Home | History | Annotate | Line # | Download | only in npf
npf_inet.c revision 1.53
      1 /*-
      2  * Copyright (c) 2009-2014 The NetBSD Foundation, Inc.
      3  * All rights reserved.
      4  *
      5  * This material is based upon work partially supported by The
      6  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27  * POSSIBILITY OF SUCH DAMAGE.
     28  */
     29 
     30 /*
     31  * Various protocol related helper routines.
     32  *
     33  * This layer manipulates npf_cache_t structure i.e. caches requested headers
     34  * and stores which information was cached in the information bit field.
     35  * It is also responsibility of this layer to update or invalidate the cache
     36  * on rewrites (e.g. by translation routines).
     37  */
     38 
     39 #ifdef _KERNEL
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: npf_inet.c,v 1.53 2019/01/19 21:19:32 rmind Exp $");
     42 
     43 #include <sys/param.h>
     44 #include <sys/types.h>
     45 
     46 #include <net/pfil.h>
     47 #include <net/if.h>
     48 #include <net/ethertypes.h>
     49 #include <net/if_ether.h>
     50 
     51 #include <netinet/in_systm.h>
     52 #include <netinet/in.h>
     53 #include <netinet6/in6_var.h>
     54 #include <netinet/ip.h>
     55 #include <netinet/ip6.h>
     56 #include <netinet/tcp.h>
     57 #include <netinet/udp.h>
     58 #include <netinet/ip_icmp.h>
     59 #endif
     60 
     61 #include "npf_impl.h"
     62 
     63 /*
     64  * npf_fixup{16,32}_cksum: incremental update of the Internet checksum.
     65  */
     66 
     67 uint16_t
     68 npf_fixup16_cksum(uint16_t cksum, uint16_t odatum, uint16_t ndatum)
     69 {
     70 	uint32_t sum;
     71 
     72 	/*
     73 	 * RFC 1624:
     74 	 *	HC' = ~(~HC + ~m + m')
     75 	 *
     76 	 * Note: 1's complement sum is endian-independent (RFC 1071, page 2).
     77 	 */
     78 	sum = ~cksum & 0xffff;
     79 	sum += (~odatum & 0xffff) + ndatum;
     80 	sum = (sum >> 16) + (sum & 0xffff);
     81 	sum += (sum >> 16);
     82 
     83 	return ~sum & 0xffff;
     84 }
     85 
     86 uint16_t
     87 npf_fixup32_cksum(uint16_t cksum, uint32_t odatum, uint32_t ndatum)
     88 {
     89 	uint32_t sum;
     90 
     91 	/*
     92 	 * Checksum 32-bit datum as as two 16-bit.  Note, the first
     93 	 * 32->16 bit reduction is not necessary.
     94 	 */
     95 	sum = ~cksum & 0xffff;
     96 	sum += (~odatum & 0xffff) + (ndatum & 0xffff);
     97 
     98 	sum += (~odatum >> 16) + (ndatum >> 16);
     99 	sum = (sum >> 16) + (sum & 0xffff);
    100 	sum += (sum >> 16);
    101 	return ~sum & 0xffff;
    102 }
    103 
    104 /*
    105  * npf_addr_cksum: calculate checksum of the address, either IPv4 or IPv6.
    106  */
    107 uint16_t
    108 npf_addr_cksum(uint16_t cksum, int sz, const npf_addr_t *oaddr,
    109     const npf_addr_t *naddr)
    110 {
    111 	const uint32_t *oip32 = (const uint32_t *)oaddr;
    112 	const uint32_t *nip32 = (const uint32_t *)naddr;
    113 
    114 	KASSERT(sz % sizeof(uint32_t) == 0);
    115 	do {
    116 		cksum = npf_fixup32_cksum(cksum, *oip32++, *nip32++);
    117 		sz -= sizeof(uint32_t);
    118 	} while (sz);
    119 
    120 	return cksum;
    121 }
    122 
    123 /*
    124  * npf_addr_sum: provide IP addresses as a XORed 32-bit integer.
    125  * Note: used for hash function.
    126  */
    127 uint32_t
    128 npf_addr_mix(const int alen, const npf_addr_t *a1, const npf_addr_t *a2)
    129 {
    130 	const int nwords = alen >> 2;
    131 	uint32_t mix = 0;
    132 
    133 	KASSERT(alen > 0 && a1 != NULL && a2 != NULL);
    134 
    135 	for (int i = 0; i < nwords; i++) {
    136 		mix ^= a1->word32[i];
    137 		mix ^= a2->word32[i];
    138 	}
    139 	return mix;
    140 }
    141 
    142 /*
    143  * npf_addr_mask: apply the mask to a given address and store the result.
    144  */
    145 void
    146 npf_addr_mask(const npf_addr_t *addr, const npf_netmask_t mask,
    147     const int alen, npf_addr_t *out)
    148 {
    149 	const int nwords = alen >> 2;
    150 	uint_fast8_t length = mask;
    151 
    152 	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
    153 	KASSERT(length <= NPF_MAX_NETMASK);
    154 
    155 	for (int i = 0; i < nwords; i++) {
    156 		uint32_t wordmask;
    157 
    158 		if (length >= 32) {
    159 			wordmask = htonl(0xffffffff);
    160 			length -= 32;
    161 		} else if (length) {
    162 			wordmask = htonl(0xffffffff << (32 - length));
    163 			length = 0;
    164 		} else {
    165 			wordmask = 0;
    166 		}
    167 		out->word32[i] = addr->word32[i] & wordmask;
    168 	}
    169 }
    170 
    171 /*
    172  * npf_addr_bitor: bitwise OR the host part (given the netmask).
    173  * Zero mask can be used to OR the entire address.
    174  */
    175 void
    176 npf_addr_bitor(const npf_addr_t *addr, const npf_netmask_t mask,
    177     const int alen, npf_addr_t *out)
    178 {
    179 	const int nwords = alen >> 2;
    180 	uint_fast8_t length = mask;
    181 
    182 	/* Note: maximum length is 32 for IPv4 and 128 for IPv6. */
    183 	KASSERT(length <= NPF_MAX_NETMASK);
    184 
    185 	for (int i = 0; i < nwords; i++) {
    186 		uint32_t wordmask;
    187 
    188 		if (length >= 32) {
    189 			wordmask = htonl(0xffffffff);
    190 			length -= 32;
    191 		} else if (length) {
    192 			wordmask = htonl(0xffffffff << (32 - length));
    193 			length = 0;
    194 		} else {
    195 			wordmask = 0;
    196 		}
    197 		out->word32[i] |= addr->word32[i] & ~wordmask;
    198 	}
    199 }
    200 
    201 /*
    202  * npf_addr_cmp: compare two addresses, either IPv4 or IPv6.
    203  *
    204  * => Return 0 if equal and negative/positive if less/greater accordingly.
    205  * => Ignore the mask, if NPF_NO_NETMASK is specified.
    206  */
    207 int
    208 npf_addr_cmp(const npf_addr_t *addr1, const npf_netmask_t mask1,
    209     const npf_addr_t *addr2, const npf_netmask_t mask2, const int alen)
    210 {
    211 	npf_addr_t realaddr1, realaddr2;
    212 
    213 	if (mask1 != NPF_NO_NETMASK) {
    214 		npf_addr_mask(addr1, mask1, alen, &realaddr1);
    215 		addr1 = &realaddr1;
    216 	}
    217 	if (mask2 != NPF_NO_NETMASK) {
    218 		npf_addr_mask(addr2, mask2, alen, &realaddr2);
    219 		addr2 = &realaddr2;
    220 	}
    221 	return memcmp(addr1, addr2, alen);
    222 }
    223 
    224 /*
    225  * npf_tcpsaw: helper to fetch SEQ, ACK, WIN and return TCP data length.
    226  *
    227  * => Returns all values in host byte-order.
    228  */
    229 int
    230 npf_tcpsaw(const npf_cache_t *npc, tcp_seq *seq, tcp_seq *ack, uint32_t *win)
    231 {
    232 	const struct tcphdr *th = npc->npc_l4.tcp;
    233 	u_int thlen;
    234 
    235 	KASSERT(npf_iscached(npc, NPC_TCP));
    236 
    237 	*seq = ntohl(th->th_seq);
    238 	*ack = ntohl(th->th_ack);
    239 	*win = (uint32_t)ntohs(th->th_win);
    240 	thlen = th->th_off << 2;
    241 
    242 	if (npf_iscached(npc, NPC_IP4)) {
    243 		const struct ip *ip = npc->npc_ip.v4;
    244 		return ntohs(ip->ip_len) - npc->npc_hlen - thlen;
    245 	} else if (npf_iscached(npc, NPC_IP6)) {
    246 		const struct ip6_hdr *ip6 = npc->npc_ip.v6;
    247 		return ntohs(ip6->ip6_plen) -
    248 		    (npc->npc_hlen - sizeof(*ip6)) - thlen;
    249 	}
    250 	return 0;
    251 }
    252 
    253 /*
    254  * npf_fetch_tcpopts: parse and return TCP options.
    255  */
    256 bool
    257 npf_fetch_tcpopts(npf_cache_t *npc, uint16_t *mss, int *wscale)
    258 {
    259 	nbuf_t *nbuf = npc->npc_nbuf;
    260 	const struct tcphdr *th = npc->npc_l4.tcp;
    261 	int cnt, optlen = 0;
    262 	uint8_t *cp, opt;
    263 	uint8_t val;
    264 	bool ok;
    265 
    266 	KASSERT(npf_iscached(npc, NPC_IP46));
    267 	KASSERT(npf_iscached(npc, NPC_TCP));
    268 
    269 	/* Determine if there are any TCP options, get their length. */
    270 	cnt = (th->th_off << 2) - sizeof(struct tcphdr);
    271 	if (cnt <= 0) {
    272 		/* No options. */
    273 		return false;
    274 	}
    275 	KASSERT(cnt <= MAX_TCPOPTLEN);
    276 
    277 	/* Fetch all the options at once. */
    278 	nbuf_reset(nbuf);
    279 	const int step = npc->npc_hlen + sizeof(struct tcphdr);
    280 	if ((cp = nbuf_advance(nbuf, step, cnt)) == NULL) {
    281 		ok = false;
    282 		goto done;
    283 	}
    284 
    285 	/* Scan the options. */
    286 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
    287 		opt = cp[0];
    288 		if (opt == TCPOPT_EOL)
    289 			break;
    290 		if (opt == TCPOPT_NOP)
    291 			optlen = 1;
    292 		else {
    293 			if (cnt < 2)
    294 				break;
    295 			optlen = cp[1];
    296 			if (optlen < 2 || optlen > cnt)
    297 				break;
    298 		}
    299 
    300 		switch (opt) {
    301 		case TCPOPT_MAXSEG:
    302 			if (optlen != TCPOLEN_MAXSEG)
    303 				continue;
    304 			if (mss) {
    305 				memcpy(mss, cp + 2, sizeof(uint16_t));
    306 			}
    307 			break;
    308 		case TCPOPT_WINDOW:
    309 			if (optlen != TCPOLEN_WINDOW)
    310 				continue;
    311 			val = *(cp + 2);
    312 			*wscale = (val > TCP_MAX_WINSHIFT) ? TCP_MAX_WINSHIFT : val;
    313 			break;
    314 		default:
    315 			break;
    316 		}
    317 	}
    318 
    319 	ok = true;
    320 done:
    321 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    322 		npf_recache(npc);
    323 	}
    324 	return ok;
    325 }
    326 
    327 /*
    328  * npf_set_mss: set the MSS.
    329  */
    330 bool
    331 npf_set_mss(npf_cache_t *npc, uint16_t mss, uint16_t *old, uint16_t *new,
    332     bool *mid)
    333 {
    334 	nbuf_t *nbuf = npc->npc_nbuf;
    335 	const struct tcphdr *th = npc->npc_l4.tcp;
    336 	int cnt, optlen = 0;
    337 	uint8_t *cp, *base, opt;
    338 	bool ok;
    339 
    340 	KASSERT(npf_iscached(npc, NPC_IP46));
    341 	KASSERT(npf_iscached(npc, NPC_TCP));
    342 
    343 	/* Determine if there are any TCP options, get their length. */
    344 	cnt = (th->th_off << 2) - sizeof(struct tcphdr);
    345 	if (cnt <= 0) {
    346 		/* No options. */
    347 		return false;
    348 	}
    349 	KASSERT(cnt <= MAX_TCPOPTLEN);
    350 
    351 	/* Fetch all the options at once. */
    352 	nbuf_reset(nbuf);
    353 	const int step = npc->npc_hlen + sizeof(struct tcphdr);
    354 	if ((base = nbuf_advance(nbuf, step, cnt)) == NULL) {
    355 		ok = false;
    356 		goto done;
    357 	}
    358 
    359 	/* Scan the options. */
    360 	for (cp = base; cnt > 0; cnt -= optlen, cp += optlen) {
    361 		opt = cp[0];
    362 		if (opt == TCPOPT_EOL)
    363 			break;
    364 		if (opt == TCPOPT_NOP)
    365 			optlen = 1;
    366 		else {
    367 			if (cnt < 2)
    368 				break;
    369 			optlen = cp[1];
    370 			if (optlen < 2 || optlen > cnt)
    371 				break;
    372 		}
    373 
    374 		switch (opt) {
    375 		case TCPOPT_MAXSEG:
    376 			if (optlen != TCPOLEN_MAXSEG)
    377 				continue;
    378 			if (((cp + 2) - base) % sizeof(uint16_t) != 0) {
    379 				*mid = true;
    380 				memcpy(&old[0], cp + 1, sizeof(uint16_t));
    381 				memcpy(&old[1], cp + 3, sizeof(uint16_t));
    382 				memcpy(cp + 2, &mss, sizeof(uint16_t));
    383 				memcpy(&new[0], cp + 1, sizeof(uint16_t));
    384 				memcpy(&new[1], cp + 3, sizeof(uint16_t));
    385 			} else {
    386 				*mid = false;
    387 				memcpy(cp + 2, &mss, sizeof(uint16_t));
    388 			}
    389 			break;
    390 		default:
    391 			break;
    392 		}
    393 	}
    394 
    395 	ok = true;
    396 done:
    397 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    398 		npf_recache(npc);
    399 	}
    400 	return ok;
    401 }
    402 
    403 static int
    404 npf_cache_ip(npf_cache_t *npc, nbuf_t *nbuf)
    405 {
    406 	const void *nptr = nbuf_dataptr(nbuf);
    407 	const uint8_t ver = *(const uint8_t *)nptr;
    408 	int flags = 0;
    409 
    410 	/*
    411 	 * We intentionally don't read the L4 payload after IPPROTO_AH.
    412 	 */
    413 
    414 	switch (ver >> 4) {
    415 	case IPVERSION: {
    416 		struct ip *ip;
    417 
    418 		ip = nbuf_ensure_contig(nbuf, sizeof(struct ip));
    419 		if (ip == NULL) {
    420 			return NPC_FMTERR;
    421 		}
    422 
    423 		/* Retrieve the complete header. */
    424 		if ((u_int)(ip->ip_hl << 2) < sizeof(struct ip)) {
    425 			return NPC_FMTERR;
    426 		}
    427 		ip = nbuf_ensure_contig(nbuf, (u_int)(ip->ip_hl << 2));
    428 		if (ip == NULL) {
    429 			return NPC_FMTERR;
    430 		}
    431 
    432 		if (ip->ip_off & ~htons(IP_DF | IP_RF)) {
    433 			/* Note fragmentation. */
    434 			flags |= NPC_IPFRAG;
    435 		}
    436 
    437 		/* Cache: layer 3 - IPv4. */
    438 		npc->npc_alen = sizeof(struct in_addr);
    439 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip->ip_src;
    440 		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip->ip_dst;
    441 		npc->npc_hlen = ip->ip_hl << 2;
    442 		npc->npc_proto = ip->ip_p;
    443 
    444 		npc->npc_ip.v4 = ip;
    445 		flags |= NPC_IP4;
    446 		break;
    447 	}
    448 
    449 	case (IPV6_VERSION >> 4): {
    450 		struct ip6_hdr *ip6;
    451 		struct ip6_ext *ip6e;
    452 		struct ip6_frag *ip6f;
    453 		size_t off, hlen;
    454 		int frag_present;
    455 
    456 		ip6 = nbuf_ensure_contig(nbuf, sizeof(struct ip6_hdr));
    457 		if (ip6 == NULL) {
    458 			return NPC_FMTERR;
    459 		}
    460 
    461 		/*
    462 		 * XXX: We don't handle IPv6 Jumbograms.
    463 		 */
    464 
    465 		/* Set initial next-protocol value. */
    466 		hlen = sizeof(struct ip6_hdr);
    467 		npc->npc_proto = ip6->ip6_nxt;
    468 		npc->npc_hlen = hlen;
    469 
    470 		frag_present = 0;
    471 
    472 		/*
    473 		 * Advance by the length of the current header.
    474 		 */
    475 		off = nbuf_offset(nbuf);
    476 		while ((ip6e = nbuf_advance(nbuf, hlen, sizeof(*ip6e))) != NULL) {
    477 			/*
    478 			 * Determine whether we are going to continue.
    479 			 */
    480 			switch (npc->npc_proto) {
    481 			case IPPROTO_HOPOPTS:
    482 			case IPPROTO_DSTOPTS:
    483 			case IPPROTO_ROUTING:
    484 				hlen = (ip6e->ip6e_len + 1) << 3;
    485 				break;
    486 			case IPPROTO_FRAGMENT:
    487 				if (frag_present++)
    488 					return NPC_FMTERR;
    489 				ip6f = nbuf_ensure_contig(nbuf, sizeof(*ip6f));
    490 				if (ip6f == NULL)
    491 					return NPC_FMTERR;
    492 
    493 				/* RFC6946: Skip dummy fragments. */
    494 				if (!ntohs(ip6f->ip6f_offlg & IP6F_OFF_MASK) &&
    495 				    !(ip6f->ip6f_offlg & IP6F_MORE_FRAG)) {
    496 					hlen = sizeof(struct ip6_frag);
    497 					break;
    498 				}
    499 
    500 				hlen = 0;
    501 				flags |= NPC_IPFRAG;
    502 
    503 				break;
    504 			default:
    505 				hlen = 0;
    506 				break;
    507 			}
    508 
    509 			if (!hlen) {
    510 				break;
    511 			}
    512 			npc->npc_proto = ip6e->ip6e_nxt;
    513 			npc->npc_hlen += hlen;
    514 		}
    515 
    516 		if (ip6e == NULL) {
    517 			return NPC_FMTERR;
    518 		}
    519 
    520 		/*
    521 		 * Re-fetch the header pointers (nbufs might have been
    522 		 * reallocated).  Restore the original offset (if any).
    523 		 */
    524 		nbuf_reset(nbuf);
    525 		ip6 = nbuf_dataptr(nbuf);
    526 		if (off) {
    527 			nbuf_advance(nbuf, off, 0);
    528 		}
    529 
    530 		/* Cache: layer 3 - IPv6. */
    531 		npc->npc_alen = sizeof(struct in6_addr);
    532 		npc->npc_ips[NPF_SRC] = (npf_addr_t *)&ip6->ip6_src;
    533 		npc->npc_ips[NPF_DST] = (npf_addr_t *)&ip6->ip6_dst;
    534 
    535 		npc->npc_ip.v6 = ip6;
    536 		flags |= NPC_IP6;
    537 		break;
    538 	}
    539 	default:
    540 		break;
    541 	}
    542 	return flags;
    543 }
    544 
    545 /*
    546  * npf_cache_all: general routine to cache all relevant IP (v4 or v6)
    547  * and TCP, UDP or ICMP headers.
    548  *
    549  * => nbuf offset shall be set accordingly.
    550  */
    551 int
    552 npf_cache_all(npf_cache_t *npc)
    553 {
    554 	nbuf_t *nbuf = npc->npc_nbuf;
    555 	int flags, l4flags;
    556 	u_int hlen;
    557 
    558 	/*
    559 	 * This routine is a main point where the references are cached,
    560 	 * therefore clear the flag as we reset.
    561 	 */
    562 again:
    563 	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
    564 
    565 	/*
    566 	 * First, cache the L3 header (IPv4 or IPv6).  If IP packet is
    567 	 * fragmented, then we cannot look into L4.
    568 	 */
    569 	flags = npf_cache_ip(npc, nbuf);
    570 	if ((flags & NPC_IP46) == 0 || (flags & NPC_IPFRAG) != 0 ||
    571 	    (flags & NPC_FMTERR) != 0) {
    572 		goto out;
    573 	}
    574 	hlen = npc->npc_hlen;
    575 
    576 	/*
    577 	 * Note: we guarantee that the potential "Query Id" field of the
    578 	 * ICMPv4/ICMPv6 packets is in the nbuf. This field is used in the
    579 	 * ICMP ALG.
    580 	 */
    581 	switch (npc->npc_proto) {
    582 	case IPPROTO_TCP:
    583 		/* Cache: layer 4 - TCP. */
    584 		npc->npc_l4.tcp = nbuf_advance(nbuf, hlen,
    585 		    sizeof(struct tcphdr));
    586 		l4flags = NPC_LAYER4 | NPC_TCP;
    587 		break;
    588 	case IPPROTO_UDP:
    589 		/* Cache: layer 4 - UDP. */
    590 		npc->npc_l4.udp = nbuf_advance(nbuf, hlen,
    591 		    sizeof(struct udphdr));
    592 		l4flags = NPC_LAYER4 | NPC_UDP;
    593 		break;
    594 	case IPPROTO_ICMP:
    595 		/* Cache: layer 4 - ICMPv4. */
    596 		npc->npc_l4.icmp = nbuf_advance(nbuf, hlen,
    597 		    ICMP_MINLEN);
    598 		l4flags = NPC_LAYER4 | NPC_ICMP;
    599 		break;
    600 	case IPPROTO_ICMPV6:
    601 		/* Cache: layer 4 - ICMPv6. */
    602 		npc->npc_l4.icmp6 = nbuf_advance(nbuf, hlen,
    603 		    sizeof(struct icmp6_hdr));
    604 		l4flags = NPC_LAYER4 | NPC_ICMP;
    605 		break;
    606 	default:
    607 		l4flags = 0;
    608 		break;
    609 	}
    610 
    611 	/* Error out if nbuf_advance failed. */
    612 	if (l4flags && npc->npc_l4.hdr == NULL) {
    613 		goto err;
    614 	}
    615 
    616 	if (nbuf_flag_p(nbuf, NBUF_DATAREF_RESET)) {
    617 		goto again;
    618 	}
    619 
    620 	flags |= l4flags;
    621 	npc->npc_info |= flags;
    622 	return flags;
    623 
    624 err:
    625 	flags = NPC_FMTERR;
    626 out:
    627 	nbuf_unset_flag(nbuf, NBUF_DATAREF_RESET);
    628 	npc->npc_info |= flags;
    629 	return flags;
    630 }
    631 
    632 void
    633 npf_recache(npf_cache_t *npc)
    634 {
    635 	nbuf_t *nbuf = npc->npc_nbuf;
    636 	const int mflags __diagused = npc->npc_info & (NPC_IP46 | NPC_LAYER4);
    637 	int flags __diagused;
    638 
    639 	nbuf_reset(nbuf);
    640 	npc->npc_info = 0;
    641 	flags = npf_cache_all(npc);
    642 
    643 	KASSERT((flags & mflags) == mflags);
    644 	KASSERT(nbuf_flag_p(nbuf, NBUF_DATAREF_RESET) == 0);
    645 }
    646 
    647 /*
    648  * npf_rwrip: rewrite required IP address.
    649  */
    650 bool
    651 npf_rwrip(const npf_cache_t *npc, u_int which, const npf_addr_t *addr)
    652 {
    653 	KASSERT(npf_iscached(npc, NPC_IP46));
    654 	KASSERT(which == NPF_SRC || which == NPF_DST);
    655 
    656 	memcpy(npc->npc_ips[which], addr, npc->npc_alen);
    657 	return true;
    658 }
    659 
    660 /*
    661  * npf_rwrport: rewrite required TCP/UDP port.
    662  */
    663 bool
    664 npf_rwrport(const npf_cache_t *npc, u_int which, const in_port_t port)
    665 {
    666 	const int proto = npc->npc_proto;
    667 	in_port_t *oport;
    668 
    669 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    670 	KASSERT(proto == IPPROTO_TCP || proto == IPPROTO_UDP);
    671 	KASSERT(which == NPF_SRC || which == NPF_DST);
    672 
    673 	/* Get the offset and store the port in it. */
    674 	if (proto == IPPROTO_TCP) {
    675 		struct tcphdr *th = npc->npc_l4.tcp;
    676 		oport = (which == NPF_SRC) ? &th->th_sport : &th->th_dport;
    677 	} else {
    678 		struct udphdr *uh = npc->npc_l4.udp;
    679 		oport = (which == NPF_SRC) ? &uh->uh_sport : &uh->uh_dport;
    680 	}
    681 	memcpy(oport, &port, sizeof(in_port_t));
    682 	return true;
    683 }
    684 
    685 /*
    686  * npf_rwrcksum: rewrite IPv4 and/or TCP/UDP checksum.
    687  */
    688 bool
    689 npf_rwrcksum(const npf_cache_t *npc, u_int which,
    690     const npf_addr_t *addr, const in_port_t port)
    691 {
    692 	const npf_addr_t *oaddr = npc->npc_ips[which];
    693 	const int proto = npc->npc_proto;
    694 	const int alen = npc->npc_alen;
    695 	uint16_t *ocksum;
    696 	in_port_t oport;
    697 
    698 	KASSERT(npf_iscached(npc, NPC_LAYER4));
    699 	KASSERT(which == NPF_SRC || which == NPF_DST);
    700 
    701 	if (npf_iscached(npc, NPC_IP4)) {
    702 		struct ip *ip = npc->npc_ip.v4;
    703 		uint16_t ipsum = ip->ip_sum;
    704 
    705 		/* Recalculate IPv4 checksum and rewrite. */
    706 		ip->ip_sum = npf_addr_cksum(ipsum, alen, oaddr, addr);
    707 	} else {
    708 		/* No checksum for IPv6. */
    709 		KASSERT(npf_iscached(npc, NPC_IP6));
    710 	}
    711 
    712 	/* Nothing else to do for ICMP. */
    713 	if (proto == IPPROTO_ICMP || proto == IPPROTO_ICMPV6) {
    714 		return true;
    715 	}
    716 	KASSERT(npf_iscached(npc, NPC_TCP) || npf_iscached(npc, NPC_UDP));
    717 
    718 	/*
    719 	 * Calculate TCP/UDP checksum:
    720 	 * - Skip if UDP and the current checksum is zero.
    721 	 * - Fixup the IP address change.
    722 	 * - Fixup the port change, if required (non-zero).
    723 	 */
    724 	if (proto == IPPROTO_TCP) {
    725 		struct tcphdr *th = npc->npc_l4.tcp;
    726 
    727 		ocksum = &th->th_sum;
    728 		oport = (which == NPF_SRC) ? th->th_sport : th->th_dport;
    729 	} else {
    730 		struct udphdr *uh = npc->npc_l4.udp;
    731 
    732 		KASSERT(proto == IPPROTO_UDP);
    733 		ocksum = &uh->uh_sum;
    734 		if (*ocksum == 0) {
    735 			/* No need to update. */
    736 			return true;
    737 		}
    738 		oport = (which == NPF_SRC) ? uh->uh_sport : uh->uh_dport;
    739 	}
    740 
    741 	uint16_t cksum = npf_addr_cksum(*ocksum, alen, oaddr, addr);
    742 	if (port) {
    743 		cksum = npf_fixup16_cksum(cksum, oport, port);
    744 	}
    745 
    746 	/* Rewrite TCP/UDP checksum. */
    747 	memcpy(ocksum, &cksum, sizeof(uint16_t));
    748 	return true;
    749 }
    750 
    751 /*
    752  * npf_napt_rwr: perform address and/or port translation.
    753  */
    754 int
    755 npf_napt_rwr(const npf_cache_t *npc, u_int which,
    756     const npf_addr_t *addr, const in_addr_t port)
    757 {
    758 	const unsigned proto = npc->npc_proto;
    759 
    760 	/*
    761 	 * Rewrite IP and/or TCP/UDP checksums first, since we need the
    762 	 * current (old) address/port for the calculations.  Then perform
    763 	 * the address translation i.e. rewrite source or destination.
    764 	 */
    765 	if (!npf_rwrcksum(npc, which, addr, port)) {
    766 		return EINVAL;
    767 	}
    768 	if (!npf_rwrip(npc, which, addr)) {
    769 		return EINVAL;
    770 	}
    771 	if (port == 0) {
    772 		/* Done. */
    773 		return 0;
    774 	}
    775 
    776 	switch (proto) {
    777 	case IPPROTO_TCP:
    778 	case IPPROTO_UDP:
    779 		/* Rewrite source/destination port. */
    780 		if (!npf_rwrport(npc, which, port)) {
    781 			return EINVAL;
    782 		}
    783 		break;
    784 	case IPPROTO_ICMP:
    785 	case IPPROTO_ICMPV6:
    786 		KASSERT(npf_iscached(npc, NPC_ICMP));
    787 		/* Nothing. */
    788 		break;
    789 	default:
    790 		return ENOTSUP;
    791 	}
    792 	return 0;
    793 }
    794 
    795 /*
    796  * IPv6-to-IPv6 Network Prefix Translation (NPTv6), as per RFC 6296.
    797  */
    798 int
    799 npf_npt66_rwr(const npf_cache_t *npc, u_int which, const npf_addr_t *pref,
    800     npf_netmask_t len, uint16_t adj)
    801 {
    802 	npf_addr_t *addr = npc->npc_ips[which];
    803 	unsigned remnant, word, preflen = len >> 4;
    804 	uint32_t sum;
    805 
    806 	KASSERT(which == NPF_SRC || which == NPF_DST);
    807 
    808 	if (!npf_iscached(npc, NPC_IP6)) {
    809 		return EINVAL;
    810 	}
    811 	if (len <= 48) {
    812 		/*
    813 		 * The word to adjust.  Cannot translate the 0xffff
    814 		 * subnet if /48 or shorter.
    815 		 */
    816 		word = 3;
    817 		if (addr->word16[word] == 0xffff) {
    818 			return EINVAL;
    819 		}
    820 	} else {
    821 		/*
    822 		 * Also, all 0s or 1s in the host part are disallowed for
    823 		 * longer than /48 prefixes.
    824 		 */
    825 		if ((addr->word32[2] == 0 && addr->word32[3] == 0) ||
    826 		    (addr->word32[2] == ~0U && addr->word32[3] == ~0U))
    827 			return EINVAL;
    828 
    829 		/* Determine the 16-bit word to adjust. */
    830 		for (word = 4; word < 8; word++)
    831 			if (addr->word16[word] != 0xffff)
    832 				break;
    833 	}
    834 
    835 	/* Rewrite the prefix. */
    836 	for (unsigned i = 0; i < preflen; i++) {
    837 		addr->word16[i] = pref->word16[i];
    838 	}
    839 
    840 	/*
    841 	 * If prefix length is within a 16-bit word (not dividable by 16),
    842 	 * then prepare a mask, determine the word and adjust it.
    843 	 */
    844 	if ((remnant = len - (preflen << 4)) != 0) {
    845 		const uint16_t wordmask = (1U << remnant) - 1;
    846 		const unsigned i = preflen;
    847 
    848 		addr->word16[i] = (pref->word16[i] & wordmask) |
    849 		    (addr->word16[i] & ~wordmask);
    850 	}
    851 
    852 	/*
    853 	 * Performing 1's complement sum/difference.
    854 	 */
    855 	sum = addr->word16[word] + adj;
    856 	while (sum >> 16) {
    857 		sum = (sum >> 16) + (sum & 0xffff);
    858 	}
    859 	if (sum == 0xffff) {
    860 		/* RFC 1071. */
    861 		sum = 0x0000;
    862 	}
    863 	addr->word16[word] = sum;
    864 	return 0;
    865 }
    866 
    867 #if defined(DDB) || defined(_NPF_TESTING)
    868 
    869 const char *
    870 npf_addr_dump(const npf_addr_t *addr, int alen)
    871 {
    872 	if (alen == sizeof(struct in_addr)) {
    873 		struct in_addr ip;
    874 		memcpy(&ip, addr, alen);
    875 		return inet_ntoa(ip);
    876 	}
    877 	return "[IPv6]";
    878 }
    879 
    880 #endif
    881