npf_nat.c revision 1.31 1 1.31 rmind /* $NetBSD: npf_nat.c,v 1.31 2014/07/23 01:25:34 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.25 rmind * Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
5 1.19 rmind * Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
6 1.1 rmind * All rights reserved.
7 1.1 rmind *
8 1.1 rmind * This material is based upon work partially supported by The
9 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
10 1.1 rmind *
11 1.1 rmind * Redistribution and use in source and binary forms, with or without
12 1.1 rmind * modification, are permitted provided that the following conditions
13 1.1 rmind * are met:
14 1.1 rmind * 1. Redistributions of source code must retain the above copyright
15 1.1 rmind * notice, this list of conditions and the following disclaimer.
16 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 rmind * notice, this list of conditions and the following disclaimer in the
18 1.1 rmind * documentation and/or other materials provided with the distribution.
19 1.1 rmind *
20 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
31 1.1 rmind */
32 1.1 rmind
33 1.1 rmind /*
34 1.19 rmind * NPF network address port translation (NAPT) and other forms of NAT.
35 1.19 rmind * Described in RFC 2663, RFC 3022, etc.
36 1.1 rmind *
37 1.1 rmind * Overview
38 1.1 rmind *
39 1.1 rmind * There are few mechanisms: NAT policy, port map and translation.
40 1.1 rmind * NAT module has a separate ruleset, where rules contain associated
41 1.1 rmind * NAT policy, thus flexible filter criteria can be used.
42 1.1 rmind *
43 1.2 rmind * Translation types
44 1.2 rmind *
45 1.2 rmind * There are two types of translation: outbound (NPF_NATOUT) and
46 1.2 rmind * inbound (NPF_NATIN). It should not be confused with connection
47 1.23 rmind * direction. See npf_nat_which() for the description of how the
48 1.23 rmind * addresses are rewritten.
49 1.2 rmind *
50 1.2 rmind * It should be noted that bi-directional NAT is a combined outbound
51 1.2 rmind * and inbound translation, therefore constructed as two policies.
52 1.2 rmind *
53 1.1 rmind * NAT policies and port maps
54 1.1 rmind *
55 1.2 rmind * NAT (translation) policy is applied when a packet matches the rule.
56 1.2 rmind * Apart from filter criteria, NAT policy has a translation IP address
57 1.1 rmind * and associated port map. Port map is a bitmap used to reserve and
58 1.1 rmind * use unique TCP/UDP ports for translation. Port maps are unique to
59 1.1 rmind * the IP addresses, therefore multiple NAT policies with the same IP
60 1.1 rmind * will share the same port map.
61 1.1 rmind *
62 1.29 rmind * Connections, translation entries and their life-cycle
63 1.1 rmind *
64 1.29 rmind * NAT module relies on connection tracking module. Each translated
65 1.29 rmind * connection has an associated translation entry (npf_nat_t), which
66 1.4 rmind * contains information used for backwards stream translation, i.e.
67 1.4 rmind * original IP address with port and translation port, allocated from
68 1.4 rmind * the port map. Each NAT entry is associated with the policy, which
69 1.4 rmind * contains translation IP address. Allocated port is returned to the
70 1.29 rmind * port map and NAT entry is destroyed when connection expires.
71 1.1 rmind */
72 1.1 rmind
73 1.1 rmind #include <sys/cdefs.h>
74 1.31 rmind __KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.31 2014/07/23 01:25:34 rmind Exp $");
75 1.1 rmind
76 1.1 rmind #include <sys/param.h>
77 1.11 rmind #include <sys/types.h>
78 1.1 rmind
79 1.1 rmind #include <sys/atomic.h>
80 1.1 rmind #include <sys/bitops.h>
81 1.4 rmind #include <sys/condvar.h>
82 1.1 rmind #include <sys/kmem.h>
83 1.4 rmind #include <sys/mutex.h>
84 1.1 rmind #include <sys/pool.h>
85 1.19 rmind #include <sys/proc.h>
86 1.8 tls #include <sys/cprng.h>
87 1.8 tls
88 1.1 rmind #include <net/pfil.h>
89 1.1 rmind #include <netinet/in.h>
90 1.1 rmind
91 1.1 rmind #include "npf_impl.h"
92 1.29 rmind #include "npf_conn.h"
93 1.1 rmind
94 1.1 rmind /*
95 1.1 rmind * NPF portmap structure.
96 1.1 rmind */
97 1.1 rmind typedef struct {
98 1.4 rmind u_int p_refcnt;
99 1.4 rmind uint32_t p_bitmap[0];
100 1.1 rmind } npf_portmap_t;
101 1.1 rmind
102 1.1 rmind /* Portmap range: [ 1024 .. 65535 ] */
103 1.4 rmind #define PORTMAP_FIRST (1024)
104 1.4 rmind #define PORTMAP_SIZE ((65536 - PORTMAP_FIRST) / 32)
105 1.25 rmind #define PORTMAP_FILLED ((uint32_t)~0U)
106 1.4 rmind #define PORTMAP_MASK (31)
107 1.4 rmind #define PORTMAP_SHIFT (5)
108 1.4 rmind
109 1.4 rmind #define PORTMAP_MEM_SIZE \
110 1.4 rmind (sizeof(npf_portmap_t) + (PORTMAP_SIZE * sizeof(uint32_t)))
111 1.1 rmind
112 1.12 rmind /*
113 1.12 rmind * NAT policy structure.
114 1.12 rmind */
115 1.1 rmind struct npf_natpolicy {
116 1.31 rmind kmutex_t n_lock;
117 1.4 rmind LIST_HEAD(, npf_nat) n_nat_list;
118 1.19 rmind volatile u_int n_refcnt;
119 1.4 rmind npf_portmap_t * n_portmap;
120 1.31 rmind uint64_t n_id;
121 1.31 rmind
122 1.31 rmind /*
123 1.31 rmind * Translation type, flags and address. Optionally, prefix
124 1.31 rmind * for the NPTv6 and translation port. Translation algorithm
125 1.31 rmind * and related data (for NPTv6, the adjustment value).
126 1.31 rmind *
127 1.31 rmind * NPF_NP_CMP_START mark starts here.
128 1.31 rmind */
129 1.4 rmind int n_type;
130 1.6 rmind u_int n_flags;
131 1.31 rmind u_int n_alen;
132 1.4 rmind npf_addr_t n_taddr;
133 1.25 rmind npf_netmask_t n_tmask;
134 1.4 rmind in_port_t n_tport;
135 1.25 rmind u_int n_algo;
136 1.25 rmind union {
137 1.25 rmind uint16_t n_npt66_adj;
138 1.25 rmind };
139 1.1 rmind };
140 1.1 rmind
141 1.4 rmind #define NPF_NP_CMP_START offsetof(npf_natpolicy_t, n_type)
142 1.4 rmind #define NPF_NP_CMP_SIZE (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
143 1.4 rmind
144 1.12 rmind /*
145 1.29 rmind * NAT translation entry for a connection.
146 1.12 rmind */
147 1.1 rmind struct npf_nat {
148 1.28 rmind /* Associated NAT policy. */
149 1.4 rmind npf_natpolicy_t * nt_natpolicy;
150 1.28 rmind
151 1.28 rmind /*
152 1.28 rmind * Original address and port (for backwards translation).
153 1.28 rmind * Translation port (for redirects).
154 1.28 rmind */
155 1.4 rmind npf_addr_t nt_oaddr;
156 1.4 rmind in_port_t nt_oport;
157 1.4 rmind in_port_t nt_tport;
158 1.28 rmind
159 1.1 rmind /* ALG (if any) associated with this NAT entry. */
160 1.4 rmind npf_alg_t * nt_alg;
161 1.4 rmind uintptr_t nt_alg_arg;
162 1.28 rmind
163 1.28 rmind LIST_ENTRY(npf_nat) nt_entry;
164 1.29 rmind npf_conn_t * nt_conn;
165 1.1 rmind };
166 1.1 rmind
167 1.4 rmind static pool_cache_t nat_cache __read_mostly;
168 1.1 rmind
169 1.1 rmind /*
170 1.1 rmind * npf_nat_sys{init,fini}: initialise/destroy NAT subsystem structures.
171 1.1 rmind */
172 1.1 rmind
173 1.1 rmind void
174 1.1 rmind npf_nat_sysinit(void)
175 1.1 rmind {
176 1.1 rmind nat_cache = pool_cache_init(sizeof(npf_nat_t), coherency_unit,
177 1.1 rmind 0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
178 1.1 rmind KASSERT(nat_cache != NULL);
179 1.1 rmind }
180 1.1 rmind
181 1.1 rmind void
182 1.1 rmind npf_nat_sysfini(void)
183 1.1 rmind {
184 1.23 rmind /* All NAT policies should already be destroyed. */
185 1.1 rmind pool_cache_destroy(nat_cache);
186 1.1 rmind }
187 1.1 rmind
188 1.1 rmind /*
189 1.2 rmind * npf_nat_newpolicy: create a new NAT policy.
190 1.1 rmind *
191 1.1 rmind * => Shares portmap if policy is on existing translation address.
192 1.1 rmind */
193 1.1 rmind npf_natpolicy_t *
194 1.31 rmind npf_nat_newpolicy(prop_dictionary_t natdict, npf_ruleset_t *rset)
195 1.1 rmind {
196 1.5 rmind npf_natpolicy_t *np;
197 1.4 rmind prop_object_t obj;
198 1.1 rmind npf_portmap_t *pm;
199 1.1 rmind
200 1.1 rmind np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
201 1.4 rmind
202 1.6 rmind /* Translation type and flags. */
203 1.6 rmind prop_dictionary_get_int32(natdict, "type", &np->n_type);
204 1.6 rmind prop_dictionary_get_uint32(natdict, "flags", &np->n_flags);
205 1.10 rmind
206 1.10 rmind /* Should be exclusively either inbound or outbound NAT. */
207 1.10 rmind if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
208 1.25 rmind goto err;
209 1.10 rmind }
210 1.10 rmind mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
211 1.10 rmind LIST_INIT(&np->n_nat_list);
212 1.4 rmind
213 1.25 rmind /* Translation IP, mask and port (if applicable). */
214 1.4 rmind obj = prop_dictionary_get(natdict, "translation-ip");
215 1.31 rmind np->n_alen = prop_data_size(obj);
216 1.31 rmind if (np->n_alen == 0 || np->n_alen > sizeof(npf_addr_t)) {
217 1.25 rmind goto err;
218 1.25 rmind }
219 1.31 rmind memcpy(&np->n_taddr, prop_data_data_nocopy(obj), np->n_alen);
220 1.25 rmind prop_dictionary_get_uint8(natdict, "translation-mask", &np->n_tmask);
221 1.25 rmind prop_dictionary_get_uint16(natdict, "translation-port", &np->n_tport);
222 1.4 rmind
223 1.25 rmind prop_dictionary_get_uint32(natdict, "translation-algo", &np->n_algo);
224 1.25 rmind switch (np->n_algo) {
225 1.25 rmind case NPF_ALGO_NPT66:
226 1.25 rmind prop_dictionary_get_uint16(natdict, "npt66-adjustment",
227 1.25 rmind &np->n_npt66_adj);
228 1.25 rmind break;
229 1.25 rmind default:
230 1.25 rmind if (np->n_tmask != NPF_NO_NETMASK)
231 1.25 rmind goto err;
232 1.25 rmind break;
233 1.25 rmind }
234 1.2 rmind
235 1.5 rmind /* Determine if port map is needed. */
236 1.5 rmind np->n_portmap = NULL;
237 1.4 rmind if ((np->n_flags & NPF_NAT_PORTMAP) == 0) {
238 1.5 rmind /* No port map. */
239 1.5 rmind return np;
240 1.2 rmind }
241 1.1 rmind
242 1.5 rmind /*
243 1.5 rmind * Inspect NAT policies in the ruleset for port map sharing.
244 1.5 rmind * Note that npf_ruleset_sharepm() will increase the reference count.
245 1.5 rmind */
246 1.31 rmind if (!npf_ruleset_sharepm(rset, np)) {
247 1.1 rmind /* Allocate a new port map for the NAT policy. */
248 1.4 rmind pm = kmem_zalloc(PORTMAP_MEM_SIZE, KM_SLEEP);
249 1.1 rmind pm->p_refcnt = 1;
250 1.1 rmind KASSERT((uintptr_t)pm->p_bitmap == (uintptr_t)pm + sizeof(*pm));
251 1.5 rmind np->n_portmap = pm;
252 1.1 rmind } else {
253 1.5 rmind KASSERT(np->n_portmap != NULL);
254 1.1 rmind }
255 1.1 rmind return np;
256 1.25 rmind err:
257 1.25 rmind kmem_free(np, sizeof(npf_natpolicy_t));
258 1.25 rmind return NULL;
259 1.1 rmind }
260 1.1 rmind
261 1.1 rmind /*
262 1.1 rmind * npf_nat_freepolicy: free NAT policy and, on last reference, free portmap.
263 1.1 rmind *
264 1.4 rmind * => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
265 1.1 rmind */
266 1.1 rmind void
267 1.1 rmind npf_nat_freepolicy(npf_natpolicy_t *np)
268 1.1 rmind {
269 1.1 rmind npf_portmap_t *pm = np->n_portmap;
270 1.29 rmind npf_conn_t *con;
271 1.4 rmind npf_nat_t *nt;
272 1.1 rmind
273 1.22 rmind /*
274 1.22 rmind * Disassociate all entries from the policy. At this point,
275 1.22 rmind * new entries can no longer be created for this policy.
276 1.22 rmind */
277 1.28 rmind while (np->n_refcnt) {
278 1.28 rmind mutex_enter(&np->n_lock);
279 1.28 rmind LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
280 1.29 rmind con = nt->nt_conn;
281 1.29 rmind KASSERT(con != NULL);
282 1.29 rmind npf_conn_expire(con);
283 1.28 rmind }
284 1.28 rmind mutex_exit(&np->n_lock);
285 1.4 rmind
286 1.28 rmind /* Kick the worker - all references should be going away. */
287 1.28 rmind npf_worker_signal();
288 1.19 rmind kpause("npfgcnat", false, 1, NULL);
289 1.19 rmind }
290 1.22 rmind KASSERT(LIST_EMPTY(&np->n_nat_list));
291 1.19 rmind
292 1.4 rmind /* Destroy the port map, on last reference. */
293 1.2 rmind if (pm && --pm->p_refcnt == 0) {
294 1.2 rmind KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
295 1.4 rmind kmem_free(pm, PORTMAP_MEM_SIZE);
296 1.1 rmind }
297 1.4 rmind mutex_destroy(&np->n_lock);
298 1.1 rmind kmem_free(np, sizeof(npf_natpolicy_t));
299 1.1 rmind }
300 1.1 rmind
301 1.13 rmind void
302 1.15 rmind npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
303 1.13 rmind {
304 1.15 rmind npf_nat_t *nt;
305 1.15 rmind
306 1.15 rmind mutex_enter(&np->n_lock);
307 1.15 rmind LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
308 1.31 rmind if (nt->nt_alg == alg)
309 1.31 rmind nt->nt_alg = NULL;
310 1.15 rmind }
311 1.15 rmind mutex_exit(&np->n_lock);
312 1.13 rmind }
313 1.13 rmind
314 1.5 rmind /*
315 1.31 rmind * npf_nat_cmppolicy: compare two NAT policies.
316 1.5 rmind *
317 1.5 rmind * => Return 0 on match, and non-zero otherwise.
318 1.5 rmind */
319 1.4 rmind bool
320 1.31 rmind npf_nat_cmppolicy(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
321 1.1 rmind {
322 1.31 rmind const void *np_raw, *mnp_raw;
323 1.31 rmind
324 1.4 rmind /*
325 1.4 rmind * Compare the relevant NAT policy information (in raw form),
326 1.4 rmind * which is enough for matching criterion.
327 1.4 rmind */
328 1.5 rmind KASSERT(np && mnp && np != mnp);
329 1.31 rmind np_raw = (const uint8_t *)np + NPF_NP_CMP_START;
330 1.31 rmind mnp_raw = (const uint8_t *)mnp + NPF_NP_CMP_START;
331 1.31 rmind return memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0;
332 1.1 rmind }
333 1.1 rmind
334 1.5 rmind bool
335 1.5 rmind npf_nat_sharepm(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
336 1.5 rmind {
337 1.5 rmind npf_portmap_t *pm, *mpm;
338 1.5 rmind
339 1.5 rmind KASSERT(np && mnp && np != mnp);
340 1.5 rmind
341 1.5 rmind /* Using port map and having equal translation address? */
342 1.5 rmind if ((np->n_flags & mnp->n_flags & NPF_NAT_PORTMAP) == 0) {
343 1.5 rmind return false;
344 1.5 rmind }
345 1.31 rmind if (np->n_alen != mnp->n_alen) {
346 1.5 rmind return false;
347 1.5 rmind }
348 1.31 rmind if (memcmp(&np->n_taddr, &mnp->n_taddr, np->n_alen) != 0) {
349 1.5 rmind return false;
350 1.5 rmind }
351 1.5 rmind /* If NAT policy has an old port map - drop the reference. */
352 1.5 rmind mpm = mnp->n_portmap;
353 1.5 rmind if (mpm) {
354 1.12 rmind /* Note: at this point we cannot hold a last reference. */
355 1.5 rmind KASSERT(mpm->p_refcnt > 1);
356 1.5 rmind mpm->p_refcnt--;
357 1.5 rmind }
358 1.5 rmind /* Share the port map. */
359 1.5 rmind pm = np->n_portmap;
360 1.5 rmind mnp->n_portmap = pm;
361 1.5 rmind pm->p_refcnt++;
362 1.5 rmind return true;
363 1.5 rmind }
364 1.5 rmind
365 1.31 rmind void
366 1.31 rmind npf_nat_setid(npf_natpolicy_t *np, uint64_t id)
367 1.31 rmind {
368 1.31 rmind np->n_id = id;
369 1.31 rmind }
370 1.31 rmind
371 1.31 rmind uint64_t
372 1.31 rmind npf_nat_getid(const npf_natpolicy_t *np)
373 1.31 rmind {
374 1.31 rmind return np->n_id;
375 1.31 rmind }
376 1.31 rmind
377 1.1 rmind /*
378 1.1 rmind * npf_nat_getport: allocate and return a port in the NAT policy portmap.
379 1.1 rmind *
380 1.1 rmind * => Returns in network byte-order.
381 1.1 rmind * => Zero indicates failure.
382 1.1 rmind */
383 1.1 rmind static in_port_t
384 1.1 rmind npf_nat_getport(npf_natpolicy_t *np)
385 1.1 rmind {
386 1.1 rmind npf_portmap_t *pm = np->n_portmap;
387 1.1 rmind u_int n = PORTMAP_SIZE, idx, bit;
388 1.1 rmind uint32_t map, nmap;
389 1.1 rmind
390 1.8 tls idx = cprng_fast32() % PORTMAP_SIZE;
391 1.1 rmind for (;;) {
392 1.1 rmind KASSERT(idx < PORTMAP_SIZE);
393 1.1 rmind map = pm->p_bitmap[idx];
394 1.1 rmind if (__predict_false(map == PORTMAP_FILLED)) {
395 1.1 rmind if (n-- == 0) {
396 1.1 rmind /* No space. */
397 1.1 rmind return 0;
398 1.1 rmind }
399 1.2 rmind /* This bitmap is filled, next. */
400 1.1 rmind idx = (idx ? idx : PORTMAP_SIZE) - 1;
401 1.1 rmind continue;
402 1.1 rmind }
403 1.1 rmind bit = ffs32(~map) - 1;
404 1.1 rmind nmap = map | (1 << bit);
405 1.1 rmind if (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map) {
406 1.1 rmind /* Success. */
407 1.1 rmind break;
408 1.1 rmind }
409 1.1 rmind }
410 1.1 rmind return htons(PORTMAP_FIRST + (idx << PORTMAP_SHIFT) + bit);
411 1.1 rmind }
412 1.1 rmind
413 1.1 rmind /*
414 1.4 rmind * npf_nat_takeport: allocate specific port in the NAT policy portmap.
415 1.4 rmind */
416 1.4 rmind static bool
417 1.4 rmind npf_nat_takeport(npf_natpolicy_t *np, in_port_t port)
418 1.4 rmind {
419 1.4 rmind npf_portmap_t *pm = np->n_portmap;
420 1.4 rmind uint32_t map, nmap;
421 1.4 rmind u_int idx, bit;
422 1.4 rmind
423 1.4 rmind port = ntohs(port) - PORTMAP_FIRST;
424 1.4 rmind idx = port >> PORTMAP_SHIFT;
425 1.4 rmind bit = port & PORTMAP_MASK;
426 1.4 rmind map = pm->p_bitmap[idx];
427 1.4 rmind nmap = map | (1 << bit);
428 1.4 rmind if (map == nmap) {
429 1.4 rmind /* Already taken. */
430 1.4 rmind return false;
431 1.4 rmind }
432 1.4 rmind return atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map;
433 1.4 rmind }
434 1.4 rmind
435 1.4 rmind /*
436 1.1 rmind * npf_nat_putport: return port as available in the NAT policy portmap.
437 1.1 rmind *
438 1.1 rmind * => Port should be in network byte-order.
439 1.1 rmind */
440 1.1 rmind static void
441 1.1 rmind npf_nat_putport(npf_natpolicy_t *np, in_port_t port)
442 1.1 rmind {
443 1.1 rmind npf_portmap_t *pm = np->n_portmap;
444 1.1 rmind uint32_t map, nmap;
445 1.1 rmind u_int idx, bit;
446 1.1 rmind
447 1.1 rmind port = ntohs(port) - PORTMAP_FIRST;
448 1.1 rmind idx = port >> PORTMAP_SHIFT;
449 1.1 rmind bit = port & PORTMAP_MASK;
450 1.1 rmind do {
451 1.1 rmind map = pm->p_bitmap[idx];
452 1.1 rmind KASSERT(map | (1 << bit));
453 1.1 rmind nmap = map & ~(1 << bit);
454 1.1 rmind } while (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) != map);
455 1.1 rmind }
456 1.1 rmind
457 1.1 rmind /*
458 1.23 rmind * npf_nat_which: tell which address (source or destination) should be
459 1.23 rmind * rewritten given the combination of the NAT type and flow direction.
460 1.23 rmind */
461 1.23 rmind static inline u_int
462 1.23 rmind npf_nat_which(const int type, bool forw)
463 1.23 rmind {
464 1.23 rmind /*
465 1.23 rmind * Outbound NAT rewrites:
466 1.24 rmind * - Source (NPF_SRC) on "forwards" stream.
467 1.24 rmind * - Destination (NPF_DST) on "backwards" stream.
468 1.23 rmind * Inbound NAT is other way round.
469 1.23 rmind */
470 1.23 rmind if (type == NPF_NATOUT) {
471 1.23 rmind forw = !forw;
472 1.23 rmind } else {
473 1.23 rmind KASSERT(type == NPF_NATIN);
474 1.23 rmind }
475 1.23 rmind CTASSERT(NPF_SRC == 0 && NPF_DST == 1);
476 1.24 rmind KASSERT(forw == NPF_SRC || forw == NPF_DST);
477 1.23 rmind return (u_int)forw;
478 1.23 rmind }
479 1.23 rmind
480 1.23 rmind /*
481 1.2 rmind * npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
482 1.19 rmind *
483 1.19 rmind * => Acquire a reference on the policy, if found.
484 1.2 rmind */
485 1.2 rmind static npf_natpolicy_t *
486 1.30 rmind npf_nat_inspect(npf_cache_t *npc, const int di)
487 1.2 rmind {
488 1.19 rmind int slock = npf_config_read_enter();
489 1.19 rmind npf_ruleset_t *rlset = npf_config_natset();
490 1.6 rmind npf_natpolicy_t *np;
491 1.2 rmind npf_rule_t *rl;
492 1.2 rmind
493 1.30 rmind rl = npf_ruleset_inspect(npc, rlset, di, NPF_LAYER_3);
494 1.6 rmind if (rl == NULL) {
495 1.19 rmind npf_config_read_exit(slock);
496 1.6 rmind return NULL;
497 1.6 rmind }
498 1.6 rmind np = npf_rule_getnat(rl);
499 1.19 rmind atomic_inc_uint(&np->n_refcnt);
500 1.19 rmind npf_config_read_exit(slock);
501 1.6 rmind return np;
502 1.2 rmind }
503 1.2 rmind
504 1.2 rmind /*
505 1.2 rmind * npf_nat_create: create a new NAT translation entry.
506 1.1 rmind */
507 1.2 rmind static npf_nat_t *
508 1.29 rmind npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np, npf_conn_t *con)
509 1.1 rmind {
510 1.19 rmind const int proto = npc->npc_proto;
511 1.2 rmind npf_nat_t *nt;
512 1.2 rmind
513 1.7 zoltan KASSERT(npf_iscached(npc, NPC_IP46));
514 1.7 zoltan KASSERT(npf_iscached(npc, NPC_LAYER4));
515 1.3 rmind
516 1.29 rmind /* Construct a new NAT entry and associate it with the connection. */
517 1.2 rmind nt = pool_cache_get(nat_cache, PR_NOWAIT);
518 1.2 rmind if (nt == NULL){
519 1.2 rmind return NULL;
520 1.2 rmind }
521 1.4 rmind npf_stats_inc(NPF_STAT_NAT_CREATE);
522 1.5 rmind nt->nt_natpolicy = np;
523 1.29 rmind nt->nt_conn = con;
524 1.5 rmind nt->nt_alg = NULL;
525 1.5 rmind
526 1.2 rmind /* Save the original address which may be rewritten. */
527 1.2 rmind if (np->n_type == NPF_NATOUT) {
528 1.23 rmind /* Outbound NAT: source (think internal) address. */
529 1.23 rmind memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_SRC], npc->npc_alen);
530 1.2 rmind } else {
531 1.23 rmind /* Inbound NAT: destination (think external) address. */
532 1.2 rmind KASSERT(np->n_type == NPF_NATIN);
533 1.23 rmind memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_DST], npc->npc_alen);
534 1.2 rmind }
535 1.2 rmind
536 1.2 rmind /*
537 1.2 rmind * Port translation, if required, and if it is TCP/UDP.
538 1.2 rmind */
539 1.2 rmind if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
540 1.2 rmind (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
541 1.2 rmind nt->nt_oport = 0;
542 1.2 rmind nt->nt_tport = 0;
543 1.12 rmind goto out;
544 1.2 rmind }
545 1.12 rmind
546 1.3 rmind /* Save the relevant TCP/UDP port. */
547 1.3 rmind if (proto == IPPROTO_TCP) {
548 1.18 rmind const struct tcphdr *th = npc->npc_l4.tcp;
549 1.3 rmind nt->nt_oport = (np->n_type == NPF_NATOUT) ?
550 1.3 rmind th->th_sport : th->th_dport;
551 1.2 rmind } else {
552 1.18 rmind const struct udphdr *uh = npc->npc_l4.udp;
553 1.3 rmind nt->nt_oport = (np->n_type == NPF_NATOUT) ?
554 1.3 rmind uh->uh_sport : uh->uh_dport;
555 1.2 rmind }
556 1.3 rmind
557 1.2 rmind /* Get a new port for translation. */
558 1.2 rmind if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
559 1.2 rmind nt->nt_tport = npf_nat_getport(np);
560 1.2 rmind } else {
561 1.2 rmind nt->nt_tport = np->n_tport;
562 1.2 rmind }
563 1.12 rmind out:
564 1.12 rmind mutex_enter(&np->n_lock);
565 1.12 rmind LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
566 1.12 rmind mutex_exit(&np->n_lock);
567 1.2 rmind return nt;
568 1.2 rmind }
569 1.2 rmind
570 1.2 rmind /*
571 1.24 rmind * npf_nat_translate: perform translation given the state data.
572 1.24 rmind */
573 1.26 rmind static inline int
574 1.30 rmind npf_nat_translate(npf_cache_t *npc, npf_nat_t *nt, bool forw)
575 1.24 rmind {
576 1.24 rmind const npf_natpolicy_t *np = nt->nt_natpolicy;
577 1.26 rmind const u_int which = npf_nat_which(np->n_type, forw);
578 1.24 rmind const npf_addr_t *addr;
579 1.24 rmind in_port_t port;
580 1.24 rmind
581 1.24 rmind KASSERT(npf_iscached(npc, NPC_IP46));
582 1.24 rmind KASSERT(npf_iscached(npc, NPC_LAYER4));
583 1.24 rmind
584 1.24 rmind if (forw) {
585 1.24 rmind /* "Forwards" stream: use translation address/port. */
586 1.24 rmind addr = &np->n_taddr;
587 1.24 rmind port = nt->nt_tport;
588 1.24 rmind } else {
589 1.24 rmind /* "Backwards" stream: use original address/port. */
590 1.24 rmind addr = &nt->nt_oaddr;
591 1.24 rmind port = nt->nt_oport;
592 1.24 rmind }
593 1.24 rmind KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
594 1.24 rmind
595 1.26 rmind /* Execute ALG translation first. */
596 1.24 rmind if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
597 1.24 rmind npc->npc_info |= NPC_ALG_EXEC;
598 1.30 rmind npf_alg_exec(npc, nt, forw);
599 1.30 rmind npf_recache(npc);
600 1.24 rmind }
601 1.30 rmind KASSERT(!nbuf_flag_p(npc->npc_nbuf, NBUF_DATAREF_RESET));
602 1.24 rmind
603 1.24 rmind /* Finally, perform the translation. */
604 1.26 rmind return npf_napt_rwr(npc, which, addr, port);
605 1.24 rmind }
606 1.24 rmind
607 1.24 rmind /*
608 1.25 rmind * npf_nat_algo: perform the translation given the algorithm.
609 1.25 rmind */
610 1.29 rmind static inline int
611 1.25 rmind npf_nat_algo(npf_cache_t *npc, const npf_natpolicy_t *np, bool forw)
612 1.25 rmind {
613 1.26 rmind const u_int which = npf_nat_which(np->n_type, forw);
614 1.25 rmind int error;
615 1.25 rmind
616 1.25 rmind switch (np->n_algo) {
617 1.25 rmind case NPF_ALGO_NPT66:
618 1.25 rmind error = npf_npt66_rwr(npc, which, &np->n_taddr,
619 1.25 rmind np->n_tmask, np->n_npt66_adj);
620 1.25 rmind break;
621 1.25 rmind default:
622 1.26 rmind error = npf_napt_rwr(npc, which, &np->n_taddr, np->n_tport);
623 1.25 rmind break;
624 1.25 rmind }
625 1.25 rmind
626 1.25 rmind return error;
627 1.31 rmind }
628 1.25 rmind
629 1.25 rmind /*
630 1.2 rmind * npf_do_nat:
631 1.29 rmind * - Inspect packet for a NAT policy, unless a connection with a NAT
632 1.4 rmind * association already exists. In such case, determine whether it
633 1.2 rmind * is a "forwards" or "backwards" stream.
634 1.4 rmind * - Perform translation: rewrite source or destination fields,
635 1.4 rmind * depending on translation type and direction.
636 1.29 rmind * - Associate a NAT policy with a connection (may establish a new).
637 1.2 rmind */
638 1.2 rmind int
639 1.30 rmind npf_do_nat(npf_cache_t *npc, npf_conn_t *con, const int di)
640 1.2 rmind {
641 1.30 rmind nbuf_t *nbuf = npc->npc_nbuf;
642 1.29 rmind npf_conn_t *ncon = NULL;
643 1.1 rmind npf_natpolicy_t *np;
644 1.1 rmind npf_nat_t *nt;
645 1.1 rmind int error;
646 1.22 rmind bool forw;
647 1.1 rmind
648 1.1 rmind /* All relevant IPv4 data should be already cached. */
649 1.3 rmind if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
650 1.1 rmind return 0;
651 1.1 rmind }
652 1.18 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
653 1.1 rmind
654 1.2 rmind /*
655 1.29 rmind * Return the NAT entry associated with the connection, if any.
656 1.3 rmind * Determines whether the stream is "forwards" or "backwards".
657 1.29 rmind * Note: no need to lock, since reference on connection is held.
658 1.2 rmind */
659 1.29 rmind if (con && (nt = npf_conn_retnat(con, di, &forw)) != NULL) {
660 1.1 rmind np = nt->nt_natpolicy;
661 1.2 rmind goto translate;
662 1.1 rmind }
663 1.1 rmind
664 1.6 rmind /*
665 1.29 rmind * Inspect the packet for a NAT policy, if there is no connection.
666 1.19 rmind * Note: acquires a reference if found.
667 1.6 rmind */
668 1.30 rmind np = npf_nat_inspect(npc, di);
669 1.1 rmind if (np == NULL) {
670 1.1 rmind /* If packet does not match - done. */
671 1.1 rmind return 0;
672 1.1 rmind }
673 1.2 rmind forw = true;
674 1.1 rmind
675 1.24 rmind /* Static NAT - just perform the translation. */
676 1.24 rmind if (np->n_flags & NPF_NAT_STATIC) {
677 1.24 rmind if (nbuf_cksum_barrier(nbuf, di)) {
678 1.30 rmind npf_recache(npc);
679 1.24 rmind }
680 1.25 rmind error = npf_nat_algo(npc, np, forw);
681 1.24 rmind atomic_dec_uint(&np->n_refcnt);
682 1.24 rmind return error;
683 1.24 rmind }
684 1.24 rmind
685 1.4 rmind /*
686 1.29 rmind * If there is no local connection (no "stateful" rule - unusual,
687 1.29 rmind * but possible configuration), establish one before translation.
688 1.29 rmind * Note that it is not a "pass" connection, therefore passing of
689 1.29 rmind * "backwards" stream depends on other, stateless filtering rules.
690 1.29 rmind */
691 1.29 rmind if (con == NULL) {
692 1.30 rmind ncon = npf_conn_establish(npc, di, true);
693 1.29 rmind if (ncon == NULL) {
694 1.22 rmind atomic_dec_uint(&np->n_refcnt);
695 1.22 rmind return ENOMEM;
696 1.1 rmind }
697 1.29 rmind con = ncon;
698 1.1 rmind }
699 1.22 rmind
700 1.22 rmind /*
701 1.29 rmind * Create a new NAT entry and associate with the connection.
702 1.22 rmind * We will consume the reference on success (release on error).
703 1.22 rmind */
704 1.29 rmind nt = npf_nat_create(npc, np, con);
705 1.22 rmind if (nt == NULL) {
706 1.22 rmind atomic_dec_uint(&np->n_refcnt);
707 1.22 rmind error = ENOMEM;
708 1.22 rmind goto out;
709 1.22 rmind }
710 1.22 rmind
711 1.29 rmind /* Associate the NAT translation entry with the connection. */
712 1.29 rmind error = npf_conn_setnat(npc, con, nt, np->n_type);
713 1.2 rmind if (error) {
714 1.22 rmind /* Will release the reference. */
715 1.22 rmind npf_nat_destroy(nt);
716 1.1 rmind goto out;
717 1.1 rmind }
718 1.1 rmind
719 1.22 rmind /* Determine whether any ALG matches. */
720 1.30 rmind if (npf_alg_match(npc, nt, di)) {
721 1.22 rmind KASSERT(nt->nt_alg != NULL);
722 1.22 rmind }
723 1.22 rmind
724 1.22 rmind translate:
725 1.23 rmind /* May need to process the delayed checksums first (XXX: NetBSD). */
726 1.23 rmind if (nbuf_cksum_barrier(nbuf, di)) {
727 1.30 rmind npf_recache(npc);
728 1.23 rmind }
729 1.23 rmind
730 1.22 rmind /* Perform the translation. */
731 1.30 rmind error = npf_nat_translate(npc, nt, forw);
732 1.1 rmind out:
733 1.29 rmind if (__predict_false(ncon)) {
734 1.24 rmind if (error) {
735 1.24 rmind /* It created for NAT - just expire. */
736 1.29 rmind npf_conn_expire(ncon);
737 1.24 rmind }
738 1.29 rmind npf_conn_release(ncon);
739 1.1 rmind }
740 1.1 rmind return error;
741 1.1 rmind }
742 1.1 rmind
743 1.1 rmind /*
744 1.4 rmind * npf_nat_gettrans: return translation IP address and port.
745 1.4 rmind */
746 1.4 rmind void
747 1.4 rmind npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
748 1.4 rmind {
749 1.4 rmind npf_natpolicy_t *np = nt->nt_natpolicy;
750 1.4 rmind
751 1.4 rmind *addr = &np->n_taddr;
752 1.4 rmind *port = nt->nt_tport;
753 1.4 rmind }
754 1.4 rmind
755 1.4 rmind /*
756 1.2 rmind * npf_nat_getorig: return original IP address and port from translation entry.
757 1.1 rmind */
758 1.1 rmind void
759 1.3 rmind npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
760 1.1 rmind {
761 1.3 rmind *addr = &nt->nt_oaddr;
762 1.2 rmind *port = nt->nt_oport;
763 1.1 rmind }
764 1.1 rmind
765 1.3 rmind /*
766 1.3 rmind * npf_nat_setalg: associate an ALG with the NAT entry.
767 1.3 rmind */
768 1.1 rmind void
769 1.1 rmind npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
770 1.1 rmind {
771 1.1 rmind nt->nt_alg = alg;
772 1.1 rmind nt->nt_alg_arg = arg;
773 1.1 rmind }
774 1.1 rmind
775 1.1 rmind /*
776 1.29 rmind * npf_nat_destroy: destroy NAT structure (performed on connection expiration).
777 1.1 rmind */
778 1.1 rmind void
779 1.22 rmind npf_nat_destroy(npf_nat_t *nt)
780 1.1 rmind {
781 1.2 rmind npf_natpolicy_t *np = nt->nt_natpolicy;
782 1.1 rmind
783 1.4 rmind /* Return any taken port to the portmap. */
784 1.4 rmind if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
785 1.1 rmind npf_nat_putport(np, nt->nt_tport);
786 1.1 rmind }
787 1.4 rmind
788 1.4 rmind mutex_enter(&np->n_lock);
789 1.4 rmind LIST_REMOVE(nt, nt_entry);
790 1.19 rmind atomic_dec_uint(&np->n_refcnt);
791 1.4 rmind mutex_exit(&np->n_lock);
792 1.4 rmind
793 1.1 rmind pool_cache_put(nat_cache, nt);
794 1.4 rmind npf_stats_inc(NPF_STAT_NAT_DESTROY);
795 1.4 rmind }
796 1.4 rmind
797 1.4 rmind /*
798 1.31 rmind * npf_nat_export: serialise the NAT entry with a NAT policy ID.
799 1.4 rmind */
800 1.31 rmind void
801 1.31 rmind npf_nat_export(prop_dictionary_t condict, npf_nat_t *nt)
802 1.4 rmind {
803 1.4 rmind npf_natpolicy_t *np = nt->nt_natpolicy;
804 1.31 rmind prop_dictionary_t natdict;
805 1.31 rmind prop_data_t d;
806 1.4 rmind
807 1.31 rmind natdict = prop_dictionary_create();
808 1.31 rmind d = prop_data_create_data(&nt->nt_oaddr, sizeof(npf_addr_t));
809 1.31 rmind prop_dictionary_set_and_rel(natdict, "oaddr", d);
810 1.31 rmind prop_dictionary_set_uint16(natdict, "oport", nt->nt_oport);
811 1.31 rmind prop_dictionary_set_uint16(natdict, "tport", nt->nt_tport);
812 1.31 rmind prop_dictionary_set_uint64(natdict, "nat-policy", np->n_id);
813 1.31 rmind prop_dictionary_set_and_rel(condict, "nat", natdict);
814 1.4 rmind }
815 1.4 rmind
816 1.4 rmind /*
817 1.31 rmind * npf_nat_import: find the NAT policy and unserialise the NAT entry.
818 1.4 rmind */
819 1.4 rmind npf_nat_t *
820 1.31 rmind npf_nat_import(prop_dictionary_t natdict, npf_ruleset_t *natlist,
821 1.31 rmind npf_conn_t *con)
822 1.4 rmind {
823 1.4 rmind npf_natpolicy_t *np;
824 1.4 rmind npf_nat_t *nt;
825 1.31 rmind uint64_t np_id;
826 1.31 rmind const void *d;
827 1.4 rmind
828 1.31 rmind prop_dictionary_get_uint64(natdict, "nat-policy", &np_id);
829 1.31 rmind if ((np = npf_ruleset_findnat(natlist, np_id)) == NULL) {
830 1.4 rmind return NULL;
831 1.4 rmind }
832 1.31 rmind nt = pool_cache_get(nat_cache, PR_WAITOK);
833 1.31 rmind memset(nt, 0, sizeof(npf_nat_t));
834 1.4 rmind
835 1.31 rmind prop_object_t obj = prop_dictionary_get(natdict, "oaddr");
836 1.31 rmind if ((d = prop_data_data_nocopy(obj)) == NULL ||
837 1.31 rmind prop_data_size(obj) != sizeof(npf_addr_t)) {
838 1.31 rmind pool_cache_put(nat_cache, nt);
839 1.4 rmind return NULL;
840 1.4 rmind }
841 1.31 rmind memcpy(&nt->nt_oaddr, d, sizeof(npf_addr_t));
842 1.31 rmind prop_dictionary_get_uint16(natdict, "oport", &nt->nt_oport);
843 1.31 rmind prop_dictionary_get_uint16(natdict, "tport", &nt->nt_tport);
844 1.4 rmind
845 1.4 rmind /* Take a specific port from port-map. */
846 1.31 rmind if (!npf_nat_takeport(np, nt->nt_tport)) {
847 1.31 rmind pool_cache_put(nat_cache, nt);
848 1.4 rmind return NULL;
849 1.4 rmind }
850 1.4 rmind
851 1.4 rmind LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
852 1.4 rmind nt->nt_natpolicy = np;
853 1.29 rmind nt->nt_conn = con;
854 1.4 rmind return nt;
855 1.1 rmind }
856 1.1 rmind
857 1.1 rmind #if defined(DDB) || defined(_NPF_TESTING)
858 1.1 rmind
859 1.1 rmind void
860 1.14 rmind npf_nat_dump(const npf_nat_t *nt)
861 1.1 rmind {
862 1.14 rmind const npf_natpolicy_t *np;
863 1.1 rmind struct in_addr ip;
864 1.1 rmind
865 1.4 rmind np = nt->nt_natpolicy;
866 1.4 rmind memcpy(&ip, &np->n_taddr, sizeof(ip));
867 1.4 rmind printf("\tNATP(%p): type %d flags 0x%x taddr %s tport %d\n",
868 1.4 rmind np, np->n_type, np->n_flags, inet_ntoa(ip), np->n_tport);
869 1.4 rmind memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
870 1.4 rmind printf("\tNAT: original address %s oport %d tport %d\n",
871 1.4 rmind inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
872 1.4 rmind if (nt->nt_alg) {
873 1.4 rmind printf("\tNAT ALG = %p, ARG = %p\n",
874 1.4 rmind nt->nt_alg, (void *)nt->nt_alg_arg);
875 1.1 rmind }
876 1.1 rmind }
877 1.1 rmind
878 1.1 rmind #endif
879