npf_nat.c revision 1.35 1 1.35 rmind /* $NetBSD: npf_nat.c,v 1.35 2014/11/26 21:25:35 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.25 rmind * Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
5 1.19 rmind * Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
6 1.1 rmind * All rights reserved.
7 1.1 rmind *
8 1.1 rmind * This material is based upon work partially supported by The
9 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
10 1.1 rmind *
11 1.1 rmind * Redistribution and use in source and binary forms, with or without
12 1.1 rmind * modification, are permitted provided that the following conditions
13 1.1 rmind * are met:
14 1.1 rmind * 1. Redistributions of source code must retain the above copyright
15 1.1 rmind * notice, this list of conditions and the following disclaimer.
16 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 rmind * notice, this list of conditions and the following disclaimer in the
18 1.1 rmind * documentation and/or other materials provided with the distribution.
19 1.1 rmind *
20 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
31 1.1 rmind */
32 1.1 rmind
33 1.1 rmind /*
34 1.19 rmind * NPF network address port translation (NAPT) and other forms of NAT.
35 1.19 rmind * Described in RFC 2663, RFC 3022, etc.
36 1.1 rmind *
37 1.1 rmind * Overview
38 1.1 rmind *
39 1.1 rmind * There are few mechanisms: NAT policy, port map and translation.
40 1.1 rmind * NAT module has a separate ruleset, where rules contain associated
41 1.1 rmind * NAT policy, thus flexible filter criteria can be used.
42 1.1 rmind *
43 1.2 rmind * Translation types
44 1.2 rmind *
45 1.2 rmind * There are two types of translation: outbound (NPF_NATOUT) and
46 1.2 rmind * inbound (NPF_NATIN). It should not be confused with connection
47 1.23 rmind * direction. See npf_nat_which() for the description of how the
48 1.23 rmind * addresses are rewritten.
49 1.2 rmind *
50 1.2 rmind * It should be noted that bi-directional NAT is a combined outbound
51 1.2 rmind * and inbound translation, therefore constructed as two policies.
52 1.2 rmind *
53 1.1 rmind * NAT policies and port maps
54 1.1 rmind *
55 1.2 rmind * NAT (translation) policy is applied when a packet matches the rule.
56 1.2 rmind * Apart from filter criteria, NAT policy has a translation IP address
57 1.1 rmind * and associated port map. Port map is a bitmap used to reserve and
58 1.1 rmind * use unique TCP/UDP ports for translation. Port maps are unique to
59 1.1 rmind * the IP addresses, therefore multiple NAT policies with the same IP
60 1.1 rmind * will share the same port map.
61 1.1 rmind *
62 1.29 rmind * Connections, translation entries and their life-cycle
63 1.1 rmind *
64 1.29 rmind * NAT module relies on connection tracking module. Each translated
65 1.29 rmind * connection has an associated translation entry (npf_nat_t), which
66 1.4 rmind * contains information used for backwards stream translation, i.e.
67 1.4 rmind * original IP address with port and translation port, allocated from
68 1.4 rmind * the port map. Each NAT entry is associated with the policy, which
69 1.4 rmind * contains translation IP address. Allocated port is returned to the
70 1.29 rmind * port map and NAT entry is destroyed when connection expires.
71 1.1 rmind */
72 1.1 rmind
73 1.1 rmind #include <sys/cdefs.h>
74 1.35 rmind __KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.35 2014/11/26 21:25:35 rmind Exp $");
75 1.1 rmind
76 1.1 rmind #include <sys/param.h>
77 1.11 rmind #include <sys/types.h>
78 1.1 rmind
79 1.1 rmind #include <sys/atomic.h>
80 1.1 rmind #include <sys/bitops.h>
81 1.4 rmind #include <sys/condvar.h>
82 1.1 rmind #include <sys/kmem.h>
83 1.4 rmind #include <sys/mutex.h>
84 1.1 rmind #include <sys/pool.h>
85 1.19 rmind #include <sys/proc.h>
86 1.8 tls #include <sys/cprng.h>
87 1.8 tls
88 1.1 rmind #include <net/pfil.h>
89 1.1 rmind #include <netinet/in.h>
90 1.1 rmind
91 1.1 rmind #include "npf_impl.h"
92 1.29 rmind #include "npf_conn.h"
93 1.1 rmind
94 1.1 rmind /*
95 1.1 rmind * NPF portmap structure.
96 1.1 rmind */
97 1.1 rmind typedef struct {
98 1.4 rmind u_int p_refcnt;
99 1.4 rmind uint32_t p_bitmap[0];
100 1.1 rmind } npf_portmap_t;
101 1.1 rmind
102 1.1 rmind /* Portmap range: [ 1024 .. 65535 ] */
103 1.4 rmind #define PORTMAP_FIRST (1024)
104 1.4 rmind #define PORTMAP_SIZE ((65536 - PORTMAP_FIRST) / 32)
105 1.25 rmind #define PORTMAP_FILLED ((uint32_t)~0U)
106 1.4 rmind #define PORTMAP_MASK (31)
107 1.4 rmind #define PORTMAP_SHIFT (5)
108 1.4 rmind
109 1.4 rmind #define PORTMAP_MEM_SIZE \
110 1.4 rmind (sizeof(npf_portmap_t) + (PORTMAP_SIZE * sizeof(uint32_t)))
111 1.1 rmind
112 1.12 rmind /*
113 1.12 rmind * NAT policy structure.
114 1.12 rmind */
115 1.1 rmind struct npf_natpolicy {
116 1.31 rmind kmutex_t n_lock;
117 1.4 rmind LIST_HEAD(, npf_nat) n_nat_list;
118 1.19 rmind volatile u_int n_refcnt;
119 1.4 rmind npf_portmap_t * n_portmap;
120 1.31 rmind uint64_t n_id;
121 1.31 rmind
122 1.31 rmind /*
123 1.31 rmind * Translation type, flags and address. Optionally, prefix
124 1.31 rmind * for the NPTv6 and translation port. Translation algorithm
125 1.31 rmind * and related data (for NPTv6, the adjustment value).
126 1.31 rmind *
127 1.31 rmind * NPF_NP_CMP_START mark starts here.
128 1.31 rmind */
129 1.4 rmind int n_type;
130 1.6 rmind u_int n_flags;
131 1.31 rmind u_int n_alen;
132 1.4 rmind npf_addr_t n_taddr;
133 1.25 rmind npf_netmask_t n_tmask;
134 1.4 rmind in_port_t n_tport;
135 1.25 rmind u_int n_algo;
136 1.25 rmind union {
137 1.25 rmind uint16_t n_npt66_adj;
138 1.25 rmind };
139 1.1 rmind };
140 1.1 rmind
141 1.4 rmind #define NPF_NP_CMP_START offsetof(npf_natpolicy_t, n_type)
142 1.4 rmind #define NPF_NP_CMP_SIZE (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
143 1.4 rmind
144 1.12 rmind /*
145 1.29 rmind * NAT translation entry for a connection.
146 1.12 rmind */
147 1.1 rmind struct npf_nat {
148 1.28 rmind /* Associated NAT policy. */
149 1.4 rmind npf_natpolicy_t * nt_natpolicy;
150 1.28 rmind
151 1.28 rmind /*
152 1.28 rmind * Original address and port (for backwards translation).
153 1.28 rmind * Translation port (for redirects).
154 1.28 rmind */
155 1.4 rmind npf_addr_t nt_oaddr;
156 1.4 rmind in_port_t nt_oport;
157 1.4 rmind in_port_t nt_tport;
158 1.28 rmind
159 1.1 rmind /* ALG (if any) associated with this NAT entry. */
160 1.4 rmind npf_alg_t * nt_alg;
161 1.4 rmind uintptr_t nt_alg_arg;
162 1.28 rmind
163 1.28 rmind LIST_ENTRY(npf_nat) nt_entry;
164 1.29 rmind npf_conn_t * nt_conn;
165 1.1 rmind };
166 1.1 rmind
167 1.4 rmind static pool_cache_t nat_cache __read_mostly;
168 1.1 rmind
169 1.1 rmind /*
170 1.1 rmind * npf_nat_sys{init,fini}: initialise/destroy NAT subsystem structures.
171 1.1 rmind */
172 1.1 rmind
173 1.1 rmind void
174 1.1 rmind npf_nat_sysinit(void)
175 1.1 rmind {
176 1.1 rmind nat_cache = pool_cache_init(sizeof(npf_nat_t), coherency_unit,
177 1.1 rmind 0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
178 1.1 rmind KASSERT(nat_cache != NULL);
179 1.1 rmind }
180 1.1 rmind
181 1.1 rmind void
182 1.1 rmind npf_nat_sysfini(void)
183 1.1 rmind {
184 1.23 rmind /* All NAT policies should already be destroyed. */
185 1.1 rmind pool_cache_destroy(nat_cache);
186 1.1 rmind }
187 1.1 rmind
188 1.1 rmind /*
189 1.2 rmind * npf_nat_newpolicy: create a new NAT policy.
190 1.1 rmind *
191 1.1 rmind * => Shares portmap if policy is on existing translation address.
192 1.1 rmind */
193 1.1 rmind npf_natpolicy_t *
194 1.31 rmind npf_nat_newpolicy(prop_dictionary_t natdict, npf_ruleset_t *rset)
195 1.1 rmind {
196 1.5 rmind npf_natpolicy_t *np;
197 1.4 rmind prop_object_t obj;
198 1.1 rmind npf_portmap_t *pm;
199 1.1 rmind
200 1.1 rmind np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
201 1.4 rmind
202 1.33 rmind /* The translation type, flags and policy ID. */
203 1.6 rmind prop_dictionary_get_int32(natdict, "type", &np->n_type);
204 1.6 rmind prop_dictionary_get_uint32(natdict, "flags", &np->n_flags);
205 1.33 rmind prop_dictionary_get_uint64(natdict, "nat-policy", &np->n_id);
206 1.10 rmind
207 1.10 rmind /* Should be exclusively either inbound or outbound NAT. */
208 1.10 rmind if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
209 1.25 rmind goto err;
210 1.10 rmind }
211 1.10 rmind mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
212 1.10 rmind LIST_INIT(&np->n_nat_list);
213 1.4 rmind
214 1.25 rmind /* Translation IP, mask and port (if applicable). */
215 1.32 rmind obj = prop_dictionary_get(natdict, "nat-ip");
216 1.31 rmind np->n_alen = prop_data_size(obj);
217 1.31 rmind if (np->n_alen == 0 || np->n_alen > sizeof(npf_addr_t)) {
218 1.25 rmind goto err;
219 1.25 rmind }
220 1.31 rmind memcpy(&np->n_taddr, prop_data_data_nocopy(obj), np->n_alen);
221 1.32 rmind prop_dictionary_get_uint8(natdict, "nat-mask", &np->n_tmask);
222 1.32 rmind prop_dictionary_get_uint16(natdict, "nat-port", &np->n_tport);
223 1.4 rmind
224 1.32 rmind prop_dictionary_get_uint32(natdict, "nat-algo", &np->n_algo);
225 1.25 rmind switch (np->n_algo) {
226 1.25 rmind case NPF_ALGO_NPT66:
227 1.32 rmind prop_dictionary_get_uint16(natdict, "npt66-adj",
228 1.25 rmind &np->n_npt66_adj);
229 1.25 rmind break;
230 1.25 rmind default:
231 1.25 rmind if (np->n_tmask != NPF_NO_NETMASK)
232 1.25 rmind goto err;
233 1.25 rmind break;
234 1.25 rmind }
235 1.2 rmind
236 1.5 rmind /* Determine if port map is needed. */
237 1.5 rmind np->n_portmap = NULL;
238 1.4 rmind if ((np->n_flags & NPF_NAT_PORTMAP) == 0) {
239 1.5 rmind /* No port map. */
240 1.5 rmind return np;
241 1.2 rmind }
242 1.1 rmind
243 1.5 rmind /*
244 1.5 rmind * Inspect NAT policies in the ruleset for port map sharing.
245 1.5 rmind * Note that npf_ruleset_sharepm() will increase the reference count.
246 1.5 rmind */
247 1.31 rmind if (!npf_ruleset_sharepm(rset, np)) {
248 1.1 rmind /* Allocate a new port map for the NAT policy. */
249 1.4 rmind pm = kmem_zalloc(PORTMAP_MEM_SIZE, KM_SLEEP);
250 1.1 rmind pm->p_refcnt = 1;
251 1.1 rmind KASSERT((uintptr_t)pm->p_bitmap == (uintptr_t)pm + sizeof(*pm));
252 1.5 rmind np->n_portmap = pm;
253 1.1 rmind } else {
254 1.5 rmind KASSERT(np->n_portmap != NULL);
255 1.1 rmind }
256 1.1 rmind return np;
257 1.25 rmind err:
258 1.25 rmind kmem_free(np, sizeof(npf_natpolicy_t));
259 1.25 rmind return NULL;
260 1.1 rmind }
261 1.1 rmind
262 1.32 rmind int
263 1.32 rmind npf_nat_policyexport(const npf_natpolicy_t *np, prop_dictionary_t natdict)
264 1.32 rmind {
265 1.32 rmind prop_data_t d;
266 1.32 rmind
267 1.32 rmind prop_dictionary_set_int32(natdict, "type", np->n_type);
268 1.32 rmind prop_dictionary_set_uint32(natdict, "flags", np->n_flags);
269 1.32 rmind
270 1.32 rmind d = prop_data_create_data(&np->n_taddr, np->n_alen);
271 1.32 rmind prop_dictionary_set_and_rel(natdict, "nat-ip", d);
272 1.32 rmind
273 1.32 rmind prop_dictionary_set_uint8(natdict, "nat-mask", np->n_tmask);
274 1.32 rmind prop_dictionary_set_uint16(natdict, "nat-port", np->n_tport);
275 1.32 rmind prop_dictionary_set_uint32(natdict, "nat-algo", np->n_algo);
276 1.32 rmind
277 1.32 rmind switch (np->n_algo) {
278 1.32 rmind case NPF_ALGO_NPT66:
279 1.32 rmind prop_dictionary_set_uint16(natdict, "npt66-adj", np->n_npt66_adj);
280 1.32 rmind break;
281 1.32 rmind }
282 1.32 rmind prop_dictionary_set_uint64(natdict, "nat-policy", np->n_id);
283 1.32 rmind return 0;
284 1.32 rmind }
285 1.32 rmind
286 1.1 rmind /*
287 1.1 rmind * npf_nat_freepolicy: free NAT policy and, on last reference, free portmap.
288 1.1 rmind *
289 1.4 rmind * => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
290 1.1 rmind */
291 1.1 rmind void
292 1.1 rmind npf_nat_freepolicy(npf_natpolicy_t *np)
293 1.1 rmind {
294 1.1 rmind npf_portmap_t *pm = np->n_portmap;
295 1.29 rmind npf_conn_t *con;
296 1.4 rmind npf_nat_t *nt;
297 1.1 rmind
298 1.22 rmind /*
299 1.22 rmind * Disassociate all entries from the policy. At this point,
300 1.22 rmind * new entries can no longer be created for this policy.
301 1.22 rmind */
302 1.28 rmind while (np->n_refcnt) {
303 1.28 rmind mutex_enter(&np->n_lock);
304 1.28 rmind LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
305 1.29 rmind con = nt->nt_conn;
306 1.29 rmind KASSERT(con != NULL);
307 1.29 rmind npf_conn_expire(con);
308 1.28 rmind }
309 1.28 rmind mutex_exit(&np->n_lock);
310 1.4 rmind
311 1.28 rmind /* Kick the worker - all references should be going away. */
312 1.28 rmind npf_worker_signal();
313 1.19 rmind kpause("npfgcnat", false, 1, NULL);
314 1.19 rmind }
315 1.22 rmind KASSERT(LIST_EMPTY(&np->n_nat_list));
316 1.35 rmind KASSERT(pm == NULL || pm->p_refcnt > 0);
317 1.19 rmind
318 1.4 rmind /* Destroy the port map, on last reference. */
319 1.35 rmind if (pm && atomic_dec_uint_nv(&pm->p_refcnt) == 0) {
320 1.2 rmind KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
321 1.4 rmind kmem_free(pm, PORTMAP_MEM_SIZE);
322 1.1 rmind }
323 1.4 rmind mutex_destroy(&np->n_lock);
324 1.1 rmind kmem_free(np, sizeof(npf_natpolicy_t));
325 1.1 rmind }
326 1.1 rmind
327 1.13 rmind void
328 1.15 rmind npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
329 1.13 rmind {
330 1.15 rmind npf_nat_t *nt;
331 1.15 rmind
332 1.15 rmind mutex_enter(&np->n_lock);
333 1.15 rmind LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
334 1.31 rmind if (nt->nt_alg == alg)
335 1.31 rmind nt->nt_alg = NULL;
336 1.15 rmind }
337 1.15 rmind mutex_exit(&np->n_lock);
338 1.13 rmind }
339 1.13 rmind
340 1.5 rmind /*
341 1.31 rmind * npf_nat_cmppolicy: compare two NAT policies.
342 1.5 rmind *
343 1.5 rmind * => Return 0 on match, and non-zero otherwise.
344 1.5 rmind */
345 1.4 rmind bool
346 1.31 rmind npf_nat_cmppolicy(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
347 1.1 rmind {
348 1.31 rmind const void *np_raw, *mnp_raw;
349 1.31 rmind
350 1.4 rmind /*
351 1.4 rmind * Compare the relevant NAT policy information (in raw form),
352 1.4 rmind * which is enough for matching criterion.
353 1.4 rmind */
354 1.5 rmind KASSERT(np && mnp && np != mnp);
355 1.31 rmind np_raw = (const uint8_t *)np + NPF_NP_CMP_START;
356 1.31 rmind mnp_raw = (const uint8_t *)mnp + NPF_NP_CMP_START;
357 1.31 rmind return memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0;
358 1.1 rmind }
359 1.1 rmind
360 1.5 rmind bool
361 1.5 rmind npf_nat_sharepm(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
362 1.5 rmind {
363 1.5 rmind npf_portmap_t *pm, *mpm;
364 1.5 rmind
365 1.5 rmind KASSERT(np && mnp && np != mnp);
366 1.5 rmind
367 1.5 rmind /* Using port map and having equal translation address? */
368 1.5 rmind if ((np->n_flags & mnp->n_flags & NPF_NAT_PORTMAP) == 0) {
369 1.5 rmind return false;
370 1.5 rmind }
371 1.31 rmind if (np->n_alen != mnp->n_alen) {
372 1.5 rmind return false;
373 1.5 rmind }
374 1.31 rmind if (memcmp(&np->n_taddr, &mnp->n_taddr, np->n_alen) != 0) {
375 1.5 rmind return false;
376 1.5 rmind }
377 1.5 rmind mpm = mnp->n_portmap;
378 1.35 rmind KASSERT(mpm == NULL || mpm->p_refcnt > 0);
379 1.35 rmind
380 1.35 rmind /*
381 1.35 rmind * If NAT policy has an old port map - drop the reference
382 1.35 rmind * and destroy the port map if it was the last.
383 1.35 rmind */
384 1.35 rmind if (mpm && atomic_dec_uint_nv(&mpm->p_refcnt) == 0) {
385 1.35 rmind kmem_free(mpm, PORTMAP_MEM_SIZE);
386 1.5 rmind }
387 1.35 rmind
388 1.5 rmind /* Share the port map. */
389 1.5 rmind pm = np->n_portmap;
390 1.35 rmind atomic_inc_uint(&pm->p_refcnt);
391 1.5 rmind mnp->n_portmap = pm;
392 1.5 rmind return true;
393 1.5 rmind }
394 1.5 rmind
395 1.31 rmind void
396 1.31 rmind npf_nat_setid(npf_natpolicy_t *np, uint64_t id)
397 1.31 rmind {
398 1.31 rmind np->n_id = id;
399 1.31 rmind }
400 1.31 rmind
401 1.31 rmind uint64_t
402 1.31 rmind npf_nat_getid(const npf_natpolicy_t *np)
403 1.31 rmind {
404 1.31 rmind return np->n_id;
405 1.31 rmind }
406 1.31 rmind
407 1.1 rmind /*
408 1.1 rmind * npf_nat_getport: allocate and return a port in the NAT policy portmap.
409 1.1 rmind *
410 1.1 rmind * => Returns in network byte-order.
411 1.1 rmind * => Zero indicates failure.
412 1.1 rmind */
413 1.1 rmind static in_port_t
414 1.1 rmind npf_nat_getport(npf_natpolicy_t *np)
415 1.1 rmind {
416 1.1 rmind npf_portmap_t *pm = np->n_portmap;
417 1.1 rmind u_int n = PORTMAP_SIZE, idx, bit;
418 1.1 rmind uint32_t map, nmap;
419 1.1 rmind
420 1.8 tls idx = cprng_fast32() % PORTMAP_SIZE;
421 1.1 rmind for (;;) {
422 1.1 rmind KASSERT(idx < PORTMAP_SIZE);
423 1.1 rmind map = pm->p_bitmap[idx];
424 1.1 rmind if (__predict_false(map == PORTMAP_FILLED)) {
425 1.1 rmind if (n-- == 0) {
426 1.1 rmind /* No space. */
427 1.1 rmind return 0;
428 1.1 rmind }
429 1.2 rmind /* This bitmap is filled, next. */
430 1.1 rmind idx = (idx ? idx : PORTMAP_SIZE) - 1;
431 1.1 rmind continue;
432 1.1 rmind }
433 1.1 rmind bit = ffs32(~map) - 1;
434 1.1 rmind nmap = map | (1 << bit);
435 1.1 rmind if (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map) {
436 1.1 rmind /* Success. */
437 1.1 rmind break;
438 1.1 rmind }
439 1.1 rmind }
440 1.1 rmind return htons(PORTMAP_FIRST + (idx << PORTMAP_SHIFT) + bit);
441 1.1 rmind }
442 1.1 rmind
443 1.1 rmind /*
444 1.4 rmind * npf_nat_takeport: allocate specific port in the NAT policy portmap.
445 1.4 rmind */
446 1.4 rmind static bool
447 1.4 rmind npf_nat_takeport(npf_natpolicy_t *np, in_port_t port)
448 1.4 rmind {
449 1.4 rmind npf_portmap_t *pm = np->n_portmap;
450 1.4 rmind uint32_t map, nmap;
451 1.4 rmind u_int idx, bit;
452 1.4 rmind
453 1.4 rmind port = ntohs(port) - PORTMAP_FIRST;
454 1.4 rmind idx = port >> PORTMAP_SHIFT;
455 1.4 rmind bit = port & PORTMAP_MASK;
456 1.4 rmind map = pm->p_bitmap[idx];
457 1.4 rmind nmap = map | (1 << bit);
458 1.4 rmind if (map == nmap) {
459 1.4 rmind /* Already taken. */
460 1.4 rmind return false;
461 1.4 rmind }
462 1.4 rmind return atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map;
463 1.4 rmind }
464 1.4 rmind
465 1.4 rmind /*
466 1.1 rmind * npf_nat_putport: return port as available in the NAT policy portmap.
467 1.1 rmind *
468 1.1 rmind * => Port should be in network byte-order.
469 1.1 rmind */
470 1.1 rmind static void
471 1.1 rmind npf_nat_putport(npf_natpolicy_t *np, in_port_t port)
472 1.1 rmind {
473 1.1 rmind npf_portmap_t *pm = np->n_portmap;
474 1.1 rmind uint32_t map, nmap;
475 1.1 rmind u_int idx, bit;
476 1.1 rmind
477 1.1 rmind port = ntohs(port) - PORTMAP_FIRST;
478 1.1 rmind idx = port >> PORTMAP_SHIFT;
479 1.1 rmind bit = port & PORTMAP_MASK;
480 1.1 rmind do {
481 1.1 rmind map = pm->p_bitmap[idx];
482 1.1 rmind KASSERT(map | (1 << bit));
483 1.1 rmind nmap = map & ~(1 << bit);
484 1.1 rmind } while (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) != map);
485 1.1 rmind }
486 1.1 rmind
487 1.1 rmind /*
488 1.23 rmind * npf_nat_which: tell which address (source or destination) should be
489 1.23 rmind * rewritten given the combination of the NAT type and flow direction.
490 1.23 rmind */
491 1.23 rmind static inline u_int
492 1.23 rmind npf_nat_which(const int type, bool forw)
493 1.23 rmind {
494 1.23 rmind /*
495 1.23 rmind * Outbound NAT rewrites:
496 1.24 rmind * - Source (NPF_SRC) on "forwards" stream.
497 1.24 rmind * - Destination (NPF_DST) on "backwards" stream.
498 1.23 rmind * Inbound NAT is other way round.
499 1.23 rmind */
500 1.23 rmind if (type == NPF_NATOUT) {
501 1.23 rmind forw = !forw;
502 1.23 rmind } else {
503 1.23 rmind KASSERT(type == NPF_NATIN);
504 1.23 rmind }
505 1.23 rmind CTASSERT(NPF_SRC == 0 && NPF_DST == 1);
506 1.24 rmind KASSERT(forw == NPF_SRC || forw == NPF_DST);
507 1.23 rmind return (u_int)forw;
508 1.23 rmind }
509 1.23 rmind
510 1.23 rmind /*
511 1.2 rmind * npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
512 1.19 rmind *
513 1.19 rmind * => Acquire a reference on the policy, if found.
514 1.2 rmind */
515 1.2 rmind static npf_natpolicy_t *
516 1.30 rmind npf_nat_inspect(npf_cache_t *npc, const int di)
517 1.2 rmind {
518 1.19 rmind int slock = npf_config_read_enter();
519 1.19 rmind npf_ruleset_t *rlset = npf_config_natset();
520 1.6 rmind npf_natpolicy_t *np;
521 1.2 rmind npf_rule_t *rl;
522 1.2 rmind
523 1.30 rmind rl = npf_ruleset_inspect(npc, rlset, di, NPF_LAYER_3);
524 1.6 rmind if (rl == NULL) {
525 1.19 rmind npf_config_read_exit(slock);
526 1.6 rmind return NULL;
527 1.6 rmind }
528 1.6 rmind np = npf_rule_getnat(rl);
529 1.19 rmind atomic_inc_uint(&np->n_refcnt);
530 1.19 rmind npf_config_read_exit(slock);
531 1.6 rmind return np;
532 1.2 rmind }
533 1.2 rmind
534 1.2 rmind /*
535 1.2 rmind * npf_nat_create: create a new NAT translation entry.
536 1.1 rmind */
537 1.2 rmind static npf_nat_t *
538 1.29 rmind npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np, npf_conn_t *con)
539 1.1 rmind {
540 1.19 rmind const int proto = npc->npc_proto;
541 1.2 rmind npf_nat_t *nt;
542 1.2 rmind
543 1.7 zoltan KASSERT(npf_iscached(npc, NPC_IP46));
544 1.7 zoltan KASSERT(npf_iscached(npc, NPC_LAYER4));
545 1.3 rmind
546 1.29 rmind /* Construct a new NAT entry and associate it with the connection. */
547 1.2 rmind nt = pool_cache_get(nat_cache, PR_NOWAIT);
548 1.2 rmind if (nt == NULL){
549 1.2 rmind return NULL;
550 1.2 rmind }
551 1.4 rmind npf_stats_inc(NPF_STAT_NAT_CREATE);
552 1.5 rmind nt->nt_natpolicy = np;
553 1.29 rmind nt->nt_conn = con;
554 1.5 rmind nt->nt_alg = NULL;
555 1.5 rmind
556 1.2 rmind /* Save the original address which may be rewritten. */
557 1.2 rmind if (np->n_type == NPF_NATOUT) {
558 1.23 rmind /* Outbound NAT: source (think internal) address. */
559 1.23 rmind memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_SRC], npc->npc_alen);
560 1.2 rmind } else {
561 1.23 rmind /* Inbound NAT: destination (think external) address. */
562 1.2 rmind KASSERT(np->n_type == NPF_NATIN);
563 1.23 rmind memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_DST], npc->npc_alen);
564 1.2 rmind }
565 1.2 rmind
566 1.2 rmind /*
567 1.2 rmind * Port translation, if required, and if it is TCP/UDP.
568 1.2 rmind */
569 1.2 rmind if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
570 1.2 rmind (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
571 1.2 rmind nt->nt_oport = 0;
572 1.2 rmind nt->nt_tport = 0;
573 1.12 rmind goto out;
574 1.2 rmind }
575 1.12 rmind
576 1.3 rmind /* Save the relevant TCP/UDP port. */
577 1.3 rmind if (proto == IPPROTO_TCP) {
578 1.18 rmind const struct tcphdr *th = npc->npc_l4.tcp;
579 1.3 rmind nt->nt_oport = (np->n_type == NPF_NATOUT) ?
580 1.3 rmind th->th_sport : th->th_dport;
581 1.2 rmind } else {
582 1.18 rmind const struct udphdr *uh = npc->npc_l4.udp;
583 1.3 rmind nt->nt_oport = (np->n_type == NPF_NATOUT) ?
584 1.3 rmind uh->uh_sport : uh->uh_dport;
585 1.2 rmind }
586 1.3 rmind
587 1.2 rmind /* Get a new port for translation. */
588 1.2 rmind if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
589 1.2 rmind nt->nt_tport = npf_nat_getport(np);
590 1.2 rmind } else {
591 1.2 rmind nt->nt_tport = np->n_tport;
592 1.2 rmind }
593 1.12 rmind out:
594 1.12 rmind mutex_enter(&np->n_lock);
595 1.12 rmind LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
596 1.12 rmind mutex_exit(&np->n_lock);
597 1.2 rmind return nt;
598 1.2 rmind }
599 1.2 rmind
600 1.2 rmind /*
601 1.24 rmind * npf_nat_translate: perform translation given the state data.
602 1.24 rmind */
603 1.26 rmind static inline int
604 1.30 rmind npf_nat_translate(npf_cache_t *npc, npf_nat_t *nt, bool forw)
605 1.24 rmind {
606 1.24 rmind const npf_natpolicy_t *np = nt->nt_natpolicy;
607 1.26 rmind const u_int which = npf_nat_which(np->n_type, forw);
608 1.24 rmind const npf_addr_t *addr;
609 1.24 rmind in_port_t port;
610 1.24 rmind
611 1.24 rmind KASSERT(npf_iscached(npc, NPC_IP46));
612 1.24 rmind KASSERT(npf_iscached(npc, NPC_LAYER4));
613 1.24 rmind
614 1.24 rmind if (forw) {
615 1.24 rmind /* "Forwards" stream: use translation address/port. */
616 1.24 rmind addr = &np->n_taddr;
617 1.24 rmind port = nt->nt_tport;
618 1.24 rmind } else {
619 1.24 rmind /* "Backwards" stream: use original address/port. */
620 1.24 rmind addr = &nt->nt_oaddr;
621 1.24 rmind port = nt->nt_oport;
622 1.24 rmind }
623 1.24 rmind KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
624 1.24 rmind
625 1.26 rmind /* Execute ALG translation first. */
626 1.24 rmind if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
627 1.24 rmind npc->npc_info |= NPC_ALG_EXEC;
628 1.30 rmind npf_alg_exec(npc, nt, forw);
629 1.30 rmind npf_recache(npc);
630 1.24 rmind }
631 1.30 rmind KASSERT(!nbuf_flag_p(npc->npc_nbuf, NBUF_DATAREF_RESET));
632 1.24 rmind
633 1.24 rmind /* Finally, perform the translation. */
634 1.26 rmind return npf_napt_rwr(npc, which, addr, port);
635 1.24 rmind }
636 1.24 rmind
637 1.24 rmind /*
638 1.25 rmind * npf_nat_algo: perform the translation given the algorithm.
639 1.25 rmind */
640 1.29 rmind static inline int
641 1.25 rmind npf_nat_algo(npf_cache_t *npc, const npf_natpolicy_t *np, bool forw)
642 1.25 rmind {
643 1.26 rmind const u_int which = npf_nat_which(np->n_type, forw);
644 1.25 rmind int error;
645 1.25 rmind
646 1.25 rmind switch (np->n_algo) {
647 1.25 rmind case NPF_ALGO_NPT66:
648 1.25 rmind error = npf_npt66_rwr(npc, which, &np->n_taddr,
649 1.25 rmind np->n_tmask, np->n_npt66_adj);
650 1.25 rmind break;
651 1.25 rmind default:
652 1.26 rmind error = npf_napt_rwr(npc, which, &np->n_taddr, np->n_tport);
653 1.25 rmind break;
654 1.25 rmind }
655 1.25 rmind
656 1.25 rmind return error;
657 1.31 rmind }
658 1.25 rmind
659 1.25 rmind /*
660 1.2 rmind * npf_do_nat:
661 1.29 rmind * - Inspect packet for a NAT policy, unless a connection with a NAT
662 1.4 rmind * association already exists. In such case, determine whether it
663 1.2 rmind * is a "forwards" or "backwards" stream.
664 1.4 rmind * - Perform translation: rewrite source or destination fields,
665 1.4 rmind * depending on translation type and direction.
666 1.29 rmind * - Associate a NAT policy with a connection (may establish a new).
667 1.2 rmind */
668 1.2 rmind int
669 1.30 rmind npf_do_nat(npf_cache_t *npc, npf_conn_t *con, const int di)
670 1.2 rmind {
671 1.30 rmind nbuf_t *nbuf = npc->npc_nbuf;
672 1.29 rmind npf_conn_t *ncon = NULL;
673 1.1 rmind npf_natpolicy_t *np;
674 1.1 rmind npf_nat_t *nt;
675 1.1 rmind int error;
676 1.22 rmind bool forw;
677 1.1 rmind
678 1.1 rmind /* All relevant IPv4 data should be already cached. */
679 1.3 rmind if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
680 1.1 rmind return 0;
681 1.1 rmind }
682 1.18 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
683 1.1 rmind
684 1.2 rmind /*
685 1.29 rmind * Return the NAT entry associated with the connection, if any.
686 1.3 rmind * Determines whether the stream is "forwards" or "backwards".
687 1.29 rmind * Note: no need to lock, since reference on connection is held.
688 1.2 rmind */
689 1.29 rmind if (con && (nt = npf_conn_retnat(con, di, &forw)) != NULL) {
690 1.1 rmind np = nt->nt_natpolicy;
691 1.2 rmind goto translate;
692 1.1 rmind }
693 1.1 rmind
694 1.6 rmind /*
695 1.29 rmind * Inspect the packet for a NAT policy, if there is no connection.
696 1.19 rmind * Note: acquires a reference if found.
697 1.6 rmind */
698 1.30 rmind np = npf_nat_inspect(npc, di);
699 1.1 rmind if (np == NULL) {
700 1.1 rmind /* If packet does not match - done. */
701 1.1 rmind return 0;
702 1.1 rmind }
703 1.2 rmind forw = true;
704 1.1 rmind
705 1.24 rmind /* Static NAT - just perform the translation. */
706 1.24 rmind if (np->n_flags & NPF_NAT_STATIC) {
707 1.24 rmind if (nbuf_cksum_barrier(nbuf, di)) {
708 1.30 rmind npf_recache(npc);
709 1.24 rmind }
710 1.25 rmind error = npf_nat_algo(npc, np, forw);
711 1.24 rmind atomic_dec_uint(&np->n_refcnt);
712 1.24 rmind return error;
713 1.24 rmind }
714 1.24 rmind
715 1.4 rmind /*
716 1.29 rmind * If there is no local connection (no "stateful" rule - unusual,
717 1.29 rmind * but possible configuration), establish one before translation.
718 1.29 rmind * Note that it is not a "pass" connection, therefore passing of
719 1.29 rmind * "backwards" stream depends on other, stateless filtering rules.
720 1.29 rmind */
721 1.29 rmind if (con == NULL) {
722 1.30 rmind ncon = npf_conn_establish(npc, di, true);
723 1.29 rmind if (ncon == NULL) {
724 1.22 rmind atomic_dec_uint(&np->n_refcnt);
725 1.22 rmind return ENOMEM;
726 1.1 rmind }
727 1.29 rmind con = ncon;
728 1.1 rmind }
729 1.22 rmind
730 1.22 rmind /*
731 1.29 rmind * Create a new NAT entry and associate with the connection.
732 1.22 rmind * We will consume the reference on success (release on error).
733 1.22 rmind */
734 1.29 rmind nt = npf_nat_create(npc, np, con);
735 1.22 rmind if (nt == NULL) {
736 1.22 rmind atomic_dec_uint(&np->n_refcnt);
737 1.22 rmind error = ENOMEM;
738 1.22 rmind goto out;
739 1.22 rmind }
740 1.22 rmind
741 1.29 rmind /* Associate the NAT translation entry with the connection. */
742 1.29 rmind error = npf_conn_setnat(npc, con, nt, np->n_type);
743 1.2 rmind if (error) {
744 1.22 rmind /* Will release the reference. */
745 1.22 rmind npf_nat_destroy(nt);
746 1.1 rmind goto out;
747 1.1 rmind }
748 1.1 rmind
749 1.22 rmind /* Determine whether any ALG matches. */
750 1.30 rmind if (npf_alg_match(npc, nt, di)) {
751 1.22 rmind KASSERT(nt->nt_alg != NULL);
752 1.22 rmind }
753 1.22 rmind
754 1.22 rmind translate:
755 1.23 rmind /* May need to process the delayed checksums first (XXX: NetBSD). */
756 1.23 rmind if (nbuf_cksum_barrier(nbuf, di)) {
757 1.30 rmind npf_recache(npc);
758 1.23 rmind }
759 1.23 rmind
760 1.22 rmind /* Perform the translation. */
761 1.30 rmind error = npf_nat_translate(npc, nt, forw);
762 1.1 rmind out:
763 1.29 rmind if (__predict_false(ncon)) {
764 1.24 rmind if (error) {
765 1.24 rmind /* It created for NAT - just expire. */
766 1.29 rmind npf_conn_expire(ncon);
767 1.24 rmind }
768 1.29 rmind npf_conn_release(ncon);
769 1.1 rmind }
770 1.1 rmind return error;
771 1.1 rmind }
772 1.1 rmind
773 1.1 rmind /*
774 1.4 rmind * npf_nat_gettrans: return translation IP address and port.
775 1.4 rmind */
776 1.4 rmind void
777 1.4 rmind npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
778 1.4 rmind {
779 1.4 rmind npf_natpolicy_t *np = nt->nt_natpolicy;
780 1.4 rmind
781 1.4 rmind *addr = &np->n_taddr;
782 1.4 rmind *port = nt->nt_tport;
783 1.4 rmind }
784 1.4 rmind
785 1.4 rmind /*
786 1.2 rmind * npf_nat_getorig: return original IP address and port from translation entry.
787 1.1 rmind */
788 1.1 rmind void
789 1.3 rmind npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
790 1.1 rmind {
791 1.3 rmind *addr = &nt->nt_oaddr;
792 1.2 rmind *port = nt->nt_oport;
793 1.1 rmind }
794 1.1 rmind
795 1.3 rmind /*
796 1.3 rmind * npf_nat_setalg: associate an ALG with the NAT entry.
797 1.3 rmind */
798 1.1 rmind void
799 1.1 rmind npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
800 1.1 rmind {
801 1.1 rmind nt->nt_alg = alg;
802 1.1 rmind nt->nt_alg_arg = arg;
803 1.1 rmind }
804 1.1 rmind
805 1.1 rmind /*
806 1.29 rmind * npf_nat_destroy: destroy NAT structure (performed on connection expiration).
807 1.1 rmind */
808 1.1 rmind void
809 1.22 rmind npf_nat_destroy(npf_nat_t *nt)
810 1.1 rmind {
811 1.2 rmind npf_natpolicy_t *np = nt->nt_natpolicy;
812 1.1 rmind
813 1.4 rmind /* Return any taken port to the portmap. */
814 1.4 rmind if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
815 1.1 rmind npf_nat_putport(np, nt->nt_tport);
816 1.1 rmind }
817 1.4 rmind
818 1.4 rmind mutex_enter(&np->n_lock);
819 1.4 rmind LIST_REMOVE(nt, nt_entry);
820 1.34 rmind KASSERT(np->n_refcnt > 0);
821 1.19 rmind atomic_dec_uint(&np->n_refcnt);
822 1.4 rmind mutex_exit(&np->n_lock);
823 1.4 rmind
824 1.1 rmind pool_cache_put(nat_cache, nt);
825 1.4 rmind npf_stats_inc(NPF_STAT_NAT_DESTROY);
826 1.4 rmind }
827 1.4 rmind
828 1.4 rmind /*
829 1.31 rmind * npf_nat_export: serialise the NAT entry with a NAT policy ID.
830 1.4 rmind */
831 1.31 rmind void
832 1.31 rmind npf_nat_export(prop_dictionary_t condict, npf_nat_t *nt)
833 1.4 rmind {
834 1.4 rmind npf_natpolicy_t *np = nt->nt_natpolicy;
835 1.31 rmind prop_dictionary_t natdict;
836 1.31 rmind prop_data_t d;
837 1.4 rmind
838 1.31 rmind natdict = prop_dictionary_create();
839 1.31 rmind d = prop_data_create_data(&nt->nt_oaddr, sizeof(npf_addr_t));
840 1.31 rmind prop_dictionary_set_and_rel(natdict, "oaddr", d);
841 1.31 rmind prop_dictionary_set_uint16(natdict, "oport", nt->nt_oport);
842 1.31 rmind prop_dictionary_set_uint16(natdict, "tport", nt->nt_tport);
843 1.31 rmind prop_dictionary_set_uint64(natdict, "nat-policy", np->n_id);
844 1.31 rmind prop_dictionary_set_and_rel(condict, "nat", natdict);
845 1.4 rmind }
846 1.4 rmind
847 1.4 rmind /*
848 1.31 rmind * npf_nat_import: find the NAT policy and unserialise the NAT entry.
849 1.4 rmind */
850 1.4 rmind npf_nat_t *
851 1.31 rmind npf_nat_import(prop_dictionary_t natdict, npf_ruleset_t *natlist,
852 1.31 rmind npf_conn_t *con)
853 1.4 rmind {
854 1.4 rmind npf_natpolicy_t *np;
855 1.4 rmind npf_nat_t *nt;
856 1.31 rmind uint64_t np_id;
857 1.31 rmind const void *d;
858 1.4 rmind
859 1.31 rmind prop_dictionary_get_uint64(natdict, "nat-policy", &np_id);
860 1.31 rmind if ((np = npf_ruleset_findnat(natlist, np_id)) == NULL) {
861 1.4 rmind return NULL;
862 1.4 rmind }
863 1.31 rmind nt = pool_cache_get(nat_cache, PR_WAITOK);
864 1.31 rmind memset(nt, 0, sizeof(npf_nat_t));
865 1.4 rmind
866 1.31 rmind prop_object_t obj = prop_dictionary_get(natdict, "oaddr");
867 1.31 rmind if ((d = prop_data_data_nocopy(obj)) == NULL ||
868 1.31 rmind prop_data_size(obj) != sizeof(npf_addr_t)) {
869 1.31 rmind pool_cache_put(nat_cache, nt);
870 1.4 rmind return NULL;
871 1.4 rmind }
872 1.31 rmind memcpy(&nt->nt_oaddr, d, sizeof(npf_addr_t));
873 1.31 rmind prop_dictionary_get_uint16(natdict, "oport", &nt->nt_oport);
874 1.31 rmind prop_dictionary_get_uint16(natdict, "tport", &nt->nt_tport);
875 1.4 rmind
876 1.4 rmind /* Take a specific port from port-map. */
877 1.31 rmind if (!npf_nat_takeport(np, nt->nt_tport)) {
878 1.31 rmind pool_cache_put(nat_cache, nt);
879 1.4 rmind return NULL;
880 1.4 rmind }
881 1.4 rmind
882 1.34 rmind /*
883 1.34 rmind * Associate, take a reference and insert. Unlocked since
884 1.34 rmind * the policy is not yet visible.
885 1.34 rmind */
886 1.4 rmind nt->nt_natpolicy = np;
887 1.29 rmind nt->nt_conn = con;
888 1.34 rmind np->n_refcnt++;
889 1.34 rmind LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
890 1.4 rmind return nt;
891 1.1 rmind }
892 1.1 rmind
893 1.1 rmind #if defined(DDB) || defined(_NPF_TESTING)
894 1.1 rmind
895 1.1 rmind void
896 1.14 rmind npf_nat_dump(const npf_nat_t *nt)
897 1.1 rmind {
898 1.14 rmind const npf_natpolicy_t *np;
899 1.1 rmind struct in_addr ip;
900 1.1 rmind
901 1.4 rmind np = nt->nt_natpolicy;
902 1.4 rmind memcpy(&ip, &np->n_taddr, sizeof(ip));
903 1.4 rmind printf("\tNATP(%p): type %d flags 0x%x taddr %s tport %d\n",
904 1.4 rmind np, np->n_type, np->n_flags, inet_ntoa(ip), np->n_tport);
905 1.4 rmind memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
906 1.4 rmind printf("\tNAT: original address %s oport %d tport %d\n",
907 1.4 rmind inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
908 1.4 rmind if (nt->nt_alg) {
909 1.4 rmind printf("\tNAT ALG = %p, ARG = %p\n",
910 1.4 rmind nt->nt_alg, (void *)nt->nt_alg_arg);
911 1.1 rmind }
912 1.1 rmind }
913 1.1 rmind
914 1.1 rmind #endif
915