npf_nat.c revision 1.24 1 /* $NetBSD: npf_nat.c,v 1.24 2014/02/07 23:45:22 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This material is based upon work partially supported by The
8 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 /*
33 * NPF network address port translation (NAPT) and other forms of NAT.
34 * Described in RFC 2663, RFC 3022, etc.
35 *
36 * Overview
37 *
38 * There are few mechanisms: NAT policy, port map and translation.
39 * NAT module has a separate ruleset, where rules contain associated
40 * NAT policy, thus flexible filter criteria can be used.
41 *
42 * Translation types
43 *
44 * There are two types of translation: outbound (NPF_NATOUT) and
45 * inbound (NPF_NATIN). It should not be confused with connection
46 * direction. See npf_nat_which() for the description of how the
47 * addresses are rewritten.
48 *
49 * It should be noted that bi-directional NAT is a combined outbound
50 * and inbound translation, therefore constructed as two policies.
51 *
52 * NAT policies and port maps
53 *
54 * NAT (translation) policy is applied when a packet matches the rule.
55 * Apart from filter criteria, NAT policy has a translation IP address
56 * and associated port map. Port map is a bitmap used to reserve and
57 * use unique TCP/UDP ports for translation. Port maps are unique to
58 * the IP addresses, therefore multiple NAT policies with the same IP
59 * will share the same port map.
60 *
61 * Sessions, translation entries and their life-cycle
62 *
63 * NAT module relies on session management module. Each translated
64 * session has an associated translation entry (npf_nat_t), which
65 * contains information used for backwards stream translation, i.e.
66 * original IP address with port and translation port, allocated from
67 * the port map. Each NAT entry is associated with the policy, which
68 * contains translation IP address. Allocated port is returned to the
69 * port map and NAT entry is destroyed when session expires.
70 */
71
72 #include <sys/cdefs.h>
73 __KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.24 2014/02/07 23:45:22 rmind Exp $");
74
75 #include <sys/param.h>
76 #include <sys/types.h>
77
78 #include <sys/atomic.h>
79 #include <sys/bitops.h>
80 #include <sys/condvar.h>
81 #include <sys/kmem.h>
82 #include <sys/mutex.h>
83 #include <sys/pool.h>
84 #include <sys/proc.h>
85 #include <sys/cprng.h>
86
87 #include <net/pfil.h>
88 #include <netinet/in.h>
89
90 #include "npf_impl.h"
91
92 /*
93 * NPF portmap structure.
94 */
95 typedef struct {
96 u_int p_refcnt;
97 uint32_t p_bitmap[0];
98 } npf_portmap_t;
99
100 /* Portmap range: [ 1024 .. 65535 ] */
101 #define PORTMAP_FIRST (1024)
102 #define PORTMAP_SIZE ((65536 - PORTMAP_FIRST) / 32)
103 #define PORTMAP_FILLED ((uint32_t)~0)
104 #define PORTMAP_MASK (31)
105 #define PORTMAP_SHIFT (5)
106
107 #define PORTMAP_MEM_SIZE \
108 (sizeof(npf_portmap_t) + (PORTMAP_SIZE * sizeof(uint32_t)))
109
110 /*
111 * NAT policy structure.
112 */
113 struct npf_natpolicy {
114 LIST_HEAD(, npf_nat) n_nat_list;
115 volatile u_int n_refcnt;
116 kmutex_t n_lock;
117 kcondvar_t n_cv;
118 npf_portmap_t * n_portmap;
119 /* NPF_NP_CMP_START */
120 int n_type;
121 u_int n_flags;
122 size_t n_addr_sz;
123 npf_addr_t n_taddr;
124 in_port_t n_tport;
125 };
126
127 #define NPF_NP_CMP_START offsetof(npf_natpolicy_t, n_type)
128 #define NPF_NP_CMP_SIZE (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
129
130 /*
131 * NAT translation entry for a session.
132 */
133 struct npf_nat {
134 /* Association (list entry and a link pointer) with NAT policy. */
135 LIST_ENTRY(npf_nat) nt_entry;
136 npf_natpolicy_t * nt_natpolicy;
137 npf_session_t * nt_session;
138 /* Original address and port (for backwards translation). */
139 npf_addr_t nt_oaddr;
140 in_port_t nt_oport;
141 /* Translation port (for redirects). */
142 in_port_t nt_tport;
143 /* ALG (if any) associated with this NAT entry. */
144 npf_alg_t * nt_alg;
145 uintptr_t nt_alg_arg;
146 };
147
148 static pool_cache_t nat_cache __read_mostly;
149
150 /*
151 * npf_nat_sys{init,fini}: initialise/destroy NAT subsystem structures.
152 */
153
154 void
155 npf_nat_sysinit(void)
156 {
157 nat_cache = pool_cache_init(sizeof(npf_nat_t), coherency_unit,
158 0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
159 KASSERT(nat_cache != NULL);
160 }
161
162 void
163 npf_nat_sysfini(void)
164 {
165 /* All NAT policies should already be destroyed. */
166 pool_cache_destroy(nat_cache);
167 }
168
169 /*
170 * npf_nat_newpolicy: create a new NAT policy.
171 *
172 * => Shares portmap if policy is on existing translation address.
173 */
174 npf_natpolicy_t *
175 npf_nat_newpolicy(prop_dictionary_t natdict, npf_ruleset_t *nrlset)
176 {
177 npf_natpolicy_t *np;
178 prop_object_t obj;
179 npf_portmap_t *pm;
180
181 np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
182
183 /* Translation type and flags. */
184 prop_dictionary_get_int32(natdict, "type", &np->n_type);
185 prop_dictionary_get_uint32(natdict, "flags", &np->n_flags);
186
187 /* Should be exclusively either inbound or outbound NAT. */
188 if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
189 kmem_free(np, sizeof(npf_natpolicy_t));
190 return NULL;
191 }
192 mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
193 cv_init(&np->n_cv, "npfnatcv");
194 LIST_INIT(&np->n_nat_list);
195
196 /* Translation IP. */
197 obj = prop_dictionary_get(natdict, "translation-ip");
198 np->n_addr_sz = prop_data_size(obj);
199 KASSERT(np->n_addr_sz > 0 && np->n_addr_sz <= sizeof(npf_addr_t));
200 memcpy(&np->n_taddr, prop_data_data_nocopy(obj), np->n_addr_sz);
201
202 /* Translation port (for redirect case). */
203 prop_dictionary_get_uint16(natdict, "translation-port", &np->n_tport);
204
205 /* Determine if port map is needed. */
206 np->n_portmap = NULL;
207 if ((np->n_flags & NPF_NAT_PORTMAP) == 0) {
208 /* No port map. */
209 return np;
210 }
211
212 /*
213 * Inspect NAT policies in the ruleset for port map sharing.
214 * Note that npf_ruleset_sharepm() will increase the reference count.
215 */
216 if (!npf_ruleset_sharepm(nrlset, np)) {
217 /* Allocate a new port map for the NAT policy. */
218 pm = kmem_zalloc(PORTMAP_MEM_SIZE, KM_SLEEP);
219 pm->p_refcnt = 1;
220 KASSERT((uintptr_t)pm->p_bitmap == (uintptr_t)pm + sizeof(*pm));
221 np->n_portmap = pm;
222 } else {
223 KASSERT(np->n_portmap != NULL);
224 }
225 return np;
226 }
227
228 /*
229 * npf_nat_freepolicy: free NAT policy and, on last reference, free portmap.
230 *
231 * => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
232 */
233 void
234 npf_nat_freepolicy(npf_natpolicy_t *np)
235 {
236 npf_portmap_t *pm = np->n_portmap;
237 npf_session_t *se;
238 npf_nat_t *nt;
239
240 /*
241 * Disassociate all entries from the policy. At this point,
242 * new entries can no longer be created for this policy.
243 */
244 mutex_enter(&np->n_lock);
245 LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
246 se = nt->nt_session;
247 KASSERT(se != NULL);
248 npf_session_expire(se);
249 }
250 while (!LIST_EMPTY(&np->n_nat_list)) {
251 cv_wait(&np->n_cv, &np->n_lock);
252 }
253 mutex_exit(&np->n_lock);
254
255 /* Kick the worker - all references should be going away. */
256 npf_worker_signal();
257 while (np->n_refcnt) {
258 kpause("npfgcnat", false, 1, NULL);
259 }
260 KASSERT(LIST_EMPTY(&np->n_nat_list));
261
262 /* Destroy the port map, on last reference. */
263 if (pm && --pm->p_refcnt == 0) {
264 KASSERT((np->n_flags & NPF_NAT_PORTMAP) != 0);
265 kmem_free(pm, PORTMAP_MEM_SIZE);
266 }
267 cv_destroy(&np->n_cv);
268 mutex_destroy(&np->n_lock);
269 kmem_free(np, sizeof(npf_natpolicy_t));
270 }
271
272 void
273 npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
274 {
275 npf_nat_t *nt;
276
277 mutex_enter(&np->n_lock);
278 LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
279 if (nt->nt_alg != alg) {
280 continue;
281 }
282 nt->nt_alg = NULL;
283 }
284 mutex_exit(&np->n_lock);
285 }
286
287 /*
288 * npf_nat_matchpolicy: compare two NAT policies.
289 *
290 * => Return 0 on match, and non-zero otherwise.
291 */
292 bool
293 npf_nat_matchpolicy(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
294 {
295 void *np_raw, *mnp_raw;
296 /*
297 * Compare the relevant NAT policy information (in raw form),
298 * which is enough for matching criterion.
299 */
300 KASSERT(np && mnp && np != mnp);
301 np_raw = (uint8_t *)np + NPF_NP_CMP_START;
302 mnp_raw = (uint8_t *)mnp + NPF_NP_CMP_START;
303 return (memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0);
304 }
305
306 bool
307 npf_nat_sharepm(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
308 {
309 npf_portmap_t *pm, *mpm;
310
311 KASSERT(np && mnp && np != mnp);
312
313 /* Using port map and having equal translation address? */
314 if ((np->n_flags & mnp->n_flags & NPF_NAT_PORTMAP) == 0) {
315 return false;
316 }
317 if (np->n_addr_sz != mnp->n_addr_sz) {
318 return false;
319 }
320 if (memcmp(&np->n_taddr, &mnp->n_taddr, np->n_addr_sz) != 0) {
321 return false;
322 }
323 /* If NAT policy has an old port map - drop the reference. */
324 mpm = mnp->n_portmap;
325 if (mpm) {
326 /* Note: at this point we cannot hold a last reference. */
327 KASSERT(mpm->p_refcnt > 1);
328 mpm->p_refcnt--;
329 }
330 /* Share the port map. */
331 pm = np->n_portmap;
332 mnp->n_portmap = pm;
333 pm->p_refcnt++;
334 return true;
335 }
336
337 /*
338 * npf_nat_getport: allocate and return a port in the NAT policy portmap.
339 *
340 * => Returns in network byte-order.
341 * => Zero indicates failure.
342 */
343 static in_port_t
344 npf_nat_getport(npf_natpolicy_t *np)
345 {
346 npf_portmap_t *pm = np->n_portmap;
347 u_int n = PORTMAP_SIZE, idx, bit;
348 uint32_t map, nmap;
349
350 idx = cprng_fast32() % PORTMAP_SIZE;
351 for (;;) {
352 KASSERT(idx < PORTMAP_SIZE);
353 map = pm->p_bitmap[idx];
354 if (__predict_false(map == PORTMAP_FILLED)) {
355 if (n-- == 0) {
356 /* No space. */
357 return 0;
358 }
359 /* This bitmap is filled, next. */
360 idx = (idx ? idx : PORTMAP_SIZE) - 1;
361 continue;
362 }
363 bit = ffs32(~map) - 1;
364 nmap = map | (1 << bit);
365 if (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map) {
366 /* Success. */
367 break;
368 }
369 }
370 return htons(PORTMAP_FIRST + (idx << PORTMAP_SHIFT) + bit);
371 }
372
373 /*
374 * npf_nat_takeport: allocate specific port in the NAT policy portmap.
375 */
376 static bool
377 npf_nat_takeport(npf_natpolicy_t *np, in_port_t port)
378 {
379 npf_portmap_t *pm = np->n_portmap;
380 uint32_t map, nmap;
381 u_int idx, bit;
382
383 port = ntohs(port) - PORTMAP_FIRST;
384 idx = port >> PORTMAP_SHIFT;
385 bit = port & PORTMAP_MASK;
386 map = pm->p_bitmap[idx];
387 nmap = map | (1 << bit);
388 if (map == nmap) {
389 /* Already taken. */
390 return false;
391 }
392 return atomic_cas_32(&pm->p_bitmap[idx], map, nmap) == map;
393 }
394
395 /*
396 * npf_nat_putport: return port as available in the NAT policy portmap.
397 *
398 * => Port should be in network byte-order.
399 */
400 static void
401 npf_nat_putport(npf_natpolicy_t *np, in_port_t port)
402 {
403 npf_portmap_t *pm = np->n_portmap;
404 uint32_t map, nmap;
405 u_int idx, bit;
406
407 port = ntohs(port) - PORTMAP_FIRST;
408 idx = port >> PORTMAP_SHIFT;
409 bit = port & PORTMAP_MASK;
410 do {
411 map = pm->p_bitmap[idx];
412 KASSERT(map | (1 << bit));
413 nmap = map & ~(1 << bit);
414 } while (atomic_cas_32(&pm->p_bitmap[idx], map, nmap) != map);
415 }
416
417 /*
418 * npf_nat_which: tell which address (source or destination) should be
419 * rewritten given the combination of the NAT type and flow direction.
420 */
421 static inline u_int
422 npf_nat_which(const int type, bool forw)
423 {
424 /*
425 * Outbound NAT rewrites:
426 * - Source (NPF_SRC) on "forwards" stream.
427 * - Destination (NPF_DST) on "backwards" stream.
428 * Inbound NAT is other way round.
429 */
430 if (type == NPF_NATOUT) {
431 forw = !forw;
432 } else {
433 KASSERT(type == NPF_NATIN);
434 }
435 CTASSERT(NPF_SRC == 0 && NPF_DST == 1);
436 KASSERT(forw == NPF_SRC || forw == NPF_DST);
437 return (u_int)forw;
438 }
439
440 /*
441 * npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
442 *
443 * => Acquire a reference on the policy, if found.
444 */
445 static npf_natpolicy_t *
446 npf_nat_inspect(npf_cache_t *npc, nbuf_t *nbuf, const int di)
447 {
448 int slock = npf_config_read_enter();
449 npf_ruleset_t *rlset = npf_config_natset();
450 npf_natpolicy_t *np;
451 npf_rule_t *rl;
452
453 rl = npf_ruleset_inspect(npc, nbuf, rlset, di, NPF_LAYER_3);
454 if (rl == NULL) {
455 npf_config_read_exit(slock);
456 return NULL;
457 }
458 np = npf_rule_getnat(rl);
459 atomic_inc_uint(&np->n_refcnt);
460 npf_config_read_exit(slock);
461 return np;
462 }
463
464 /*
465 * npf_nat_create: create a new NAT translation entry.
466 */
467 static npf_nat_t *
468 npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np, npf_session_t *se)
469 {
470 const int proto = npc->npc_proto;
471 npf_nat_t *nt;
472
473 KASSERT(npf_iscached(npc, NPC_IP46));
474 KASSERT(npf_iscached(npc, NPC_LAYER4));
475
476 /* Construct a new NAT entry and associate it with the session. */
477 nt = pool_cache_get(nat_cache, PR_NOWAIT);
478 if (nt == NULL){
479 return NULL;
480 }
481 npf_stats_inc(NPF_STAT_NAT_CREATE);
482 nt->nt_natpolicy = np;
483 nt->nt_session = se;
484 nt->nt_alg = NULL;
485
486 /* Save the original address which may be rewritten. */
487 if (np->n_type == NPF_NATOUT) {
488 /* Outbound NAT: source (think internal) address. */
489 memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_SRC], npc->npc_alen);
490 } else {
491 /* Inbound NAT: destination (think external) address. */
492 KASSERT(np->n_type == NPF_NATIN);
493 memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_DST], npc->npc_alen);
494 }
495
496 /*
497 * Port translation, if required, and if it is TCP/UDP.
498 */
499 if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
500 (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
501 nt->nt_oport = 0;
502 nt->nt_tport = 0;
503 goto out;
504 }
505
506 /* Save the relevant TCP/UDP port. */
507 if (proto == IPPROTO_TCP) {
508 const struct tcphdr *th = npc->npc_l4.tcp;
509 nt->nt_oport = (np->n_type == NPF_NATOUT) ?
510 th->th_sport : th->th_dport;
511 } else {
512 const struct udphdr *uh = npc->npc_l4.udp;
513 nt->nt_oport = (np->n_type == NPF_NATOUT) ?
514 uh->uh_sport : uh->uh_dport;
515 }
516
517 /* Get a new port for translation. */
518 if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
519 nt->nt_tport = npf_nat_getport(np);
520 } else {
521 nt->nt_tport = np->n_tport;
522 }
523 out:
524 mutex_enter(&np->n_lock);
525 LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
526 mutex_exit(&np->n_lock);
527 return nt;
528 }
529
530 /*
531 * npf_nat_rwr: perform address and/or port translation.
532 */
533 static int
534 npf_nat_rwr(npf_cache_t *npc, const npf_natpolicy_t *np,
535 const npf_addr_t *addr, const in_addr_t port, bool forw)
536 {
537 const unsigned proto = npc->npc_proto;
538 const u_int which = npf_nat_which(np->n_type, forw);
539
540 /*
541 * Rewrite IP and/or TCP/UDP checksums first, since we need the
542 * current (old) address/port for the calculations. Then perform
543 * the address translation i.e. rewrite source or destination.
544 */
545 if (!npf_rwrcksum(npc, which, addr, port)) {
546 return EINVAL;
547 }
548 if (!npf_rwrip(npc, which, addr)) {
549 return EINVAL;
550 }
551 if ((np->n_flags & NPF_NAT_PORTS) == 0) {
552 /* Done. */
553 return 0;
554 }
555
556 switch (proto) {
557 case IPPROTO_TCP:
558 case IPPROTO_UDP:
559 /* Rewrite source/destination port. */
560 if (!npf_rwrport(npc, which, port)) {
561 return EINVAL;
562 }
563 break;
564 case IPPROTO_ICMP:
565 KASSERT(npf_iscached(npc, NPC_ICMP));
566 /* Nothing. */
567 break;
568 default:
569 return ENOTSUP;
570 }
571 return 0;
572 }
573
574 /*
575 * npf_nat_translate: perform translation given the state data.
576 */
577 int
578 npf_nat_translate(npf_cache_t *npc, nbuf_t *nbuf, npf_nat_t *nt, bool forw)
579 {
580 const npf_natpolicy_t *np = nt->nt_natpolicy;
581 const npf_addr_t *addr;
582 in_port_t port;
583
584 KASSERT(npf_iscached(npc, NPC_IP46));
585 KASSERT(npf_iscached(npc, NPC_LAYER4));
586 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
587
588 if (forw) {
589 /* "Forwards" stream: use translation address/port. */
590 addr = &np->n_taddr;
591 port = nt->nt_tport;
592 } else {
593 /* "Backwards" stream: use original address/port. */
594 addr = &nt->nt_oaddr;
595 port = nt->nt_oport;
596 }
597 KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
598
599 /* Execute ALG hook first. */
600 if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
601 npc->npc_info |= NPC_ALG_EXEC;
602 npf_alg_exec(npc, nbuf, nt, forw);
603 }
604
605 /* Finally, perform the translation. */
606 return npf_nat_rwr(npc, np, addr, port, forw);
607 }
608
609 /*
610 * npf_do_nat:
611 * - Inspect packet for a NAT policy, unless a session with a NAT
612 * association already exists. In such case, determine whether it
613 * is a "forwards" or "backwards" stream.
614 * - Perform translation: rewrite source or destination fields,
615 * depending on translation type and direction.
616 * - Associate a NAT policy with a session (may establish a new).
617 */
618 int
619 npf_do_nat(npf_cache_t *npc, npf_session_t *se, nbuf_t *nbuf, const int di)
620 {
621 npf_session_t *nse = NULL;
622 npf_natpolicy_t *np;
623 npf_nat_t *nt;
624 int error;
625 bool forw;
626
627 /* All relevant IPv4 data should be already cached. */
628 if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
629 return 0;
630 }
631 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
632
633 /*
634 * Return the NAT entry associated with the session, if any.
635 * Determines whether the stream is "forwards" or "backwards".
636 * Note: no need to lock, since reference on session is held.
637 */
638 if (se && (nt = npf_session_retnat(se, di, &forw)) != NULL) {
639 np = nt->nt_natpolicy;
640 goto translate;
641 }
642
643 /*
644 * Inspect the packet for a NAT policy, if there is no session.
645 * Note: acquires a reference if found.
646 */
647 np = npf_nat_inspect(npc, nbuf, di);
648 if (np == NULL) {
649 /* If packet does not match - done. */
650 return 0;
651 }
652 forw = true;
653
654 /* Static NAT - just perform the translation. */
655 if (np->n_flags & NPF_NAT_STATIC) {
656 if (nbuf_cksum_barrier(nbuf, di)) {
657 npf_recache(npc, nbuf);
658 }
659 error = npf_nat_rwr(npc, np, &np->n_taddr, np->n_tport, forw);
660 atomic_dec_uint(&np->n_refcnt);
661 return error;
662 }
663
664 /*
665 * If there is no local session (no "stateful" rule - unusual, but
666 * possible configuration), establish one before translation. Note
667 * that it is not a "pass" session, therefore passing of "backwards"
668 * stream depends on other, stateless filtering rules.
669 */
670 if (se == NULL) {
671 nse = npf_session_establish(npc, nbuf, di);
672 if (nse == NULL) {
673 atomic_dec_uint(&np->n_refcnt);
674 return ENOMEM;
675 }
676 se = nse;
677 }
678
679 /*
680 * Create a new NAT entry and associate with the session.
681 * We will consume the reference on success (release on error).
682 */
683 nt = npf_nat_create(npc, np, se);
684 if (nt == NULL) {
685 atomic_dec_uint(&np->n_refcnt);
686 error = ENOMEM;
687 goto out;
688 }
689
690 /* Associate the NAT translation entry with the session. */
691 error = npf_session_setnat(se, nt, np->n_type);
692 if (error) {
693 /* Will release the reference. */
694 npf_nat_destroy(nt);
695 goto out;
696 }
697
698 /* Determine whether any ALG matches. */
699 if (npf_alg_match(npc, nbuf, nt, di)) {
700 KASSERT(nt->nt_alg != NULL);
701 }
702
703 translate:
704 /* May need to process the delayed checksums first (XXX: NetBSD). */
705 if (nbuf_cksum_barrier(nbuf, di)) {
706 npf_recache(npc, nbuf);
707 }
708
709 /* Perform the translation. */
710 error = npf_nat_translate(npc, nbuf, nt, forw);
711 out:
712 if (__predict_false(nse)) {
713 if (error) {
714 /* It created for NAT - just expire. */
715 npf_session_expire(nse);
716 }
717 npf_session_release(nse);
718 }
719 return error;
720 }
721
722 /*
723 * npf_nat_gettrans: return translation IP address and port.
724 */
725 void
726 npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
727 {
728 npf_natpolicy_t *np = nt->nt_natpolicy;
729
730 *addr = &np->n_taddr;
731 *port = nt->nt_tport;
732 }
733
734 /*
735 * npf_nat_getorig: return original IP address and port from translation entry.
736 */
737 void
738 npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
739 {
740 *addr = &nt->nt_oaddr;
741 *port = nt->nt_oport;
742 }
743
744 /*
745 * npf_nat_setalg: associate an ALG with the NAT entry.
746 */
747 void
748 npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
749 {
750 nt->nt_alg = alg;
751 nt->nt_alg_arg = arg;
752 }
753
754 /*
755 * npf_nat_destroy: destroy NAT structure (performed on session expiration).
756 */
757 void
758 npf_nat_destroy(npf_nat_t *nt)
759 {
760 npf_natpolicy_t *np = nt->nt_natpolicy;
761
762 /* Return any taken port to the portmap. */
763 if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
764 npf_nat_putport(np, nt->nt_tport);
765 }
766
767 mutex_enter(&np->n_lock);
768 LIST_REMOVE(nt, nt_entry);
769 if (LIST_EMPTY(&np->n_nat_list)) {
770 /* Notify any waiters if empty. */
771 cv_broadcast(&np->n_cv);
772 }
773 atomic_dec_uint(&np->n_refcnt);
774 mutex_exit(&np->n_lock);
775
776 pool_cache_put(nat_cache, nt);
777 npf_stats_inc(NPF_STAT_NAT_DESTROY);
778 }
779
780 /*
781 * npf_nat_save: construct NAT entry and reference to the NAT policy.
782 */
783 int
784 npf_nat_save(prop_dictionary_t sedict, prop_array_t natlist, npf_nat_t *nt)
785 {
786 npf_natpolicy_t *np = nt->nt_natpolicy;
787 prop_object_iterator_t it;
788 prop_dictionary_t npdict;
789 prop_data_t nd, npd;
790 uint64_t itnp;
791
792 /* Set NAT entry data. */
793 nd = prop_data_create_data(nt, sizeof(npf_nat_t));
794 prop_dictionary_set(sedict, "nat-data", nd);
795 prop_object_release(nd);
796
797 /* Find or create a NAT policy. */
798 it = prop_array_iterator(natlist);
799 while ((npdict = prop_object_iterator_next(it)) != NULL) {
800 CTASSERT(sizeof(uintptr_t) <= sizeof(uint64_t));
801 prop_dictionary_get_uint64(npdict, "id-ptr", &itnp);
802 if ((uintptr_t)itnp == (uintptr_t)np) {
803 break;
804 }
805 }
806 if (npdict == NULL) {
807 /* Create NAT policy dictionary and copy the data. */
808 npdict = prop_dictionary_create();
809 npd = prop_data_create_data(np, sizeof(npf_natpolicy_t));
810 prop_dictionary_set(npdict, "nat-policy-data", npd);
811 prop_object_release(npd);
812
813 CTASSERT(sizeof(uintptr_t) <= sizeof(uint64_t));
814 prop_dictionary_set_uint64(npdict, "id-ptr", (uintptr_t)np);
815 prop_array_add(natlist, npdict);
816 prop_object_release(npdict);
817 }
818 prop_dictionary_set(sedict, "nat-policy", npdict);
819 prop_object_release(npdict);
820 return 0;
821 }
822
823 /*
824 * npf_nat_restore: find a matching NAT policy and restore NAT entry.
825 *
826 * => Caller should lock the active NAT ruleset.
827 */
828 npf_nat_t *
829 npf_nat_restore(prop_dictionary_t sedict, npf_session_t *se)
830 {
831 const npf_natpolicy_t *onp;
832 const npf_nat_t *ntraw;
833 prop_object_t obj;
834 npf_natpolicy_t *np;
835 npf_rule_t *rl;
836 npf_nat_t *nt;
837
838 /* Get raw NAT entry. */
839 obj = prop_dictionary_get(sedict, "nat-data");
840 ntraw = prop_data_data_nocopy(obj);
841 if (ntraw == NULL || prop_data_size(obj) != sizeof(npf_nat_t)) {
842 return NULL;
843 }
844
845 /* Find a stored NAT policy information. */
846 obj = prop_dictionary_get(
847 prop_dictionary_get(sedict, "nat-policy"), "nat-policy-data");
848 onp = prop_data_data_nocopy(obj);
849 if (onp == NULL || prop_data_size(obj) != sizeof(npf_natpolicy_t)) {
850 return NULL;
851 }
852
853 /*
854 * Match if there is an existing NAT policy. Will acquire the
855 * reference on it if further operations are successful.
856 */
857 KASSERT(npf_config_locked_p());
858 rl = npf_ruleset_matchnat(npf_config_natset(), __UNCONST(onp));
859 if (rl == NULL) {
860 return NULL;
861 }
862 np = npf_rule_getnat(rl);
863 KASSERT(np != NULL);
864
865 /* Take a specific port from port-map. */
866 if (!npf_nat_takeport(np, ntraw->nt_tport)) {
867 return NULL;
868 }
869 atomic_inc_uint(&np->n_refcnt);
870
871 /* Create and return NAT entry for association. */
872 nt = pool_cache_get(nat_cache, PR_WAITOK);
873 memcpy(nt, ntraw, sizeof(npf_nat_t));
874 LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
875 nt->nt_natpolicy = np;
876 nt->nt_session = se;
877 nt->nt_alg = NULL;
878 return nt;
879 }
880
881 #if defined(DDB) || defined(_NPF_TESTING)
882
883 void
884 npf_nat_dump(const npf_nat_t *nt)
885 {
886 const npf_natpolicy_t *np;
887 struct in_addr ip;
888
889 np = nt->nt_natpolicy;
890 memcpy(&ip, &np->n_taddr, sizeof(ip));
891 printf("\tNATP(%p): type %d flags 0x%x taddr %s tport %d\n",
892 np, np->n_type, np->n_flags, inet_ntoa(ip), np->n_tport);
893 memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
894 printf("\tNAT: original address %s oport %d tport %d\n",
895 inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
896 if (nt->nt_alg) {
897 printf("\tNAT ALG = %p, ARG = %p\n",
898 nt->nt_alg, (void *)nt->nt_alg_arg);
899 }
900 }
901
902 #endif
903