npf_nat.c revision 1.36 1 1.36 rmind /* $NetBSD: npf_nat.c,v 1.36 2014/11/30 00:40:55 rmind Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.25 rmind * Copyright (c) 2014 Mindaugas Rasiukevicius <rmind at netbsd org>
5 1.19 rmind * Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
6 1.1 rmind * All rights reserved.
7 1.1 rmind *
8 1.1 rmind * This material is based upon work partially supported by The
9 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
10 1.1 rmind *
11 1.1 rmind * Redistribution and use in source and binary forms, with or without
12 1.1 rmind * modification, are permitted provided that the following conditions
13 1.1 rmind * are met:
14 1.1 rmind * 1. Redistributions of source code must retain the above copyright
15 1.1 rmind * notice, this list of conditions and the following disclaimer.
16 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 rmind * notice, this list of conditions and the following disclaimer in the
18 1.1 rmind * documentation and/or other materials provided with the distribution.
19 1.1 rmind *
20 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
31 1.1 rmind */
32 1.1 rmind
33 1.1 rmind /*
34 1.19 rmind * NPF network address port translation (NAPT) and other forms of NAT.
35 1.19 rmind * Described in RFC 2663, RFC 3022, etc.
36 1.1 rmind *
37 1.1 rmind * Overview
38 1.1 rmind *
39 1.1 rmind * There are few mechanisms: NAT policy, port map and translation.
40 1.1 rmind * NAT module has a separate ruleset, where rules contain associated
41 1.1 rmind * NAT policy, thus flexible filter criteria can be used.
42 1.1 rmind *
43 1.2 rmind * Translation types
44 1.2 rmind *
45 1.2 rmind * There are two types of translation: outbound (NPF_NATOUT) and
46 1.2 rmind * inbound (NPF_NATIN). It should not be confused with connection
47 1.23 rmind * direction. See npf_nat_which() for the description of how the
48 1.23 rmind * addresses are rewritten.
49 1.2 rmind *
50 1.2 rmind * It should be noted that bi-directional NAT is a combined outbound
51 1.2 rmind * and inbound translation, therefore constructed as two policies.
52 1.2 rmind *
53 1.1 rmind * NAT policies and port maps
54 1.1 rmind *
55 1.2 rmind * NAT (translation) policy is applied when a packet matches the rule.
56 1.2 rmind * Apart from filter criteria, NAT policy has a translation IP address
57 1.1 rmind * and associated port map. Port map is a bitmap used to reserve and
58 1.1 rmind * use unique TCP/UDP ports for translation. Port maps are unique to
59 1.1 rmind * the IP addresses, therefore multiple NAT policies with the same IP
60 1.1 rmind * will share the same port map.
61 1.1 rmind *
62 1.29 rmind * Connections, translation entries and their life-cycle
63 1.1 rmind *
64 1.29 rmind * NAT module relies on connection tracking module. Each translated
65 1.29 rmind * connection has an associated translation entry (npf_nat_t), which
66 1.4 rmind * contains information used for backwards stream translation, i.e.
67 1.4 rmind * original IP address with port and translation port, allocated from
68 1.4 rmind * the port map. Each NAT entry is associated with the policy, which
69 1.4 rmind * contains translation IP address. Allocated port is returned to the
70 1.29 rmind * port map and NAT entry is destroyed when connection expires.
71 1.1 rmind */
72 1.1 rmind
73 1.1 rmind #include <sys/cdefs.h>
74 1.36 rmind __KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.36 2014/11/30 00:40:55 rmind Exp $");
75 1.1 rmind
76 1.1 rmind #include <sys/param.h>
77 1.11 rmind #include <sys/types.h>
78 1.1 rmind
79 1.1 rmind #include <sys/atomic.h>
80 1.1 rmind #include <sys/bitops.h>
81 1.4 rmind #include <sys/condvar.h>
82 1.1 rmind #include <sys/kmem.h>
83 1.4 rmind #include <sys/mutex.h>
84 1.1 rmind #include <sys/pool.h>
85 1.19 rmind #include <sys/proc.h>
86 1.8 tls #include <sys/cprng.h>
87 1.8 tls
88 1.1 rmind #include <net/pfil.h>
89 1.1 rmind #include <netinet/in.h>
90 1.1 rmind
91 1.1 rmind #include "npf_impl.h"
92 1.29 rmind #include "npf_conn.h"
93 1.1 rmind
94 1.1 rmind /*
95 1.1 rmind * NPF portmap structure.
96 1.1 rmind */
97 1.1 rmind typedef struct {
98 1.4 rmind u_int p_refcnt;
99 1.4 rmind uint32_t p_bitmap[0];
100 1.1 rmind } npf_portmap_t;
101 1.1 rmind
102 1.1 rmind /* Portmap range: [ 1024 .. 65535 ] */
103 1.4 rmind #define PORTMAP_FIRST (1024)
104 1.4 rmind #define PORTMAP_SIZE ((65536 - PORTMAP_FIRST) / 32)
105 1.25 rmind #define PORTMAP_FILLED ((uint32_t)~0U)
106 1.4 rmind #define PORTMAP_MASK (31)
107 1.4 rmind #define PORTMAP_SHIFT (5)
108 1.4 rmind
109 1.4 rmind #define PORTMAP_MEM_SIZE \
110 1.4 rmind (sizeof(npf_portmap_t) + (PORTMAP_SIZE * sizeof(uint32_t)))
111 1.1 rmind
112 1.12 rmind /*
113 1.12 rmind * NAT policy structure.
114 1.12 rmind */
115 1.1 rmind struct npf_natpolicy {
116 1.31 rmind kmutex_t n_lock;
117 1.4 rmind LIST_HEAD(, npf_nat) n_nat_list;
118 1.19 rmind volatile u_int n_refcnt;
119 1.4 rmind npf_portmap_t * n_portmap;
120 1.31 rmind uint64_t n_id;
121 1.31 rmind
122 1.31 rmind /*
123 1.31 rmind * Translation type, flags and address. Optionally, prefix
124 1.31 rmind * for the NPTv6 and translation port. Translation algorithm
125 1.31 rmind * and related data (for NPTv6, the adjustment value).
126 1.31 rmind *
127 1.31 rmind * NPF_NP_CMP_START mark starts here.
128 1.31 rmind */
129 1.4 rmind int n_type;
130 1.6 rmind u_int n_flags;
131 1.31 rmind u_int n_alen;
132 1.4 rmind npf_addr_t n_taddr;
133 1.25 rmind npf_netmask_t n_tmask;
134 1.4 rmind in_port_t n_tport;
135 1.25 rmind u_int n_algo;
136 1.25 rmind union {
137 1.25 rmind uint16_t n_npt66_adj;
138 1.25 rmind };
139 1.1 rmind };
140 1.1 rmind
141 1.4 rmind #define NPF_NP_CMP_START offsetof(npf_natpolicy_t, n_type)
142 1.4 rmind #define NPF_NP_CMP_SIZE (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
143 1.4 rmind
144 1.12 rmind /*
145 1.29 rmind * NAT translation entry for a connection.
146 1.12 rmind */
147 1.1 rmind struct npf_nat {
148 1.28 rmind /* Associated NAT policy. */
149 1.4 rmind npf_natpolicy_t * nt_natpolicy;
150 1.28 rmind
151 1.28 rmind /*
152 1.28 rmind * Original address and port (for backwards translation).
153 1.28 rmind * Translation port (for redirects).
154 1.28 rmind */
155 1.4 rmind npf_addr_t nt_oaddr;
156 1.4 rmind in_port_t nt_oport;
157 1.4 rmind in_port_t nt_tport;
158 1.28 rmind
159 1.1 rmind /* ALG (if any) associated with this NAT entry. */
160 1.4 rmind npf_alg_t * nt_alg;
161 1.4 rmind uintptr_t nt_alg_arg;
162 1.28 rmind
163 1.28 rmind LIST_ENTRY(npf_nat) nt_entry;
164 1.29 rmind npf_conn_t * nt_conn;
165 1.1 rmind };
166 1.1 rmind
167 1.4 rmind static pool_cache_t nat_cache __read_mostly;
168 1.1 rmind
169 1.1 rmind /*
170 1.1 rmind * npf_nat_sys{init,fini}: initialise/destroy NAT subsystem structures.
171 1.1 rmind */
172 1.1 rmind
173 1.1 rmind void
174 1.1 rmind npf_nat_sysinit(void)
175 1.1 rmind {
176 1.1 rmind nat_cache = pool_cache_init(sizeof(npf_nat_t), coherency_unit,
177 1.1 rmind 0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
178 1.1 rmind KASSERT(nat_cache != NULL);
179 1.1 rmind }
180 1.1 rmind
181 1.1 rmind void
182 1.1 rmind npf_nat_sysfini(void)
183 1.1 rmind {
184 1.23 rmind /* All NAT policies should already be destroyed. */
185 1.1 rmind pool_cache_destroy(nat_cache);
186 1.1 rmind }
187 1.1 rmind
188 1.1 rmind /*
189 1.2 rmind * npf_nat_newpolicy: create a new NAT policy.
190 1.1 rmind *
191 1.1 rmind * => Shares portmap if policy is on existing translation address.
192 1.1 rmind */
193 1.1 rmind npf_natpolicy_t *
194 1.31 rmind npf_nat_newpolicy(prop_dictionary_t natdict, npf_ruleset_t *rset)
195 1.1 rmind {
196 1.5 rmind npf_natpolicy_t *np;
197 1.4 rmind prop_object_t obj;
198 1.1 rmind npf_portmap_t *pm;
199 1.1 rmind
200 1.1 rmind np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
201 1.4 rmind
202 1.33 rmind /* The translation type, flags and policy ID. */
203 1.6 rmind prop_dictionary_get_int32(natdict, "type", &np->n_type);
204 1.6 rmind prop_dictionary_get_uint32(natdict, "flags", &np->n_flags);
205 1.33 rmind prop_dictionary_get_uint64(natdict, "nat-policy", &np->n_id);
206 1.10 rmind
207 1.10 rmind /* Should be exclusively either inbound or outbound NAT. */
208 1.10 rmind if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
209 1.25 rmind goto err;
210 1.10 rmind }
211 1.10 rmind mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
212 1.10 rmind LIST_INIT(&np->n_nat_list);
213 1.4 rmind
214 1.25 rmind /* Translation IP, mask and port (if applicable). */
215 1.32 rmind obj = prop_dictionary_get(natdict, "nat-ip");
216 1.31 rmind np->n_alen = prop_data_size(obj);
217 1.31 rmind if (np->n_alen == 0 || np->n_alen > sizeof(npf_addr_t)) {
218 1.25 rmind goto err;
219 1.25 rmind }
220 1.31 rmind memcpy(&np->n_taddr, prop_data_data_nocopy(obj), np->n_alen);
221 1.32 rmind prop_dictionary_get_uint8(natdict, "nat-mask", &np->n_tmask);
222 1.32 rmind prop_dictionary_get_uint16(natdict, "nat-port", &np->n_tport);
223 1.4 rmind
224 1.32 rmind prop_dictionary_get_uint32(natdict, "nat-algo", &np->n_algo);
225 1.25 rmind switch (np->n_algo) {
226 1.25 rmind case NPF_ALGO_NPT66:
227 1.32 rmind prop_dictionary_get_uint16(natdict, "npt66-adj",
228 1.25 rmind &np->n_npt66_adj);
229 1.25 rmind break;
230 1.25 rmind default:
231 1.25 rmind if (np->n_tmask != NPF_NO_NETMASK)
232 1.25 rmind goto err;
233 1.25 rmind break;
234 1.25 rmind }
235 1.2 rmind
236 1.5 rmind /* Determine if port map is needed. */
237 1.5 rmind np->n_portmap = NULL;
238 1.4 rmind if ((np->n_flags & NPF_NAT_PORTMAP) == 0) {
239 1.5 rmind /* No port map. */
240 1.5 rmind return np;
241 1.2 rmind }
242 1.1 rmind
243 1.5 rmind /*
244 1.5 rmind * Inspect NAT policies in the ruleset for port map sharing.
245 1.5 rmind * Note that npf_ruleset_sharepm() will increase the reference count.
246 1.5 rmind */
247 1.31 rmind if (!npf_ruleset_sharepm(rset, np)) {
248 1.1 rmind /* Allocate a new port map for the NAT policy. */
249 1.4 rmind pm = kmem_zalloc(PORTMAP_MEM_SIZE, KM_SLEEP);
250 1.1 rmind pm->p_refcnt = 1;
251 1.1 rmind KASSERT((uintptr_t)pm->p_bitmap == (uintptr_t)pm + sizeof(*pm));
252 1.5 rmind np->n_portmap = pm;
253 1.1 rmind } else {
254 1.5 rmind KASSERT(np->n_portmap != NULL);
255 1.36 rmind KASSERT(np->n_portmap->p_refcnt > 0);
256 1.1 rmind }
257 1.1 rmind return np;
258 1.25 rmind err:
259 1.25 rmind kmem_free(np, sizeof(npf_natpolicy_t));
260 1.25 rmind return NULL;
261 1.1 rmind }
262 1.1 rmind
263 1.32 rmind int
264 1.32 rmind npf_nat_policyexport(const npf_natpolicy_t *np, prop_dictionary_t natdict)
265 1.32 rmind {
266 1.32 rmind prop_data_t d;
267 1.32 rmind
268 1.32 rmind prop_dictionary_set_int32(natdict, "type", np->n_type);
269 1.32 rmind prop_dictionary_set_uint32(natdict, "flags", np->n_flags);
270 1.32 rmind
271 1.32 rmind d = prop_data_create_data(&np->n_taddr, np->n_alen);
272 1.32 rmind prop_dictionary_set_and_rel(natdict, "nat-ip", d);
273 1.32 rmind
274 1.32 rmind prop_dictionary_set_uint8(natdict, "nat-mask", np->n_tmask);
275 1.32 rmind prop_dictionary_set_uint16(natdict, "nat-port", np->n_tport);
276 1.32 rmind prop_dictionary_set_uint32(natdict, "nat-algo", np->n_algo);
277 1.32 rmind
278 1.32 rmind switch (np->n_algo) {
279 1.32 rmind case NPF_ALGO_NPT66:
280 1.32 rmind prop_dictionary_set_uint16(natdict, "npt66-adj", np->n_npt66_adj);
281 1.32 rmind break;
282 1.32 rmind }
283 1.32 rmind prop_dictionary_set_uint64(natdict, "nat-policy", np->n_id);
284 1.32 rmind return 0;
285 1.32 rmind }
286 1.32 rmind
287 1.1 rmind /*
288 1.1 rmind * npf_nat_freepolicy: free NAT policy and, on last reference, free portmap.
289 1.1 rmind *
290 1.4 rmind * => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
291 1.1 rmind */
292 1.1 rmind void
293 1.1 rmind npf_nat_freepolicy(npf_natpolicy_t *np)
294 1.1 rmind {
295 1.1 rmind npf_portmap_t *pm = np->n_portmap;
296 1.29 rmind npf_conn_t *con;
297 1.4 rmind npf_nat_t *nt;
298 1.1 rmind
299 1.22 rmind /*
300 1.22 rmind * Disassociate all entries from the policy. At this point,
301 1.22 rmind * new entries can no longer be created for this policy.
302 1.22 rmind */
303 1.28 rmind while (np->n_refcnt) {
304 1.28 rmind mutex_enter(&np->n_lock);
305 1.28 rmind LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
306 1.29 rmind con = nt->nt_conn;
307 1.29 rmind KASSERT(con != NULL);
308 1.29 rmind npf_conn_expire(con);
309 1.28 rmind }
310 1.28 rmind mutex_exit(&np->n_lock);
311 1.4 rmind
312 1.28 rmind /* Kick the worker - all references should be going away. */
313 1.28 rmind npf_worker_signal();
314 1.19 rmind kpause("npfgcnat", false, 1, NULL);
315 1.19 rmind }
316 1.22 rmind KASSERT(LIST_EMPTY(&np->n_nat_list));
317 1.35 rmind KASSERT(pm == NULL || pm->p_refcnt > 0);
318 1.19 rmind
319 1.4 rmind /* Destroy the port map, on last reference. */
320 1.35 rmind if (pm && atomic_dec_uint_nv(&pm->p_refcnt) == 0) {
321 1.2 rmind KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
322 1.4 rmind kmem_free(pm, PORTMAP_MEM_SIZE);
323 1.1 rmind }
324 1.4 rmind mutex_destroy(&np->n_lock);
325 1.1 rmind kmem_free(np, sizeof(npf_natpolicy_t));
326 1.1 rmind }
327 1.1 rmind
328 1.13 rmind void
329 1.15 rmind npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
330 1.13 rmind {
331 1.15 rmind npf_nat_t *nt;
332 1.15 rmind
333 1.15 rmind mutex_enter(&np->n_lock);
334 1.15 rmind LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
335 1.31 rmind if (nt->nt_alg == alg)
336 1.31 rmind nt->nt_alg = NULL;
337 1.15 rmind }
338 1.15 rmind mutex_exit(&np->n_lock);
339 1.13 rmind }
340 1.13 rmind
341 1.5 rmind /*
342 1.31 rmind * npf_nat_cmppolicy: compare two NAT policies.
343 1.5 rmind *
344 1.5 rmind * => Return 0 on match, and non-zero otherwise.
345 1.5 rmind */
346 1.4 rmind bool
347 1.31 rmind npf_nat_cmppolicy(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
348 1.1 rmind {
349 1.31 rmind const void *np_raw, *mnp_raw;
350 1.31 rmind
351 1.4 rmind /*
352 1.4 rmind * Compare the relevant NAT policy information (in raw form),
353 1.4 rmind * which is enough for matching criterion.
354 1.4 rmind */
355 1.5 rmind KASSERT(np && mnp && np != mnp);
356 1.31 rmind np_raw = (const uint8_t *)np + NPF_NP_CMP_START;
357 1.31 rmind mnp_raw = (const uint8_t *)mnp + NPF_NP_CMP_START;
358 1.31 rmind return memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0;
359 1.1 rmind }
360 1.1 rmind
361 1.5 rmind bool
362 1.5 rmind npf_nat_sharepm(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
363 1.5 rmind {
364 1.5 rmind npf_portmap_t *pm, *mpm;
365 1.5 rmind
366 1.5 rmind KASSERT(np && mnp && np != mnp);
367 1.5 rmind
368 1.5 rmind /* Using port map and having equal translation address? */
369 1.5 rmind if ((np->n_flags & mnp->n_flags & NPF_NAT_PORTMAP) == 0) {
370 1.5 rmind return false;
371 1.5 rmind }
372 1.31 rmind if (np->n_alen != mnp->n_alen) {
373 1.5 rmind return false;
374 1.5 rmind }
375 1.31 rmind if (memcmp(&np->n_taddr, &mnp->n_taddr, np->n_alen) != 0) {
376 1.5 rmind return false;
377 1.5 rmind }
378 1.5 rmind mpm = mnp->n_portmap;
379 1.35 rmind KASSERT(mpm == NULL || mpm->p_refcnt > 0);
380 1.35 rmind
381 1.35 rmind /*
382 1.35 rmind * If NAT policy has an old port map - drop the reference
383 1.35 rmind * and destroy the port map if it was the last.
384 1.35 rmind */
385 1.35 rmind if (mpm && atomic_dec_uint_nv(&mpm->p_refcnt) == 0) {
386 1.35 rmind kmem_free(mpm, PORTMAP_MEM_SIZE);
387 1.5 rmind }
388 1.35 rmind
389 1.5 rmind /* Share the port map. */
390 1.5 rmind pm = np->n_portmap;
391 1.35 rmind atomic_inc_uint(&pm->p_refcnt);
392 1.5 rmind mnp->n_portmap = pm;
393 1.5 rmind return true;
394 1.5 rmind }
395 1.5 rmind
396 1.31 rmind void
397 1.31 rmind npf_nat_setid(npf_natpolicy_t *np, uint64_t id)
398 1.31 rmind {
399 1.31 rmind np->n_id = id;
400 1.31 rmind }
401 1.31 rmind
402 1.31 rmind uint64_t
403 1.31 rmind npf_nat_getid(const npf_natpolicy_t *np)
404 1.31 rmind {
405 1.31 rmind return np->n_id;
406 1.31 rmind }
407 1.31 rmind
408 1.1 rmind /*
409 1.1 rmind * npf_nat_getport: allocate and return a port in the NAT policy portmap.
410 1.1 rmind *
411 1.1 rmind * => Returns in network byte-order.
412 1.1 rmind * => Zero indicates failure.
413 1.1 rmind */
414 1.1 rmind static in_port_t
415 1.1 rmind npf_nat_getport(npf_natpolicy_t *np)
416 1.1 rmind {
417 1.1 rmind npf_portmap_t *pm = np->n_portmap;
418 1.1 rmind u_int n = PORTMAP_SIZE, idx, bit;
419 1.1 rmind uint32_t map, nmap;
420 1.1 rmind
421 1.36 rmind KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
422 1.36 rmind KASSERT(pm->p_refcnt > 0);
423 1.36 rmind
424 1.8 tls idx = cprng_fast32() % PORTMAP_SIZE;
425 1.1 rmind for (;;) {
426 1.1 rmind KASSERT(idx < PORTMAP_SIZE);
427 1.1 rmind map = pm->p_bitmap[idx];
428 1.1 rmind if (__predict_false(map == PORTMAP_FILLED)) {
429 1.1 rmind if (n-- == 0) {
430 1.1 rmind /* No space. */
431 1.1 rmind return 0;
432 1.1 rmind }
433 1.2 rmind /* This bitmap is filled, next. */
434 1.1 rmind idx = (idx ? idx : PORTMAP_SIZE) - 1;
435 1.1 rmind continue;
436 1.1 rmind }
437 1.1 rmind bit = ffs32(~map) - 1;
438 1.1 rmind nmap = map | (1 << bit);
439 1.1 rmind if (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map) {
440 1.1 rmind /* Success. */
441 1.1 rmind break;
442 1.1 rmind }
443 1.1 rmind }
444 1.1 rmind return htons(PORTMAP_FIRST + (idx << PORTMAP_SHIFT) + bit);
445 1.1 rmind }
446 1.1 rmind
447 1.1 rmind /*
448 1.4 rmind * npf_nat_takeport: allocate specific port in the NAT policy portmap.
449 1.4 rmind */
450 1.4 rmind static bool
451 1.4 rmind npf_nat_takeport(npf_natpolicy_t *np, in_port_t port)
452 1.4 rmind {
453 1.4 rmind npf_portmap_t *pm = np->n_portmap;
454 1.4 rmind uint32_t map, nmap;
455 1.4 rmind u_int idx, bit;
456 1.4 rmind
457 1.36 rmind KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
458 1.36 rmind KASSERT(pm->p_refcnt > 0);
459 1.36 rmind
460 1.4 rmind port = ntohs(port) - PORTMAP_FIRST;
461 1.4 rmind idx = port >> PORTMAP_SHIFT;
462 1.4 rmind bit = port & PORTMAP_MASK;
463 1.4 rmind map = pm->p_bitmap[idx];
464 1.4 rmind nmap = map | (1 << bit);
465 1.4 rmind if (map == nmap) {
466 1.4 rmind /* Already taken. */
467 1.4 rmind return false;
468 1.4 rmind }
469 1.4 rmind return atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map;
470 1.4 rmind }
471 1.4 rmind
472 1.4 rmind /*
473 1.1 rmind * npf_nat_putport: return port as available in the NAT policy portmap.
474 1.1 rmind *
475 1.1 rmind * => Port should be in network byte-order.
476 1.1 rmind */
477 1.1 rmind static void
478 1.1 rmind npf_nat_putport(npf_natpolicy_t *np, in_port_t port)
479 1.1 rmind {
480 1.1 rmind npf_portmap_t *pm = np->n_portmap;
481 1.1 rmind uint32_t map, nmap;
482 1.1 rmind u_int idx, bit;
483 1.1 rmind
484 1.36 rmind KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
485 1.36 rmind KASSERT(pm->p_refcnt > 0);
486 1.36 rmind
487 1.1 rmind port = ntohs(port) - PORTMAP_FIRST;
488 1.1 rmind idx = port >> PORTMAP_SHIFT;
489 1.1 rmind bit = port & PORTMAP_MASK;
490 1.1 rmind do {
491 1.1 rmind map = pm->p_bitmap[idx];
492 1.1 rmind KASSERT(map | (1 << bit));
493 1.1 rmind nmap = map & ~(1 << bit);
494 1.1 rmind } while (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) != map);
495 1.1 rmind }
496 1.1 rmind
497 1.1 rmind /*
498 1.23 rmind * npf_nat_which: tell which address (source or destination) should be
499 1.23 rmind * rewritten given the combination of the NAT type and flow direction.
500 1.23 rmind */
501 1.23 rmind static inline u_int
502 1.23 rmind npf_nat_which(const int type, bool forw)
503 1.23 rmind {
504 1.23 rmind /*
505 1.23 rmind * Outbound NAT rewrites:
506 1.24 rmind * - Source (NPF_SRC) on "forwards" stream.
507 1.24 rmind * - Destination (NPF_DST) on "backwards" stream.
508 1.23 rmind * Inbound NAT is other way round.
509 1.23 rmind */
510 1.23 rmind if (type == NPF_NATOUT) {
511 1.23 rmind forw = !forw;
512 1.23 rmind } else {
513 1.23 rmind KASSERT(type == NPF_NATIN);
514 1.23 rmind }
515 1.23 rmind CTASSERT(NPF_SRC == 0 && NPF_DST == 1);
516 1.24 rmind KASSERT(forw == NPF_SRC || forw == NPF_DST);
517 1.23 rmind return (u_int)forw;
518 1.23 rmind }
519 1.23 rmind
520 1.23 rmind /*
521 1.2 rmind * npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
522 1.19 rmind *
523 1.19 rmind * => Acquire a reference on the policy, if found.
524 1.2 rmind */
525 1.2 rmind static npf_natpolicy_t *
526 1.30 rmind npf_nat_inspect(npf_cache_t *npc, const int di)
527 1.2 rmind {
528 1.19 rmind int slock = npf_config_read_enter();
529 1.19 rmind npf_ruleset_t *rlset = npf_config_natset();
530 1.6 rmind npf_natpolicy_t *np;
531 1.2 rmind npf_rule_t *rl;
532 1.2 rmind
533 1.30 rmind rl = npf_ruleset_inspect(npc, rlset, di, NPF_LAYER_3);
534 1.6 rmind if (rl == NULL) {
535 1.19 rmind npf_config_read_exit(slock);
536 1.6 rmind return NULL;
537 1.6 rmind }
538 1.6 rmind np = npf_rule_getnat(rl);
539 1.19 rmind atomic_inc_uint(&np->n_refcnt);
540 1.19 rmind npf_config_read_exit(slock);
541 1.6 rmind return np;
542 1.2 rmind }
543 1.2 rmind
544 1.2 rmind /*
545 1.2 rmind * npf_nat_create: create a new NAT translation entry.
546 1.1 rmind */
547 1.2 rmind static npf_nat_t *
548 1.29 rmind npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np, npf_conn_t *con)
549 1.1 rmind {
550 1.19 rmind const int proto = npc->npc_proto;
551 1.2 rmind npf_nat_t *nt;
552 1.2 rmind
553 1.7 zoltan KASSERT(npf_iscached(npc, NPC_IP46));
554 1.7 zoltan KASSERT(npf_iscached(npc, NPC_LAYER4));
555 1.3 rmind
556 1.29 rmind /* Construct a new NAT entry and associate it with the connection. */
557 1.2 rmind nt = pool_cache_get(nat_cache, PR_NOWAIT);
558 1.2 rmind if (nt == NULL){
559 1.2 rmind return NULL;
560 1.2 rmind }
561 1.4 rmind npf_stats_inc(NPF_STAT_NAT_CREATE);
562 1.5 rmind nt->nt_natpolicy = np;
563 1.29 rmind nt->nt_conn = con;
564 1.5 rmind nt->nt_alg = NULL;
565 1.5 rmind
566 1.2 rmind /* Save the original address which may be rewritten. */
567 1.2 rmind if (np->n_type == NPF_NATOUT) {
568 1.23 rmind /* Outbound NAT: source (think internal) address. */
569 1.23 rmind memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_SRC], npc->npc_alen);
570 1.2 rmind } else {
571 1.23 rmind /* Inbound NAT: destination (think external) address. */
572 1.2 rmind KASSERT(np->n_type == NPF_NATIN);
573 1.23 rmind memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_DST], npc->npc_alen);
574 1.2 rmind }
575 1.2 rmind
576 1.2 rmind /*
577 1.2 rmind * Port translation, if required, and if it is TCP/UDP.
578 1.2 rmind */
579 1.2 rmind if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
580 1.2 rmind (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
581 1.2 rmind nt->nt_oport = 0;
582 1.2 rmind nt->nt_tport = 0;
583 1.12 rmind goto out;
584 1.2 rmind }
585 1.12 rmind
586 1.3 rmind /* Save the relevant TCP/UDP port. */
587 1.3 rmind if (proto == IPPROTO_TCP) {
588 1.18 rmind const struct tcphdr *th = npc->npc_l4.tcp;
589 1.3 rmind nt->nt_oport = (np->n_type == NPF_NATOUT) ?
590 1.3 rmind th->th_sport : th->th_dport;
591 1.2 rmind } else {
592 1.18 rmind const struct udphdr *uh = npc->npc_l4.udp;
593 1.3 rmind nt->nt_oport = (np->n_type == NPF_NATOUT) ?
594 1.3 rmind uh->uh_sport : uh->uh_dport;
595 1.2 rmind }
596 1.3 rmind
597 1.2 rmind /* Get a new port for translation. */
598 1.2 rmind if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
599 1.2 rmind nt->nt_tport = npf_nat_getport(np);
600 1.2 rmind } else {
601 1.2 rmind nt->nt_tport = np->n_tport;
602 1.2 rmind }
603 1.12 rmind out:
604 1.12 rmind mutex_enter(&np->n_lock);
605 1.12 rmind LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
606 1.12 rmind mutex_exit(&np->n_lock);
607 1.2 rmind return nt;
608 1.2 rmind }
609 1.2 rmind
610 1.2 rmind /*
611 1.24 rmind * npf_nat_translate: perform translation given the state data.
612 1.24 rmind */
613 1.26 rmind static inline int
614 1.30 rmind npf_nat_translate(npf_cache_t *npc, npf_nat_t *nt, bool forw)
615 1.24 rmind {
616 1.24 rmind const npf_natpolicy_t *np = nt->nt_natpolicy;
617 1.26 rmind const u_int which = npf_nat_which(np->n_type, forw);
618 1.24 rmind const npf_addr_t *addr;
619 1.24 rmind in_port_t port;
620 1.24 rmind
621 1.24 rmind KASSERT(npf_iscached(npc, NPC_IP46));
622 1.24 rmind KASSERT(npf_iscached(npc, NPC_LAYER4));
623 1.24 rmind
624 1.24 rmind if (forw) {
625 1.24 rmind /* "Forwards" stream: use translation address/port. */
626 1.24 rmind addr = &np->n_taddr;
627 1.24 rmind port = nt->nt_tport;
628 1.24 rmind } else {
629 1.24 rmind /* "Backwards" stream: use original address/port. */
630 1.24 rmind addr = &nt->nt_oaddr;
631 1.24 rmind port = nt->nt_oport;
632 1.24 rmind }
633 1.24 rmind KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
634 1.24 rmind
635 1.26 rmind /* Execute ALG translation first. */
636 1.24 rmind if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
637 1.24 rmind npc->npc_info |= NPC_ALG_EXEC;
638 1.30 rmind npf_alg_exec(npc, nt, forw);
639 1.30 rmind npf_recache(npc);
640 1.24 rmind }
641 1.30 rmind KASSERT(!nbuf_flag_p(npc->npc_nbuf, NBUF_DATAREF_RESET));
642 1.24 rmind
643 1.24 rmind /* Finally, perform the translation. */
644 1.26 rmind return npf_napt_rwr(npc, which, addr, port);
645 1.24 rmind }
646 1.24 rmind
647 1.24 rmind /*
648 1.25 rmind * npf_nat_algo: perform the translation given the algorithm.
649 1.25 rmind */
650 1.29 rmind static inline int
651 1.25 rmind npf_nat_algo(npf_cache_t *npc, const npf_natpolicy_t *np, bool forw)
652 1.25 rmind {
653 1.26 rmind const u_int which = npf_nat_which(np->n_type, forw);
654 1.25 rmind int error;
655 1.25 rmind
656 1.25 rmind switch (np->n_algo) {
657 1.25 rmind case NPF_ALGO_NPT66:
658 1.25 rmind error = npf_npt66_rwr(npc, which, &np->n_taddr,
659 1.25 rmind np->n_tmask, np->n_npt66_adj);
660 1.25 rmind break;
661 1.25 rmind default:
662 1.26 rmind error = npf_napt_rwr(npc, which, &np->n_taddr, np->n_tport);
663 1.25 rmind break;
664 1.25 rmind }
665 1.25 rmind
666 1.25 rmind return error;
667 1.31 rmind }
668 1.25 rmind
669 1.25 rmind /*
670 1.2 rmind * npf_do_nat:
671 1.29 rmind * - Inspect packet for a NAT policy, unless a connection with a NAT
672 1.4 rmind * association already exists. In such case, determine whether it
673 1.2 rmind * is a "forwards" or "backwards" stream.
674 1.4 rmind * - Perform translation: rewrite source or destination fields,
675 1.4 rmind * depending on translation type and direction.
676 1.29 rmind * - Associate a NAT policy with a connection (may establish a new).
677 1.2 rmind */
678 1.2 rmind int
679 1.30 rmind npf_do_nat(npf_cache_t *npc, npf_conn_t *con, const int di)
680 1.2 rmind {
681 1.30 rmind nbuf_t *nbuf = npc->npc_nbuf;
682 1.29 rmind npf_conn_t *ncon = NULL;
683 1.1 rmind npf_natpolicy_t *np;
684 1.1 rmind npf_nat_t *nt;
685 1.1 rmind int error;
686 1.22 rmind bool forw;
687 1.1 rmind
688 1.1 rmind /* All relevant IPv4 data should be already cached. */
689 1.3 rmind if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
690 1.1 rmind return 0;
691 1.1 rmind }
692 1.18 rmind KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
693 1.1 rmind
694 1.2 rmind /*
695 1.29 rmind * Return the NAT entry associated with the connection, if any.
696 1.3 rmind * Determines whether the stream is "forwards" or "backwards".
697 1.29 rmind * Note: no need to lock, since reference on connection is held.
698 1.2 rmind */
699 1.36 rmind if (con && (nt = npf_conn_getnat(con, di, &forw)) != NULL) {
700 1.1 rmind np = nt->nt_natpolicy;
701 1.2 rmind goto translate;
702 1.1 rmind }
703 1.1 rmind
704 1.6 rmind /*
705 1.29 rmind * Inspect the packet for a NAT policy, if there is no connection.
706 1.19 rmind * Note: acquires a reference if found.
707 1.6 rmind */
708 1.30 rmind np = npf_nat_inspect(npc, di);
709 1.1 rmind if (np == NULL) {
710 1.1 rmind /* If packet does not match - done. */
711 1.1 rmind return 0;
712 1.1 rmind }
713 1.2 rmind forw = true;
714 1.1 rmind
715 1.24 rmind /* Static NAT - just perform the translation. */
716 1.24 rmind if (np->n_flags & NPF_NAT_STATIC) {
717 1.24 rmind if (nbuf_cksum_barrier(nbuf, di)) {
718 1.30 rmind npf_recache(npc);
719 1.24 rmind }
720 1.25 rmind error = npf_nat_algo(npc, np, forw);
721 1.24 rmind atomic_dec_uint(&np->n_refcnt);
722 1.24 rmind return error;
723 1.24 rmind }
724 1.24 rmind
725 1.4 rmind /*
726 1.29 rmind * If there is no local connection (no "stateful" rule - unusual,
727 1.29 rmind * but possible configuration), establish one before translation.
728 1.29 rmind * Note that it is not a "pass" connection, therefore passing of
729 1.29 rmind * "backwards" stream depends on other, stateless filtering rules.
730 1.29 rmind */
731 1.29 rmind if (con == NULL) {
732 1.30 rmind ncon = npf_conn_establish(npc, di, true);
733 1.29 rmind if (ncon == NULL) {
734 1.22 rmind atomic_dec_uint(&np->n_refcnt);
735 1.22 rmind return ENOMEM;
736 1.1 rmind }
737 1.29 rmind con = ncon;
738 1.1 rmind }
739 1.22 rmind
740 1.22 rmind /*
741 1.29 rmind * Create a new NAT entry and associate with the connection.
742 1.22 rmind * We will consume the reference on success (release on error).
743 1.22 rmind */
744 1.29 rmind nt = npf_nat_create(npc, np, con);
745 1.22 rmind if (nt == NULL) {
746 1.22 rmind atomic_dec_uint(&np->n_refcnt);
747 1.22 rmind error = ENOMEM;
748 1.22 rmind goto out;
749 1.22 rmind }
750 1.22 rmind
751 1.29 rmind /* Associate the NAT translation entry with the connection. */
752 1.29 rmind error = npf_conn_setnat(npc, con, nt, np->n_type);
753 1.2 rmind if (error) {
754 1.22 rmind /* Will release the reference. */
755 1.22 rmind npf_nat_destroy(nt);
756 1.1 rmind goto out;
757 1.1 rmind }
758 1.1 rmind
759 1.22 rmind /* Determine whether any ALG matches. */
760 1.30 rmind if (npf_alg_match(npc, nt, di)) {
761 1.22 rmind KASSERT(nt->nt_alg != NULL);
762 1.22 rmind }
763 1.22 rmind
764 1.22 rmind translate:
765 1.23 rmind /* May need to process the delayed checksums first (XXX: NetBSD). */
766 1.23 rmind if (nbuf_cksum_barrier(nbuf, di)) {
767 1.30 rmind npf_recache(npc);
768 1.23 rmind }
769 1.23 rmind
770 1.22 rmind /* Perform the translation. */
771 1.30 rmind error = npf_nat_translate(npc, nt, forw);
772 1.1 rmind out:
773 1.29 rmind if (__predict_false(ncon)) {
774 1.24 rmind if (error) {
775 1.24 rmind /* It created for NAT - just expire. */
776 1.29 rmind npf_conn_expire(ncon);
777 1.24 rmind }
778 1.29 rmind npf_conn_release(ncon);
779 1.1 rmind }
780 1.1 rmind return error;
781 1.1 rmind }
782 1.1 rmind
783 1.1 rmind /*
784 1.4 rmind * npf_nat_gettrans: return translation IP address and port.
785 1.4 rmind */
786 1.4 rmind void
787 1.4 rmind npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
788 1.4 rmind {
789 1.4 rmind npf_natpolicy_t *np = nt->nt_natpolicy;
790 1.4 rmind
791 1.4 rmind *addr = &np->n_taddr;
792 1.4 rmind *port = nt->nt_tport;
793 1.4 rmind }
794 1.4 rmind
795 1.4 rmind /*
796 1.2 rmind * npf_nat_getorig: return original IP address and port from translation entry.
797 1.1 rmind */
798 1.1 rmind void
799 1.3 rmind npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
800 1.1 rmind {
801 1.3 rmind *addr = &nt->nt_oaddr;
802 1.2 rmind *port = nt->nt_oport;
803 1.1 rmind }
804 1.1 rmind
805 1.3 rmind /*
806 1.3 rmind * npf_nat_setalg: associate an ALG with the NAT entry.
807 1.3 rmind */
808 1.1 rmind void
809 1.1 rmind npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
810 1.1 rmind {
811 1.1 rmind nt->nt_alg = alg;
812 1.1 rmind nt->nt_alg_arg = arg;
813 1.1 rmind }
814 1.1 rmind
815 1.1 rmind /*
816 1.29 rmind * npf_nat_destroy: destroy NAT structure (performed on connection expiration).
817 1.1 rmind */
818 1.1 rmind void
819 1.22 rmind npf_nat_destroy(npf_nat_t *nt)
820 1.1 rmind {
821 1.2 rmind npf_natpolicy_t *np = nt->nt_natpolicy;
822 1.1 rmind
823 1.4 rmind /* Return any taken port to the portmap. */
824 1.4 rmind if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
825 1.1 rmind npf_nat_putport(np, nt->nt_tport);
826 1.1 rmind }
827 1.4 rmind
828 1.4 rmind mutex_enter(&np->n_lock);
829 1.4 rmind LIST_REMOVE(nt, nt_entry);
830 1.34 rmind KASSERT(np->n_refcnt > 0);
831 1.19 rmind atomic_dec_uint(&np->n_refcnt);
832 1.4 rmind mutex_exit(&np->n_lock);
833 1.4 rmind
834 1.1 rmind pool_cache_put(nat_cache, nt);
835 1.4 rmind npf_stats_inc(NPF_STAT_NAT_DESTROY);
836 1.4 rmind }
837 1.4 rmind
838 1.4 rmind /*
839 1.31 rmind * npf_nat_export: serialise the NAT entry with a NAT policy ID.
840 1.4 rmind */
841 1.31 rmind void
842 1.31 rmind npf_nat_export(prop_dictionary_t condict, npf_nat_t *nt)
843 1.4 rmind {
844 1.4 rmind npf_natpolicy_t *np = nt->nt_natpolicy;
845 1.31 rmind prop_dictionary_t natdict;
846 1.31 rmind prop_data_t d;
847 1.4 rmind
848 1.31 rmind natdict = prop_dictionary_create();
849 1.31 rmind d = prop_data_create_data(&nt->nt_oaddr, sizeof(npf_addr_t));
850 1.31 rmind prop_dictionary_set_and_rel(natdict, "oaddr", d);
851 1.31 rmind prop_dictionary_set_uint16(natdict, "oport", nt->nt_oport);
852 1.31 rmind prop_dictionary_set_uint16(natdict, "tport", nt->nt_tport);
853 1.31 rmind prop_dictionary_set_uint64(natdict, "nat-policy", np->n_id);
854 1.31 rmind prop_dictionary_set_and_rel(condict, "nat", natdict);
855 1.4 rmind }
856 1.4 rmind
857 1.4 rmind /*
858 1.31 rmind * npf_nat_import: find the NAT policy and unserialise the NAT entry.
859 1.4 rmind */
860 1.4 rmind npf_nat_t *
861 1.31 rmind npf_nat_import(prop_dictionary_t natdict, npf_ruleset_t *natlist,
862 1.31 rmind npf_conn_t *con)
863 1.4 rmind {
864 1.4 rmind npf_natpolicy_t *np;
865 1.4 rmind npf_nat_t *nt;
866 1.31 rmind uint64_t np_id;
867 1.31 rmind const void *d;
868 1.4 rmind
869 1.31 rmind prop_dictionary_get_uint64(natdict, "nat-policy", &np_id);
870 1.31 rmind if ((np = npf_ruleset_findnat(natlist, np_id)) == NULL) {
871 1.4 rmind return NULL;
872 1.4 rmind }
873 1.31 rmind nt = pool_cache_get(nat_cache, PR_WAITOK);
874 1.31 rmind memset(nt, 0, sizeof(npf_nat_t));
875 1.4 rmind
876 1.31 rmind prop_object_t obj = prop_dictionary_get(natdict, "oaddr");
877 1.31 rmind if ((d = prop_data_data_nocopy(obj)) == NULL ||
878 1.31 rmind prop_data_size(obj) != sizeof(npf_addr_t)) {
879 1.31 rmind pool_cache_put(nat_cache, nt);
880 1.4 rmind return NULL;
881 1.4 rmind }
882 1.31 rmind memcpy(&nt->nt_oaddr, d, sizeof(npf_addr_t));
883 1.31 rmind prop_dictionary_get_uint16(natdict, "oport", &nt->nt_oport);
884 1.31 rmind prop_dictionary_get_uint16(natdict, "tport", &nt->nt_tport);
885 1.4 rmind
886 1.4 rmind /* Take a specific port from port-map. */
887 1.36 rmind if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport &
888 1.36 rmind !npf_nat_takeport(np, nt->nt_tport)) {
889 1.31 rmind pool_cache_put(nat_cache, nt);
890 1.4 rmind return NULL;
891 1.4 rmind }
892 1.4 rmind
893 1.34 rmind /*
894 1.34 rmind * Associate, take a reference and insert. Unlocked since
895 1.34 rmind * the policy is not yet visible.
896 1.34 rmind */
897 1.4 rmind nt->nt_natpolicy = np;
898 1.29 rmind nt->nt_conn = con;
899 1.34 rmind np->n_refcnt++;
900 1.34 rmind LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
901 1.4 rmind return nt;
902 1.1 rmind }
903 1.1 rmind
904 1.1 rmind #if defined(DDB) || defined(_NPF_TESTING)
905 1.1 rmind
906 1.1 rmind void
907 1.14 rmind npf_nat_dump(const npf_nat_t *nt)
908 1.1 rmind {
909 1.14 rmind const npf_natpolicy_t *np;
910 1.1 rmind struct in_addr ip;
911 1.1 rmind
912 1.4 rmind np = nt->nt_natpolicy;
913 1.4 rmind memcpy(&ip, &np->n_taddr, sizeof(ip));
914 1.4 rmind printf("\tNATP(%p): type %d flags 0x%x taddr %s tport %d\n",
915 1.4 rmind np, np->n_type, np->n_flags, inet_ntoa(ip), np->n_tport);
916 1.4 rmind memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
917 1.4 rmind printf("\tNAT: original address %s oport %d tport %d\n",
918 1.4 rmind inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
919 1.4 rmind if (nt->nt_alg) {
920 1.4 rmind printf("\tNAT ALG = %p, ARG = %p\n",
921 1.4 rmind nt->nt_alg, (void *)nt->nt_alg_arg);
922 1.1 rmind }
923 1.1 rmind }
924 1.1 rmind
925 1.1 rmind #endif
926