npf_nat.c revision 1.49 1 /*-
2 * Copyright (c) 2014-2019 Mindaugas Rasiukevicius <rmind at netbsd org>
3 * Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This material is based upon work partially supported by The
7 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * NPF network address port translation (NAPT) and other forms of NAT.
33 * Described in RFC 2663, RFC 3022, etc.
34 *
35 * Overview
36 *
37 * There are a few mechanisms: NAT policy, port map and translation.
38 * The NAT module has a separate ruleset where rules always have an
39 * associated NAT policy.
40 *
41 * Translation types
42 *
43 * There are two types of translation: outbound (NPF_NATOUT) and
44 * inbound (NPF_NATIN). It should not be confused with connection
45 * direction. See npf_nat_which() for the description of how the
46 * addresses are rewritten. The bi-directional NAT is a combined
47 * outbound and inbound translation, therefore is constructed as
48 * two policies.
49 *
50 * NAT policies and port maps
51 *
52 * The NAT (translation) policy is applied when packet matches the
53 * rule. Apart from the filter criteria, the NAT policy always has
54 * a translation IP address or a table. If port translation is set,
55 * then NAT mechanism relies on port map mechanism.
56 *
57 * Connections, translation entries and their life-cycle
58 *
59 * NAT relies on the connection tracking module. Each translated
60 * connection has an associated translation entry (npf_nat_t) which
61 * contains information used for backwards stream translation, i.e.
62 * the original IP address with port and translation port, allocated
63 * from the port map. Each NAT entry is associated with the policy,
64 * which contains translation IP address. Allocated port is returned
65 * to the port map and NAT entry is destroyed when connection expires.
66 */
67
68 #ifdef _KERNEL
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.49 2020/05/23 19:56:00 rmind Exp $");
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74
75 #include <sys/atomic.h>
76 #include <sys/condvar.h>
77 #include <sys/kmem.h>
78 #include <sys/mutex.h>
79 #include <sys/pool.h>
80 #include <sys/proc.h>
81 #endif
82
83 #include "npf_impl.h"
84 #include "npf_conn.h"
85
86 /*
87 * NAT policy structure.
88 */
89 struct npf_natpolicy {
90 npf_t * n_npfctx;
91 kmutex_t n_lock;
92 LIST_HEAD(, npf_nat) n_nat_list;
93 volatile unsigned n_refcnt;
94 uint64_t n_id;
95
96 /*
97 * Translation type, flags, address or table and the port.
98 * Additionally, there may be translation algorithm and any
99 * auxiliary data, e.g. NPTv6 adjustment value.
100 *
101 * NPF_NP_CMP_START mark starts here.
102 */
103 unsigned n_type;
104 unsigned n_flags;
105 unsigned n_alen;
106
107 npf_addr_t n_taddr;
108 npf_netmask_t n_tmask;
109 in_port_t n_tport;
110 unsigned n_tid;
111
112 unsigned n_algo;
113 union {
114 unsigned n_rr_idx;
115 uint16_t n_npt66_adj;
116 };
117 };
118
119 /*
120 * Private flags - must be in the NPF_NAT_PRIVMASK range.
121 */
122 #define NPF_NAT_USETABLE (0x01000000 & NPF_NAT_PRIVMASK)
123
124 #define NPF_NP_CMP_START offsetof(npf_natpolicy_t, n_type)
125 #define NPF_NP_CMP_SIZE (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
126
127 /*
128 * NAT translation entry for a connection.
129 */
130 struct npf_nat {
131 /* Associated NAT policy. */
132 npf_natpolicy_t * nt_natpolicy;
133
134 /*
135 * Translation address as well as the original address which is
136 * used for backwards translation. The same for ports.
137 */
138 npf_addr_t nt_taddr;
139 npf_addr_t nt_oaddr;
140
141 unsigned nt_alen;
142 in_port_t nt_oport;
143 in_port_t nt_tport;
144
145 /* ALG (if any) associated with this NAT entry. */
146 npf_alg_t * nt_alg;
147 uintptr_t nt_alg_arg;
148
149 LIST_ENTRY(npf_nat) nt_entry;
150 npf_conn_t * nt_conn;
151 };
152
153 static pool_cache_t nat_cache __read_mostly;
154
155 /*
156 * npf_nat_sys{init,fini}: initialise/destroy NAT subsystem structures.
157 */
158
159 void
160 npf_nat_sysinit(void)
161 {
162 nat_cache = pool_cache_init(sizeof(npf_nat_t), 0,
163 0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
164 KASSERT(nat_cache != NULL);
165 }
166
167 void
168 npf_nat_sysfini(void)
169 {
170 /* All NAT policies should already be destroyed. */
171 pool_cache_destroy(nat_cache);
172 }
173
174 /*
175 * npf_nat_newpolicy: create a new NAT policy.
176 */
177 npf_natpolicy_t *
178 npf_nat_newpolicy(npf_t *npf, const nvlist_t *nat, npf_ruleset_t *rset)
179 {
180 npf_natpolicy_t *np;
181 const void *addr;
182 size_t len;
183
184 np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
185 atomic_store_relaxed(&np->n_refcnt, 1);
186 np->n_npfctx = npf;
187
188 /* The translation type, flags and policy ID. */
189 np->n_type = dnvlist_get_number(nat, "type", 0);
190 np->n_flags = dnvlist_get_number(nat, "flags", 0) & ~NPF_NAT_PRIVMASK;
191 np->n_id = dnvlist_get_number(nat, "nat-policy", 0);
192
193 /* Should be exclusively either inbound or outbound NAT. */
194 if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
195 goto err;
196 }
197 mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
198 LIST_INIT(&np->n_nat_list);
199
200 /*
201 * Translation IP, mask and port (if applicable). If using the
202 * the table, specified by the ID, then the nat-addr/nat-mask will
203 * be used as a filter for the addresses selected from table.
204 */
205 if (nvlist_exists_number(nat, "nat-table-id")) {
206 if (np->n_flags & NPF_NAT_STATIC) {
207 goto err;
208 }
209 np->n_tid = nvlist_get_number(nat, "nat-table-id");
210 np->n_tmask = NPF_NO_NETMASK;
211 np->n_flags |= NPF_NAT_USETABLE;
212 } else {
213 addr = dnvlist_get_binary(nat, "nat-addr", &len, NULL, 0);
214 if (!addr || len == 0 || len > sizeof(npf_addr_t)) {
215 goto err;
216 }
217 memcpy(&np->n_taddr, addr, len);
218 np->n_alen = len;
219 np->n_tmask = dnvlist_get_number(nat, "nat-mask", NPF_NO_NETMASK);
220 if (npf_netmask_check(np->n_alen, np->n_tmask)) {
221 goto err;
222 }
223 }
224 np->n_tport = dnvlist_get_number(nat, "nat-port", 0);
225
226 /*
227 * NAT algorithm.
228 */
229 np->n_algo = dnvlist_get_number(nat, "nat-algo", 0);
230 switch (np->n_algo) {
231 case NPF_ALGO_NPT66:
232 np->n_npt66_adj = dnvlist_get_number(nat, "npt66-adj", 0);
233 break;
234 case NPF_ALGO_NETMAP:
235 break;
236 case NPF_ALGO_IPHASH:
237 case NPF_ALGO_RR:
238 default:
239 if (np->n_tmask != NPF_NO_NETMASK) {
240 goto err;
241 }
242 break;
243 }
244 return np;
245 err:
246 mutex_destroy(&np->n_lock);
247 kmem_free(np, sizeof(npf_natpolicy_t));
248 return NULL;
249 }
250
251 int
252 npf_nat_policyexport(const npf_natpolicy_t *np, nvlist_t *nat)
253 {
254 nvlist_add_number(nat, "nat-policy", np->n_id);
255 nvlist_add_number(nat, "type", np->n_type);
256 nvlist_add_number(nat, "flags", np->n_flags);
257
258 if (np->n_flags & NPF_NAT_USETABLE) {
259 nvlist_add_number(nat, "nat-table-id", np->n_tid);
260 } else {
261 nvlist_add_binary(nat, "nat-addr", &np->n_taddr, np->n_alen);
262 nvlist_add_number(nat, "nat-mask", np->n_tmask);
263 }
264 nvlist_add_number(nat, "nat-port", np->n_tport);
265 nvlist_add_number(nat, "nat-algo", np->n_algo);
266
267 switch (np->n_algo) {
268 case NPF_ALGO_NPT66:
269 nvlist_add_number(nat, "npt66-adj", np->n_npt66_adj);
270 break;
271 }
272 return 0;
273 }
274
275 static void
276 npf_natpolicy_release(npf_natpolicy_t *np)
277 {
278 KASSERT(atomic_load_relaxed(&np->n_refcnt) > 0);
279
280 if (atomic_dec_uint_nv(&np->n_refcnt) != 0) {
281 return;
282 }
283 KASSERT(LIST_EMPTY(&np->n_nat_list));
284 mutex_destroy(&np->n_lock);
285 kmem_free(np, sizeof(npf_natpolicy_t));
286 }
287
288 /*
289 * npf_nat_freepolicy: free the NAT policy.
290 *
291 * => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
292 * => At this point, NAT policy cannot acquire new references.
293 */
294 void
295 npf_nat_freepolicy(npf_natpolicy_t *np)
296 {
297 /*
298 * Drain the references. If there are active NAT connections,
299 * then expire them and kick the worker.
300 */
301 if (atomic_load_relaxed(&np->n_refcnt) > 1) {
302 npf_nat_t *nt;
303
304 mutex_enter(&np->n_lock);
305 LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
306 npf_conn_t *con = nt->nt_conn;
307 KASSERT(con != NULL);
308 npf_conn_expire(con);
309 }
310 mutex_exit(&np->n_lock);
311 npf_worker_signal(np->n_npfctx);
312 }
313 KASSERT(atomic_load_relaxed(&np->n_refcnt) >= 1);
314
315 /*
316 * Drop the initial reference, but it might not be the last one.
317 * If so, the last reference will be triggered via:
318 *
319 * npf_conn_destroy() -> npf_nat_destroy() -> npf_natpolicy_release()
320 */
321 npf_natpolicy_release(np);
322 }
323
324 void
325 npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
326 {
327 npf_nat_t *nt;
328
329 mutex_enter(&np->n_lock);
330 LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
331 if (nt->nt_alg == alg) {
332 nt->nt_alg = NULL;
333 }
334 }
335 mutex_exit(&np->n_lock);
336 }
337
338 /*
339 * npf_nat_cmppolicy: compare two NAT policies.
340 *
341 * => Return 0 on match, and non-zero otherwise.
342 */
343 bool
344 npf_nat_cmppolicy(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
345 {
346 const void *np_raw, *mnp_raw;
347
348 /*
349 * Compare the relevant NAT policy information (in raw form),
350 * which is enough for matching criterion.
351 */
352 KASSERT(np && mnp && np != mnp);
353 np_raw = (const uint8_t *)np + NPF_NP_CMP_START;
354 mnp_raw = (const uint8_t *)mnp + NPF_NP_CMP_START;
355 return memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0;
356 }
357
358 void
359 npf_nat_setid(npf_natpolicy_t *np, uint64_t id)
360 {
361 np->n_id = id;
362 }
363
364 uint64_t
365 npf_nat_getid(const npf_natpolicy_t *np)
366 {
367 return np->n_id;
368 }
369
370 /*
371 * npf_nat_which: tell which address (source or destination) should be
372 * rewritten given the combination of the NAT type and flow direction.
373 */
374 static inline unsigned
375 npf_nat_which(const unsigned type, bool forw)
376 {
377 /*
378 * Outbound NAT rewrites:
379 * - Source (NPF_SRC) on "forwards" stream.
380 * - Destination (NPF_DST) on "backwards" stream.
381 * Inbound NAT is other way round.
382 */
383 if (type == NPF_NATOUT) {
384 forw = !forw;
385 } else {
386 KASSERT(type == NPF_NATIN);
387 }
388 CTASSERT(NPF_SRC == 0 && NPF_DST == 1);
389 KASSERT(forw == NPF_SRC || forw == NPF_DST);
390 return (unsigned)forw;
391 }
392
393 /*
394 * npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
395 *
396 * => Acquire a reference on the policy, if found.
397 */
398 static npf_natpolicy_t *
399 npf_nat_inspect(npf_cache_t *npc, const int di)
400 {
401 npf_t *npf = npc->npc_ctx;
402 int slock = npf_config_read_enter(npf);
403 npf_ruleset_t *rlset = npf_config_natset(npf);
404 npf_natpolicy_t *np;
405 npf_rule_t *rl;
406
407 rl = npf_ruleset_inspect(npc, rlset, di, NPF_LAYER_3);
408 if (rl == NULL) {
409 npf_config_read_exit(npf, slock);
410 return NULL;
411 }
412 np = npf_rule_getnat(rl);
413 atomic_inc_uint(&np->n_refcnt);
414 npf_config_read_exit(npf, slock);
415 return np;
416 }
417
418 static void
419 npf_nat_algo_netmap(const npf_cache_t *npc, const npf_natpolicy_t *np,
420 const unsigned which, npf_addr_t *addr)
421 {
422 const npf_addr_t *orig_addr = npc->npc_ips[which];
423
424 /*
425 * NETMAP:
426 *
427 * addr = net-addr | (orig-addr & ~mask)
428 */
429 npf_addr_mask(&np->n_taddr, np->n_tmask, npc->npc_alen, addr);
430 npf_addr_bitor(orig_addr, np->n_tmask, npc->npc_alen, addr);
431 }
432
433 static inline npf_addr_t *
434 npf_nat_getaddr(npf_cache_t *npc, npf_natpolicy_t *np, const unsigned alen)
435 {
436 npf_tableset_t *ts = npf_config_tableset(np->n_npfctx);
437 npf_table_t *t = npf_tableset_getbyid(ts, np->n_tid);
438 unsigned idx;
439
440 /*
441 * Dynamically select the translation IP address.
442 */
443 switch (np->n_algo) {
444 case NPF_ALGO_RR:
445 idx = atomic_inc_uint_nv(&np->n_rr_idx);
446 break;
447 case NPF_ALGO_IPHASH:
448 default:
449 idx = npf_addr_mix(alen,
450 npc->npc_ips[NPF_SRC],
451 npc->npc_ips[NPF_DST]);
452 break;
453 }
454 return npf_table_getsome(t, alen, idx);
455 }
456
457 /*
458 * npf_nat_create: create a new NAT translation entry.
459 */
460 static npf_nat_t *
461 npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np, npf_conn_t *con)
462 {
463 const int proto = npc->npc_proto;
464 const unsigned alen = npc->npc_alen;
465 npf_t *npf = npc->npc_ctx;
466 npf_addr_t *taddr;
467 npf_nat_t *nt;
468
469 KASSERT(npf_iscached(npc, NPC_IP46));
470 KASSERT(npf_iscached(npc, NPC_LAYER4));
471
472 /* Construct a new NAT entry and associate it with the connection. */
473 nt = pool_cache_get(nat_cache, PR_NOWAIT);
474 if (__predict_false(!nt)) {
475 return NULL;
476 }
477 npf_stats_inc(npf, NPF_STAT_NAT_CREATE);
478 nt->nt_natpolicy = np;
479 nt->nt_conn = con;
480 nt->nt_alg = NULL;
481
482 /*
483 * Select the translation address.
484 */
485 if (np->n_flags & NPF_NAT_USETABLE) {
486 int slock = npf_config_read_enter(npf);
487 taddr = npf_nat_getaddr(npc, np, alen);
488 if (__predict_false(!taddr)) {
489 npf_config_read_exit(npf, slock);
490 pool_cache_put(nat_cache, nt);
491 return NULL;
492 }
493 memcpy(&nt->nt_taddr, taddr, alen);
494 npf_config_read_exit(npf, slock);
495
496 } else if (np->n_algo == NPF_ALGO_NETMAP) {
497 const unsigned which = npf_nat_which(np->n_type, true);
498 npf_nat_algo_netmap(npc, np, which, &nt->nt_taddr);
499 taddr = &nt->nt_taddr;
500 } else {
501 /* Static IP address. */
502 taddr = &np->n_taddr;
503 memcpy(&nt->nt_taddr, taddr, alen);
504 }
505 nt->nt_alen = alen;
506
507 /* Save the original address which may be rewritten. */
508 if (np->n_type == NPF_NATOUT) {
509 /* Outbound NAT: source (think internal) address. */
510 memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_SRC], alen);
511 } else {
512 /* Inbound NAT: destination (think external) address. */
513 KASSERT(np->n_type == NPF_NATIN);
514 memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_DST], alen);
515 }
516
517 /*
518 * Port translation, if required, and if it is TCP/UDP.
519 */
520 if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
521 (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
522 nt->nt_oport = 0;
523 nt->nt_tport = 0;
524 goto out;
525 }
526
527 /* Save the relevant TCP/UDP port. */
528 if (proto == IPPROTO_TCP) {
529 const struct tcphdr *th = npc->npc_l4.tcp;
530 nt->nt_oport = (np->n_type == NPF_NATOUT) ?
531 th->th_sport : th->th_dport;
532 } else {
533 const struct udphdr *uh = npc->npc_l4.udp;
534 nt->nt_oport = (np->n_type == NPF_NATOUT) ?
535 uh->uh_sport : uh->uh_dport;
536 }
537
538 /* Get a new port for translation. */
539 if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
540 npf_portmap_t *pm = np->n_npfctx->portmap;
541 nt->nt_tport = npf_portmap_get(pm, alen, taddr);
542 } else {
543 nt->nt_tport = np->n_tport;
544 }
545 out:
546 mutex_enter(&np->n_lock);
547 LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
548 mutex_exit(&np->n_lock);
549 return nt;
550 }
551
552 /*
553 * npf_nat_translate: perform translation given the state data.
554 */
555 static inline int
556 npf_nat_translate(npf_cache_t *npc, npf_nat_t *nt, bool forw)
557 {
558 const npf_natpolicy_t *np = nt->nt_natpolicy;
559 const unsigned which = npf_nat_which(np->n_type, forw);
560 const npf_addr_t *addr;
561 in_port_t port;
562
563 KASSERT(npf_iscached(npc, NPC_IP46));
564 KASSERT(npf_iscached(npc, NPC_LAYER4));
565
566 if (forw) {
567 /* "Forwards" stream: use translation address/port. */
568 addr = &nt->nt_taddr;
569 port = nt->nt_tport;
570 } else {
571 /* "Backwards" stream: use original address/port. */
572 addr = &nt->nt_oaddr;
573 port = nt->nt_oport;
574 }
575 KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
576
577 /* Execute ALG translation first. */
578 if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
579 npc->npc_info |= NPC_ALG_EXEC;
580 npf_alg_exec(npc, nt, forw);
581 npf_recache(npc);
582 }
583 KASSERT(!nbuf_flag_p(npc->npc_nbuf, NBUF_DATAREF_RESET));
584
585 /* Finally, perform the translation. */
586 return npf_napt_rwr(npc, which, addr, port);
587 }
588
589 /*
590 * npf_nat_algo: perform the translation given the algorithm.
591 */
592 static inline int
593 npf_nat_algo(npf_cache_t *npc, const npf_natpolicy_t *np, bool forw)
594 {
595 const unsigned which = npf_nat_which(np->n_type, forw);
596 const npf_addr_t *taddr;
597 npf_addr_t addr;
598
599 KASSERT(np->n_flags & NPF_NAT_STATIC);
600
601 switch (np->n_algo) {
602 case NPF_ALGO_NETMAP:
603 npf_nat_algo_netmap(npc, np, which, &addr);
604 taddr = &addr;
605 break;
606 case NPF_ALGO_NPT66:
607 return npf_npt66_rwr(npc, which, &np->n_taddr,
608 np->n_tmask, np->n_npt66_adj);
609 default:
610 taddr = &np->n_taddr;
611 break;
612 }
613 return npf_napt_rwr(npc, which, taddr, np->n_tport);
614 }
615
616 /*
617 * npf_do_nat:
618 *
619 * - Inspect packet for a NAT policy, unless a connection with a NAT
620 * association already exists. In such case, determine whether it
621 * is a "forwards" or "backwards" stream.
622 * - Perform translation: rewrite source or destination fields,
623 * depending on translation type and direction.
624 * - Associate a NAT policy with a connection (may establish a new).
625 */
626 int
627 npf_do_nat(npf_cache_t *npc, npf_conn_t *con, const int di)
628 {
629 nbuf_t *nbuf = npc->npc_nbuf;
630 npf_conn_t *ncon = NULL;
631 npf_natpolicy_t *np;
632 npf_nat_t *nt;
633 int error;
634 bool forw;
635
636 /* All relevant data should be already cached. */
637 if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
638 return 0;
639 }
640 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
641
642 /*
643 * Return the NAT entry associated with the connection, if any.
644 * Determines whether the stream is "forwards" or "backwards".
645 * Note: no need to lock, since reference on connection is held.
646 */
647 if (con && (nt = npf_conn_getnat(con, di, &forw)) != NULL) {
648 np = nt->nt_natpolicy;
649 goto translate;
650 }
651
652 /*
653 * Inspect the packet for a NAT policy, if there is no connection.
654 * Note: acquires a reference if found.
655 */
656 np = npf_nat_inspect(npc, di);
657 if (np == NULL) {
658 /* If packet does not match - done. */
659 return 0;
660 }
661 forw = true;
662
663 /* Static NAT - just perform the translation. */
664 if (np->n_flags & NPF_NAT_STATIC) {
665 if (nbuf_cksum_barrier(nbuf, di)) {
666 npf_recache(npc);
667 }
668 error = npf_nat_algo(npc, np, forw);
669 npf_natpolicy_release(np);
670 return error;
671 }
672
673 /*
674 * If there is no local connection (no "stateful" rule - unusual,
675 * but possible configuration), establish one before translation.
676 * Note that it is not a "pass" connection, therefore passing of
677 * "backwards" stream depends on other, stateless filtering rules.
678 */
679 if (con == NULL) {
680 ncon = npf_conn_establish(npc, di, true);
681 if (ncon == NULL) {
682 npf_natpolicy_release(np);
683 return ENOMEM;
684 }
685 con = ncon;
686 }
687
688 /*
689 * Create a new NAT entry and associate with the connection.
690 * We will consume the reference on success (release on error).
691 */
692 nt = npf_nat_create(npc, np, con);
693 if (nt == NULL) {
694 npf_natpolicy_release(np);
695 error = ENOMEM;
696 goto out;
697 }
698
699 /* Associate the NAT translation entry with the connection. */
700 error = npf_conn_setnat(npc, con, nt, np->n_type);
701 if (error) {
702 /* Will release the reference. */
703 npf_nat_destroy(nt);
704 goto out;
705 }
706
707 /* Determine whether any ALG matches. */
708 if (npf_alg_match(npc, nt, di)) {
709 KASSERT(nt->nt_alg != NULL);
710 }
711
712 translate:
713 /* May need to process the delayed checksums first (XXX: NetBSD). */
714 if (nbuf_cksum_barrier(nbuf, di)) {
715 npf_recache(npc);
716 }
717
718 /* Perform the translation. */
719 error = npf_nat_translate(npc, nt, forw);
720 out:
721 if (__predict_false(ncon)) {
722 if (error) {
723 /* It created for NAT - just expire. */
724 npf_conn_expire(ncon);
725 }
726 npf_conn_release(ncon);
727 }
728 return error;
729 }
730
731 /*
732 * npf_nat_gettrans: return translation IP address and port.
733 */
734 void
735 npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
736 {
737 *addr = &nt->nt_taddr;
738 *port = nt->nt_tport;
739 }
740
741 /*
742 * npf_nat_getorig: return original IP address and port from translation entry.
743 */
744 void
745 npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
746 {
747 *addr = &nt->nt_oaddr;
748 *port = nt->nt_oport;
749 }
750
751 /*
752 * npf_nat_setalg: associate an ALG with the NAT entry.
753 */
754 void
755 npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
756 {
757 nt->nt_alg = alg;
758 nt->nt_alg_arg = arg;
759 }
760
761 /*
762 * npf_nat_destroy: destroy NAT structure (performed on connection expiration).
763 */
764 void
765 npf_nat_destroy(npf_nat_t *nt)
766 {
767 npf_natpolicy_t *np = nt->nt_natpolicy;
768 npf_t *npf = np->n_npfctx;
769
770 /* Return taken port to the portmap. */
771 if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
772 npf_portmap_t *pm = npf->portmap;
773 npf_portmap_put(pm, nt->nt_alen, &nt->nt_taddr, nt->nt_tport);
774 }
775 npf_stats_inc(np->n_npfctx, NPF_STAT_NAT_DESTROY);
776
777 /*
778 * Remove the connection from the list and drop the reference on
779 * the NAT policy. Note: this might trigger its destruction.
780 */
781 mutex_enter(&np->n_lock);
782 LIST_REMOVE(nt, nt_entry);
783 mutex_exit(&np->n_lock);
784 npf_natpolicy_release(np);
785
786 pool_cache_put(nat_cache, nt);
787 }
788
789 /*
790 * npf_nat_export: serialise the NAT entry with a NAT policy ID.
791 */
792 void
793 npf_nat_export(nvlist_t *condict, npf_nat_t *nt)
794 {
795 npf_natpolicy_t *np = nt->nt_natpolicy;
796 unsigned alen = nt->nt_alen;
797 nvlist_t *nat;
798
799 nat = nvlist_create(0);
800 nvlist_add_number(nat, "alen", alen);
801 nvlist_add_binary(nat, "oaddr", &nt->nt_oaddr, sizeof(npf_addr_t));
802 nvlist_add_binary(nat, "taddr", &nt->nt_taddr, alen);
803 nvlist_add_number(nat, "oport", nt->nt_oport);
804 nvlist_add_number(nat, "tport", nt->nt_tport);
805 nvlist_add_number(nat, "nat-policy", np->n_id);
806 nvlist_move_nvlist(condict, "nat", nat);
807 }
808
809 /*
810 * npf_nat_import: find the NAT policy and unserialise the NAT entry.
811 */
812 npf_nat_t *
813 npf_nat_import(npf_t *npf, const nvlist_t *nat,
814 npf_ruleset_t *natlist, npf_conn_t *con)
815 {
816 npf_natpolicy_t *np;
817 npf_nat_t *nt;
818 const void *taddr, *oaddr;
819 size_t alen, len;
820 uint64_t np_id;
821
822 np_id = dnvlist_get_number(nat, "nat-policy", UINT64_MAX);
823 if ((np = npf_ruleset_findnat(natlist, np_id)) == NULL) {
824 return NULL;
825 }
826 nt = pool_cache_get(nat_cache, PR_WAITOK);
827 memset(nt, 0, sizeof(npf_nat_t));
828
829 alen = dnvlist_get_number(nat, "alen", 0);
830 if (alen == 0 || alen > sizeof(npf_addr_t)) {
831 goto err;
832 }
833
834 taddr = dnvlist_get_binary(nat, "taddr", &len, NULL, 0);
835 if (!taddr || len != alen) {
836 goto err;
837 }
838 memcpy(&nt->nt_taddr, taddr, sizeof(npf_addr_t));
839
840 oaddr = dnvlist_get_binary(nat, "oaddr", &len, NULL, 0);
841 if (!oaddr || len != alen) {
842 goto err;
843 }
844 memcpy(&nt->nt_oaddr, oaddr, sizeof(npf_addr_t));
845
846 nt->nt_oport = dnvlist_get_number(nat, "oport", 0);
847 nt->nt_tport = dnvlist_get_number(nat, "tport", 0);
848
849 /* Take a specific port from port-map. */
850 if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
851 npf_portmap_t *pm = npf->portmap;
852
853 if (!npf_portmap_take(pm, nt->nt_alen,
854 &nt->nt_taddr, nt->nt_tport)) {
855 goto err;
856 }
857 }
858 npf_stats_inc(npf, NPF_STAT_NAT_CREATE);
859
860 /*
861 * Associate, take a reference and insert. Unlocked since
862 * the policy is not yet visible.
863 */
864 nt->nt_natpolicy = np;
865 nt->nt_conn = con;
866 np->n_refcnt++;
867 LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
868 return nt;
869 err:
870 pool_cache_put(nat_cache, nt);
871 return NULL;
872 }
873
874 #if defined(DDB) || defined(_NPF_TESTING)
875
876 void
877 npf_nat_dump(const npf_nat_t *nt)
878 {
879 const npf_natpolicy_t *np;
880 struct in_addr ip;
881
882 np = nt->nt_natpolicy;
883 memcpy(&ip, &nt->nt_taddr, sizeof(ip));
884 printf("\tNATP(%p): type %u flags 0x%x taddr %s tport %d\n", np,
885 np->n_type, np->n_flags, inet_ntoa(ip), ntohs(np->n_tport));
886 memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
887 printf("\tNAT: original address %s oport %d tport %d\n",
888 inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
889 if (nt->nt_alg) {
890 printf("\tNAT ALG = %p, ARG = %p\n",
891 nt->nt_alg, (void *)nt->nt_alg_arg);
892 }
893 }
894
895 #endif
896