSERT(npf_iscached(npc, NPC_LAYER4));
699 KASSERT(which == NPF_SRC || which == NPF_DST);
700
701 if (npf_iscached(npc, NPC_IP4)) {
702 struct ip *ip = npc->npc_ip.v4;
703 uint16_t ipsum = ip->ip_sum;
704
705 /* Recalculate IPv4 checksum and rewrite. */
706 ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
707 } else {
708 /* No checksum for IPv6. */
709 KASSERT(npf_iscached(npc, NPC_IP6));
710 }
711
712 /* Nothing else to do for ICMP. */
713 if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
714 return true;
715 }
716 KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
717
718 /*
719 * Calculate TCP/UDP checksum:
720 * - Skip if UDP and the current checksum is zero.
721 * - Fixup the IP address change.
722 * - Fixup the port change, if required (non-zero).
723 */
724 if (proto == IPPROTO_TCP) {
725 struct tcphdr *th = npc->npc_l4.tcp;
726
727 ocksum = &th->th_sum;
728 oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
729 } else {
730 struct udphdr *uh = npc->npc_l4.udp;
731
732 KASSERT(proto == IPPROTO_UDP);
733 ocksum = &uh->uh_sum;
734 if (*ocksum == 0) {
735 /* No need to update. */
736 return true;
737 }
738 oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
739 }
740
741 uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
742 if (port) {
743 cksum = npf_fixup16_cksum(cksum, oport, port);
744 }
745
746 /* Rewrite TCP/UDP checksum. */
747 memcpy(ocksum, &cksum, sizeof(uint16_t));
748 return true;
749 }
750
751 /*
752 * npf_napt_rwr: perform address and/or port translation.
753 */
754 int
755 npf_napt_rwr(const npf_cache_t *npc, u_int which,
756 const npf_addr_t *addr, const in_addr_t port)
757 {
758 const unsigned proto = npc->npc_proto;
759
760 /*
761 * Rewrite IP and/or TCP/UDP checksums first, since we need the
762 * current (old) address/port for the calculations. Then perform
763 * the address translation i.e. rewrite source or destination.
764 */
765 if (!npf_rwrcksum(npc, which, addr, port)) {
766 return EINVAL;
767 }
768 if (!npf_rwrip(npc, which, addr)) {
769 return EINVAL;
770 }
771 if (port == 0) {
772 /* Done. */
773 return 0;
774 }
775
776 switch (proto) {
777 case IPPROTO_TCP:
778 case IPPROTO_UDP:
779 /* Rewrite source/destination port. */
780 if (!npf_rwrport(npc, which, port)) {
781 return EINVAL;
782 }
783 break;
784 case IPPROTO_ICMP:
785 case IPPROTO_ICMPV6:
786 KASSERT(npf_iscached(npc, NPC_ICMP));
787 /* Nothing. */
788 break;
789 default:
790 return ENOTSUP;
791 }
792 return 0;
793 }
794
795 /*
796 * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
797 */
798 int
799 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
800 npf_netmask_t len, uint16_t adj)
801 {
802 npf_addr_t *addr = npc->npc_ips[which];
803 unsigned remnant, word, preflen = len >> 4;
804 uint32_t sum;
805
806 KASSERT(which == NPF_SRC || which == NPF_DST);
807
808 if (!npf_iscached(npc, NPC_IP6)) {
809 return EINVAL;
810 }
811 if (len <= 48) {
812 /*
813 * The word to adjust. Cannot translate the 0xffff
814 * subnet if /48 or shorter.
815 */
816 word = 3;
817 if (addr->word16[word] == 0xffff) {
818 return EINVAL;
819 }
820 } else {
821 /*
822 * Also, all 0s or 1s in the host part are disallowed for
823 * longer than /48 prefixes.
824 */
825 if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
826 (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
827 return EINVAL;
828
829 /* Determine the 16-bit word to adjust. */
830 for (word = 4; word < 8; word++)
831 if (addr->word16[word] != 0xffff)
832 break;
833 }
834
835 /* Rewrite the prefix. */
836 for (unsigned i = 0; i < preflen; i++) {
837 addr->word16[i] = pref->word16[i];
838 }
839
840 /*
841 * If prefix length is within a 16-bit word (not dividable by 16),
842 * then prepare a mask, determine the word and adjust it.
843 */
844 if ((remnant = len - (preflen << 4)) != 0) {
845 const uint16_t wordmask = (1U << remnant) - 1;
846 const unsigned i = preflen;
847
848 addr->word16[i] = (pref->word16[i] & wordmask) |
849 (addr->word16[i] & ~wordmask);
850 }
851
852 /*
853 * Performing 1's complement sum/difference.
854 */
855 sum = addr->word16[word] + adj;
856 while (sum >> 16) {
857 sum = (sum >> 16) + (sum & 0xffff);
858 }
859 if (sum == 0xffff) {
860 /* RFC 1071. */
861 sum = 0x0000;
862 }
863 addr->word16[word] = sum;
864 return 0;
865 }
866
867 #if defined(DDB) || defined(_NPF_TESTING)
868
869 const char *
870 npf_addr_dump(const npf_addr_t *addr, int alen)
871 {
872 if (alen == sizeof(struct in_addr)) {
873 struct in_addr ip;
874 memcpy(&ip, addr, alen);
875 return inet_ntoa(ip);
876 }
877 return "[IPv6]";
878 }
879
880 #endif
881