npf_nat.c revision 1.51 1 /*-
2 * Copyright (c) 2014-2020 Mindaugas Rasiukevicius <rmind at noxt eu>
3 * Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This material is based upon work partially supported by The
7 * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 /*
32 * NPF network address port translation (NAPT) and other forms of NAT.
33 * Described in RFC 2663, RFC 3022, etc.
34 *
35 * Overview
36 *
37 * There are a few mechanisms: NAT policy, port map and translation.
38 * The NAT module has a separate ruleset where rules always have an
39 * associated NAT policy.
40 *
41 * Translation types
42 *
43 * There are two types of translation: outbound (NPF_NATOUT) and
44 * inbound (NPF_NATIN). It should not be confused with connection
45 * direction. See npf_nat_which() for the description of how the
46 * addresses are rewritten. The bi-directional NAT is a combined
47 * outbound and inbound translation, therefore is constructed as
48 * two policies.
49 *
50 * NAT policies and port maps
51 *
52 * The NAT (translation) policy is applied when packet matches the
53 * rule. Apart from the filter criteria, the NAT policy always has
54 * a translation IP address or a table. If port translation is set,
55 * then NAT mechanism relies on port map mechanism.
56 *
57 * Connections, translation entries and their life-cycle
58 *
59 * NAT relies on the connection tracking module. Each translated
60 * connection has an associated translation entry (npf_nat_t) which
61 * contains information used for backwards stream translation, i.e.
62 * the original IP address with port and translation port, allocated
63 * from the port map. Each NAT entry is associated with the policy,
64 * which contains translation IP address. Allocated port is returned
65 * to the port map and NAT entry is destroyed when connection expires.
66 */
67
68 #ifdef _KERNEL
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.51 2022/03/12 15:32:32 riastradh Exp $");
71
72 #include <sys/param.h>
73 #include <sys/types.h>
74
75 #include <sys/atomic.h>
76 #include <sys/condvar.h>
77 #include <sys/kmem.h>
78 #include <sys/mutex.h>
79 #include <sys/pool.h>
80 #include <sys/proc.h>
81 #endif
82
83 #include "npf_impl.h"
84 #include "npf_conn.h"
85
86 /*
87 * NAT policy structure.
88 */
89 struct npf_natpolicy {
90 npf_t * n_npfctx;
91 kmutex_t n_lock;
92 LIST_HEAD(, npf_nat) n_nat_list;
93 unsigned n_refcnt;
94 uint64_t n_id;
95
96 /*
97 * Translation type, flags, address or table and the port.
98 * Additionally, there may be translation algorithm and any
99 * auxiliary data, e.g. NPTv6 adjustment value.
100 *
101 * NPF_NP_CMP_START mark starts here.
102 */
103 unsigned n_type;
104 unsigned n_flags;
105 unsigned n_alen;
106
107 npf_addr_t n_taddr;
108 npf_netmask_t n_tmask;
109 in_port_t n_tport;
110 unsigned n_tid;
111
112 unsigned n_algo;
113 union {
114 unsigned n_rr_idx;
115 uint16_t n_npt66_adj;
116 };
117 };
118
119 /*
120 * Private flags - must be in the NPF_NAT_PRIVMASK range.
121 */
122 #define NPF_NAT_USETABLE (0x01000000 & NPF_NAT_PRIVMASK)
123
124 #define NPF_NP_CMP_START offsetof(npf_natpolicy_t, n_type)
125 #define NPF_NP_CMP_SIZE (sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
126
127 /*
128 * NAT entry for a connection.
129 */
130 struct npf_nat {
131 /* Associated NAT policy. */
132 npf_natpolicy_t * nt_natpolicy;
133
134 uint16_t nt_ifid;
135 uint16_t nt_alen;
136
137 /*
138 * Translation address as well as the original address which is
139 * used for backwards translation. The same for ports.
140 */
141 npf_addr_t nt_taddr;
142 npf_addr_t nt_oaddr;
143
144 in_port_t nt_oport;
145 in_port_t nt_tport;
146
147 /* ALG (if any) associated with this NAT entry. */
148 npf_alg_t * nt_alg;
149 uintptr_t nt_alg_arg;
150
151 LIST_ENTRY(npf_nat) nt_entry;
152 npf_conn_t * nt_conn;
153 };
154
155 static pool_cache_t nat_cache __read_mostly;
156
157 /*
158 * npf_nat_sys{init,fini}: initialize/destroy NAT subsystem structures.
159 */
160
161 void
162 npf_nat_sysinit(void)
163 {
164 nat_cache = pool_cache_init(sizeof(npf_nat_t), 0,
165 0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
166 KASSERT(nat_cache != NULL);
167 }
168
169 void
170 npf_nat_sysfini(void)
171 {
172 /* All NAT policies should already be destroyed. */
173 pool_cache_destroy(nat_cache);
174 }
175
176 /*
177 * npf_natpolicy_create: create a new NAT policy.
178 */
179 npf_natpolicy_t *
180 npf_natpolicy_create(npf_t *npf, const nvlist_t *nat, npf_ruleset_t *rset)
181 {
182 npf_natpolicy_t *np;
183 const void *addr;
184 size_t len;
185
186 np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
187 atomic_store_relaxed(&np->n_refcnt, 1);
188 np->n_npfctx = npf;
189
190 /* The translation type, flags and policy ID. */
191 np->n_type = dnvlist_get_number(nat, "type", 0);
192 np->n_flags = dnvlist_get_number(nat, "flags", 0) & ~NPF_NAT_PRIVMASK;
193 np->n_id = dnvlist_get_number(nat, "nat-policy", 0);
194
195 /* Should be exclusively either inbound or outbound NAT. */
196 if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
197 goto err;
198 }
199 mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
200 LIST_INIT(&np->n_nat_list);
201
202 /*
203 * Translation IP, mask and port (if applicable). If using the
204 * the table, specified by the ID, then the nat-addr/nat-mask will
205 * be used as a filter for the addresses selected from table.
206 */
207 if (nvlist_exists_number(nat, "nat-table-id")) {
208 if (np->n_flags & NPF_NAT_STATIC) {
209 goto err;
210 }
211 np->n_tid = nvlist_get_number(nat, "nat-table-id");
212 np->n_tmask = NPF_NO_NETMASK;
213 np->n_flags |= NPF_NAT_USETABLE;
214 } else {
215 addr = dnvlist_get_binary(nat, "nat-addr", &len, NULL, 0);
216 if (!addr || len == 0 || len > sizeof(npf_addr_t)) {
217 goto err;
218 }
219 memcpy(&np->n_taddr, addr, len);
220 np->n_alen = len;
221 np->n_tmask = dnvlist_get_number(nat, "nat-mask", NPF_NO_NETMASK);
222 if (npf_netmask_check(np->n_alen, np->n_tmask)) {
223 goto err;
224 }
225 }
226 np->n_tport = dnvlist_get_number(nat, "nat-port", 0);
227
228 /*
229 * NAT algorithm.
230 */
231 np->n_algo = dnvlist_get_number(nat, "nat-algo", 0);
232 switch (np->n_algo) {
233 case NPF_ALGO_NPT66:
234 np->n_npt66_adj = dnvlist_get_number(nat, "npt66-adj", 0);
235 break;
236 case NPF_ALGO_NETMAP:
237 break;
238 case NPF_ALGO_IPHASH:
239 case NPF_ALGO_RR:
240 default:
241 if (np->n_tmask != NPF_NO_NETMASK) {
242 goto err;
243 }
244 break;
245 }
246 return np;
247 err:
248 mutex_destroy(&np->n_lock);
249 kmem_free(np, sizeof(npf_natpolicy_t));
250 return NULL;
251 }
252
253 int
254 npf_natpolicy_export(const npf_natpolicy_t *np, nvlist_t *nat)
255 {
256 nvlist_add_number(nat, "nat-policy", np->n_id);
257 nvlist_add_number(nat, "type", np->n_type);
258 nvlist_add_number(nat, "flags", np->n_flags);
259
260 if (np->n_flags & NPF_NAT_USETABLE) {
261 nvlist_add_number(nat, "nat-table-id", np->n_tid);
262 } else {
263 nvlist_add_binary(nat, "nat-addr", &np->n_taddr, np->n_alen);
264 nvlist_add_number(nat, "nat-mask", np->n_tmask);
265 }
266 nvlist_add_number(nat, "nat-port", np->n_tport);
267 nvlist_add_number(nat, "nat-algo", np->n_algo);
268
269 switch (np->n_algo) {
270 case NPF_ALGO_NPT66:
271 nvlist_add_number(nat, "npt66-adj", np->n_npt66_adj);
272 break;
273 }
274 return 0;
275 }
276
277 static void
278 npf_natpolicy_release(npf_natpolicy_t *np)
279 {
280 KASSERT(atomic_load_relaxed(&np->n_refcnt) > 0);
281
282 #ifndef __HAVE_ATOMIC_AS_MEMBAR
283 membar_exit();
284 #endif
285 if (atomic_dec_uint_nv(&np->n_refcnt) != 0) {
286 return;
287 }
288 #ifndef __HAVE_ATOMIC_AS_MEMBAR
289 membar_enter();
290 #endif
291 KASSERT(LIST_EMPTY(&np->n_nat_list));
292 mutex_destroy(&np->n_lock);
293 kmem_free(np, sizeof(npf_natpolicy_t));
294 }
295
296 /*
297 * npf_natpolicy_destroy: free the NAT policy.
298 *
299 * => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
300 * => At this point, NAT policy cannot acquire new references.
301 */
302 void
303 npf_natpolicy_destroy(npf_natpolicy_t *np)
304 {
305 /*
306 * Drain the references. If there are active NAT connections,
307 * then expire them and kick the worker.
308 */
309 if (atomic_load_relaxed(&np->n_refcnt) > 1) {
310 npf_nat_t *nt;
311
312 mutex_enter(&np->n_lock);
313 LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
314 npf_conn_t *con = nt->nt_conn;
315 KASSERT(con != NULL);
316 npf_conn_expire(con);
317 }
318 mutex_exit(&np->n_lock);
319 npf_worker_signal(np->n_npfctx);
320 }
321 KASSERT(atomic_load_relaxed(&np->n_refcnt) >= 1);
322
323 /*
324 * Drop the initial reference, but it might not be the last one.
325 * If so, the last reference will be triggered via:
326 *
327 * npf_conn_destroy() -> npf_nat_destroy() -> npf_natpolicy_release()
328 */
329 npf_natpolicy_release(np);
330 }
331
332 void
333 npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
334 {
335 npf_nat_t *nt;
336
337 mutex_enter(&np->n_lock);
338 LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
339 if (nt->nt_alg == alg) {
340 npf_alg_destroy(np->n_npfctx, alg, nt, nt->nt_conn);
341 nt->nt_alg = NULL;
342 }
343 }
344 mutex_exit(&np->n_lock);
345 }
346
347 /*
348 * npf_natpolicy_cmp: compare two NAT policies.
349 *
350 * => Return 0 on match, and non-zero otherwise.
351 */
352 bool
353 npf_natpolicy_cmp(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
354 {
355 const void *np_raw, *mnp_raw;
356
357 /*
358 * Compare the relevant NAT policy information (in its raw form)
359 * that is enough as a matching criteria.
360 */
361 KASSERT(np && mnp && np != mnp);
362 np_raw = (const uint8_t *)np + NPF_NP_CMP_START;
363 mnp_raw = (const uint8_t *)mnp + NPF_NP_CMP_START;
364 return memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0;
365 }
366
367 void
368 npf_nat_setid(npf_natpolicy_t *np, uint64_t id)
369 {
370 np->n_id = id;
371 }
372
373 uint64_t
374 npf_nat_getid(const npf_natpolicy_t *np)
375 {
376 return np->n_id;
377 }
378
379 /*
380 * npf_nat_which: tell which address (source or destination) should be
381 * rewritten given the combination of the NAT type and flow direction.
382 *
383 * => Returns NPF_SRC or NPF_DST constant.
384 */
385 static inline unsigned
386 npf_nat_which(const unsigned type, const npf_flow_t flow)
387 {
388 unsigned which;
389
390 /* The logic below relies on these values being 0 or 1. */
391 CTASSERT(NPF_SRC == 0 && NPF_DST == 1);
392 CTASSERT(NPF_FLOW_FORW == NPF_SRC && NPF_FLOW_BACK == NPF_DST);
393
394 KASSERT(type == NPF_NATIN || type == NPF_NATOUT);
395 KASSERT(flow == NPF_FLOW_FORW || flow == NPF_FLOW_BACK);
396
397 /*
398 * Outbound NAT rewrites:
399 *
400 * - Source (NPF_SRC) on "forwards" stream.
401 * - Destination (NPF_DST) on "backwards" stream.
402 *
403 * Inbound NAT is other way round.
404 */
405 which = (type == NPF_NATOUT) ? flow : !flow;
406 KASSERT(which == NPF_SRC || which == NPF_DST);
407 return which;
408 }
409
410 /*
411 * npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
412 *
413 * => Acquire a reference on the policy, if found.
414 * => NAT lookup is protected by EBR.
415 */
416 static npf_natpolicy_t *
417 npf_nat_inspect(npf_cache_t *npc, const unsigned di)
418 {
419 npf_t *npf = npc->npc_ctx;
420 int slock = npf_config_read_enter(npf);
421 npf_ruleset_t *rlset = npf_config_natset(npf);
422 npf_natpolicy_t *np;
423 npf_rule_t *rl;
424
425 rl = npf_ruleset_inspect(npc, rlset, di, NPF_LAYER_3);
426 if (rl == NULL) {
427 npf_config_read_exit(npf, slock);
428 return NULL;
429 }
430 np = npf_rule_getnat(rl);
431 atomic_inc_uint(&np->n_refcnt);
432 npf_config_read_exit(npf, slock);
433 return np;
434 }
435
436 static void
437 npf_nat_algo_netmap(const npf_cache_t *npc, const npf_natpolicy_t *np,
438 const unsigned which, npf_addr_t *addr)
439 {
440 const npf_addr_t *orig_addr = npc->npc_ips[which];
441
442 /*
443 * NETMAP:
444 *
445 * addr = net-addr | (orig-addr & ~mask)
446 */
447 npf_addr_mask(&np->n_taddr, np->n_tmask, npc->npc_alen, addr);
448 npf_addr_bitor(orig_addr, np->n_tmask, npc->npc_alen, addr);
449 }
450
451 static inline npf_addr_t *
452 npf_nat_getaddr(npf_cache_t *npc, npf_natpolicy_t *np, const unsigned alen)
453 {
454 npf_tableset_t *ts = npf_config_tableset(np->n_npfctx);
455 npf_table_t *t = npf_tableset_getbyid(ts, np->n_tid);
456 unsigned idx;
457
458 /*
459 * Dynamically select the translation IP address.
460 */
461 switch (np->n_algo) {
462 case NPF_ALGO_RR:
463 idx = atomic_inc_uint_nv(&np->n_rr_idx);
464 break;
465 case NPF_ALGO_IPHASH:
466 default:
467 idx = npf_addr_mix(alen,
468 npc->npc_ips[NPF_SRC],
469 npc->npc_ips[NPF_DST]);
470 break;
471 }
472 return npf_table_getsome(t, alen, idx);
473 }
474
475 /*
476 * npf_nat_create: create a new NAT translation entry.
477 *
478 * => The caller must pass the NAT policy with a reference acquired for us.
479 */
480 static npf_nat_t *
481 npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np, npf_conn_t *con)
482 {
483 const unsigned proto = npc->npc_proto;
484 const unsigned alen = npc->npc_alen;
485 const nbuf_t *nbuf = npc->npc_nbuf;
486 npf_t *npf = npc->npc_ctx;
487 npf_addr_t *taddr;
488 npf_nat_t *nt;
489
490 KASSERT(npf_iscached(npc, NPC_IP46));
491 KASSERT(npf_iscached(npc, NPC_LAYER4));
492
493 /* Construct a new NAT entry and associate it with the connection. */
494 nt = pool_cache_get(nat_cache, PR_NOWAIT);
495 if (__predict_false(!nt)) {
496 return NULL;
497 }
498 npf_stats_inc(npf, NPF_STAT_NAT_CREATE);
499 nt->nt_natpolicy = np;
500 nt->nt_conn = con;
501 nt->nt_alg = NULL;
502
503 /*
504 * Save the interface ID.
505 *
506 * Note: this can be different from the given connection if it
507 * was established on a different interface, using the global state
508 * mode (state.key.interface = 0).
509 */
510 KASSERT(nbuf->nb_ifid != 0);
511 nt->nt_ifid = nbuf->nb_ifid;
512
513 /*
514 * Select the translation address.
515 */
516 if (np->n_flags & NPF_NAT_USETABLE) {
517 int slock = npf_config_read_enter(npf);
518 taddr = npf_nat_getaddr(npc, np, alen);
519 if (__predict_false(!taddr)) {
520 npf_config_read_exit(npf, slock);
521 pool_cache_put(nat_cache, nt);
522 return NULL;
523 }
524 memcpy(&nt->nt_taddr, taddr, alen);
525 npf_config_read_exit(npf, slock);
526
527 } else if (np->n_algo == NPF_ALGO_NETMAP) {
528 const unsigned which = npf_nat_which(np->n_type, NPF_FLOW_FORW);
529 npf_nat_algo_netmap(npc, np, which, &nt->nt_taddr);
530 taddr = &nt->nt_taddr;
531 } else {
532 /* Static IP address. */
533 taddr = &np->n_taddr;
534 memcpy(&nt->nt_taddr, taddr, alen);
535 }
536 nt->nt_alen = alen;
537
538 /* Save the original address which may be rewritten. */
539 if (np->n_type == NPF_NATOUT) {
540 /* Outbound NAT: source (think internal) address. */
541 memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_SRC], alen);
542 } else {
543 /* Inbound NAT: destination (think external) address. */
544 KASSERT(np->n_type == NPF_NATIN);
545 memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_DST], alen);
546 }
547
548 /*
549 * Port translation, if required, and if it is TCP/UDP.
550 */
551 if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
552 (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
553 nt->nt_oport = 0;
554 nt->nt_tport = 0;
555 goto out;
556 }
557
558 /* Save the relevant TCP/UDP port. */
559 if (proto == IPPROTO_TCP) {
560 const struct tcphdr *th = npc->npc_l4.tcp;
561 nt->nt_oport = (np->n_type == NPF_NATOUT) ?
562 th->th_sport : th->th_dport;
563 } else {
564 const struct udphdr *uh = npc->npc_l4.udp;
565 nt->nt_oport = (np->n_type == NPF_NATOUT) ?
566 uh->uh_sport : uh->uh_dport;
567 }
568
569 /* Get a new port for translation. */
570 if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
571 npf_portmap_t *pm = np->n_npfctx->portmap;
572 nt->nt_tport = npf_portmap_get(pm, alen, taddr);
573 } else {
574 nt->nt_tport = np->n_tport;
575 }
576 out:
577 mutex_enter(&np->n_lock);
578 LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
579 /* Note: we also consume the reference on policy. */
580 mutex_exit(&np->n_lock);
581 return nt;
582 }
583
584 /*
585 * npf_dnat_translate: perform translation given the state data.
586 */
587 static inline int
588 npf_dnat_translate(npf_cache_t *npc, npf_nat_t *nt, npf_flow_t flow)
589 {
590 const npf_natpolicy_t *np = nt->nt_natpolicy;
591 const unsigned which = npf_nat_which(np->n_type, flow);
592 const npf_addr_t *addr;
593 in_port_t port;
594
595 KASSERT(npf_iscached(npc, NPC_IP46));
596 KASSERT(npf_iscached(npc, NPC_LAYER4));
597
598 if (flow == NPF_FLOW_FORW) {
599 /* "Forwards" stream: use translation address/port. */
600 addr = &nt->nt_taddr;
601 port = nt->nt_tport;
602 } else {
603 /* "Backwards" stream: use original address/port. */
604 addr = &nt->nt_oaddr;
605 port = nt->nt_oport;
606 }
607 KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
608
609 /* Execute ALG translation first. */
610 if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
611 npc->npc_info |= NPC_ALG_EXEC;
612 npf_alg_exec(npc, nt, flow);
613 npf_recache(npc);
614 }
615 KASSERT(!nbuf_flag_p(npc->npc_nbuf, NBUF_DATAREF_RESET));
616
617 /* Finally, perform the translation. */
618 return npf_napt_rwr(npc, which, addr, port);
619 }
620
621 /*
622 * npf_snat_translate: perform translation given the algorithm.
623 */
624 static inline int
625 npf_snat_translate(npf_cache_t *npc, const npf_natpolicy_t *np, npf_flow_t flow)
626 {
627 const unsigned which = npf_nat_which(np->n_type, flow);
628 const npf_addr_t *taddr;
629 npf_addr_t addr;
630
631 KASSERT(np->n_flags & NPF_NAT_STATIC);
632
633 switch (np->n_algo) {
634 case NPF_ALGO_NETMAP:
635 npf_nat_algo_netmap(npc, np, which, &addr);
636 taddr = &addr;
637 break;
638 case NPF_ALGO_NPT66:
639 return npf_npt66_rwr(npc, which, &np->n_taddr,
640 np->n_tmask, np->n_npt66_adj);
641 default:
642 taddr = &np->n_taddr;
643 break;
644 }
645 return npf_napt_rwr(npc, which, taddr, np->n_tport);
646 }
647
648 /*
649 * Associate NAT policy with an existing connection state.
650 */
651 npf_nat_t *
652 npf_nat_share_policy(npf_cache_t *npc, npf_conn_t *con, npf_nat_t *src_nt)
653 {
654 npf_natpolicy_t *np = src_nt->nt_natpolicy;
655 npf_nat_t *nt;
656 int ret;
657
658 /* Create a new NAT entry. */
659 nt = npf_nat_create(npc, np, con);
660 if (__predict_false(nt == NULL)) {
661 return NULL;
662 }
663 atomic_inc_uint(&np->n_refcnt);
664
665 /* Associate the NAT translation entry with the connection. */
666 ret = npf_conn_setnat(npc, con, nt, np->n_type);
667 if (__predict_false(ret)) {
668 /* Will release the reference. */
669 npf_nat_destroy(con, nt);
670 return NULL;
671 }
672 return nt;
673 }
674
675 /*
676 * npf_nat_lookup: lookup the (dynamic) NAT state and return its entry,
677 *
678 * => Checks that the packet is on the interface where NAT policy is applied.
679 * => Determines the flow direction in the context of the NAT policy.
680 */
681 static npf_nat_t *
682 npf_nat_lookup(const npf_cache_t *npc, npf_conn_t *con,
683 const unsigned di, npf_flow_t *flow)
684 {
685 const nbuf_t *nbuf = npc->npc_nbuf;
686 const npf_natpolicy_t *np;
687 npf_nat_t *nt;
688
689 if ((nt = npf_conn_getnat(con)) == NULL) {
690 return NULL;
691 }
692 if (nt->nt_ifid != nbuf->nb_ifid) {
693 return NULL;
694 }
695
696 np = nt->nt_natpolicy;
697 KASSERT(atomic_load_relaxed(&np->n_refcnt) > 0);
698
699 /*
700 * We rely on NPF_NAT{IN,OUT} being equal to PFIL_{IN,OUT}.
701 */
702 CTASSERT(NPF_NATIN == PFIL_IN && NPF_NATOUT == PFIL_OUT);
703 *flow = (np->n_type == di) ? NPF_FLOW_FORW : NPF_FLOW_BACK;
704 return nt;
705 }
706
707 /*
708 * npf_do_nat:
709 *
710 * - Inspect packet for a NAT policy, unless a connection with a NAT
711 * association already exists. In such case, determine whether it
712 * is a "forwards" or "backwards" stream.
713 *
714 * - Perform translation: rewrite source or destination fields,
715 * depending on translation type and direction.
716 *
717 * - Associate a NAT policy with a connection (may establish a new).
718 */
719 int
720 npf_do_nat(npf_cache_t *npc, npf_conn_t *con, const unsigned di)
721 {
722 nbuf_t *nbuf = npc->npc_nbuf;
723 npf_conn_t *ncon = NULL;
724 npf_natpolicy_t *np;
725 npf_flow_t flow;
726 npf_nat_t *nt;
727 int error;
728
729 /* All relevant data should be already cached. */
730 if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
731 return 0;
732 }
733 KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
734
735 /*
736 * Return the NAT entry associated with the connection, if any.
737 * Determines whether the stream is "forwards" or "backwards".
738 * Note: no need to lock, since reference on connection is held.
739 */
740 if (con && (nt = npf_nat_lookup(npc, con, di, &flow)) != NULL) {
741 np = nt->nt_natpolicy;
742 goto translate;
743 }
744
745 /*
746 * Inspect the packet for a NAT policy, if there is no connection.
747 * Note: acquires a reference if found.
748 */
749 np = npf_nat_inspect(npc, di);
750 if (np == NULL) {
751 /* If packet does not match - done. */
752 return 0;
753 }
754 flow = NPF_FLOW_FORW;
755
756 /* Static NAT - just perform the translation. */
757 if (np->n_flags & NPF_NAT_STATIC) {
758 if (nbuf_cksum_barrier(nbuf, di)) {
759 npf_recache(npc);
760 }
761 error = npf_snat_translate(npc, np, flow);
762 npf_natpolicy_release(np);
763 return error;
764 }
765
766 /*
767 * If there is no local connection (no "stateful" rule - unusual,
768 * but possible configuration), establish one before translation.
769 * Note that it is not a "pass" connection, therefore passing of
770 * "backwards" stream depends on other, stateless filtering rules.
771 */
772 if (con == NULL) {
773 ncon = npf_conn_establish(npc, di, true);
774 if (ncon == NULL) {
775 npf_natpolicy_release(np);
776 return ENOMEM;
777 }
778 con = ncon;
779 }
780
781 /*
782 * Create a new NAT entry and associate with the connection.
783 * We will consume the reference on success (release on error).
784 */
785 nt = npf_nat_create(npc, np, con);
786 if (nt == NULL) {
787 npf_natpolicy_release(np);
788 error = ENOMEM;
789 goto out;
790 }
791
792 /* Determine whether any ALG matches. */
793 if (npf_alg_match(npc, nt, di)) {
794 KASSERT(nt->nt_alg != NULL);
795 }
796
797 /* Associate the NAT translation entry with the connection. */
798 error = npf_conn_setnat(npc, con, nt, np->n_type);
799 if (error) {
800 /* Will release the reference. */
801 npf_nat_destroy(con, nt);
802 goto out;
803 }
804
805 translate:
806 /* May need to process the delayed checksums first (XXX: NetBSD). */
807 if (nbuf_cksum_barrier(nbuf, di)) {
808 npf_recache(npc);
809 }
810
811 /* Perform the translation. */
812 error = npf_dnat_translate(npc, nt, flow);
813 out:
814 if (__predict_false(ncon)) {
815 if (error) {
816 /* It was created for NAT - just expire. */
817 npf_conn_expire(ncon);
818 }
819 npf_conn_release(ncon);
820 }
821 return error;
822 }
823
824 /*
825 * npf_nat_gettrans: return translation IP address and port.
826 */
827 void
828 npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
829 {
830 *addr = &nt->nt_taddr;
831 *port = nt->nt_tport;
832 }
833
834 /*
835 * npf_nat_getorig: return original IP address and port from translation entry.
836 */
837 void
838 npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
839 {
840 *addr = &nt->nt_oaddr;
841 *port = nt->nt_oport;
842 }
843
844 /*
845 * npf_nat_setalg: associate an ALG with the NAT entry.
846 */
847 void
848 npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
849 {
850 nt->nt_alg = alg;
851 nt->nt_alg_arg = arg;
852 }
853
854 npf_alg_t *
855 npf_nat_getalg(const npf_nat_t *nt)
856 {
857 return nt->nt_alg;
858 }
859
860 uintptr_t
861 npf_nat_getalgarg(const npf_nat_t *nt)
862 {
863 return nt->nt_alg_arg;
864 }
865
866 /*
867 * npf_nat_destroy: destroy NAT structure (performed on connection expiration).
868 */
869 void
870 npf_nat_destroy(npf_conn_t *con, npf_nat_t *nt)
871 {
872 npf_natpolicy_t *np = nt->nt_natpolicy;
873 npf_t *npf = np->n_npfctx;
874 npf_alg_t *alg;
875
876 /* Execute the ALG destroy callback, if any. */
877 if ((alg = npf_nat_getalg(nt)) != NULL) {
878 npf_alg_destroy(npf, alg, nt, con);
879 nt->nt_alg = NULL;
880 }
881
882 /* Return taken port to the portmap. */
883 if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
884 npf_portmap_t *pm = npf->portmap;
885 npf_portmap_put(pm, nt->nt_alen, &nt->nt_taddr, nt->nt_tport);
886 }
887 npf_stats_inc(np->n_npfctx, NPF_STAT_NAT_DESTROY);
888
889 /*
890 * Remove the connection from the list and drop the reference on
891 * the NAT policy. Note: this might trigger its destruction.
892 */
893 mutex_enter(&np->n_lock);
894 LIST_REMOVE(nt, nt_entry);
895 mutex_exit(&np->n_lock);
896 npf_natpolicy_release(np);
897
898 pool_cache_put(nat_cache, nt);
899 }
900
901 /*
902 * npf_nat_export: serialize the NAT entry with a NAT policy ID.
903 */
904 void
905 npf_nat_export(npf_t *npf, const npf_nat_t *nt, nvlist_t *con_nv)
906 {
907 npf_natpolicy_t *np = nt->nt_natpolicy;
908 unsigned alen = nt->nt_alen;
909 nvlist_t *nat_nv;
910
911 nat_nv = nvlist_create(0);
912 if (nt->nt_ifid) {
913 char ifname[IFNAMSIZ];
914 npf_ifmap_copyname(npf, nt->nt_ifid, ifname, sizeof(ifname));
915 nvlist_add_string(nat_nv, "ifname", ifname);
916 }
917 nvlist_add_number(nat_nv, "alen", alen);
918
919 nvlist_add_binary(nat_nv, "oaddr", &nt->nt_oaddr, alen);
920 nvlist_add_number(nat_nv, "oport", nt->nt_oport);
921
922 nvlist_add_binary(nat_nv, "taddr", &nt->nt_taddr, alen);
923 nvlist_add_number(nat_nv, "tport", nt->nt_tport);
924
925 nvlist_add_number(nat_nv, "nat-policy", np->n_id);
926 nvlist_move_nvlist(con_nv, "nat", nat_nv);
927 }
928
929 /*
930 * npf_nat_import: find the NAT policy and unserialize the NAT entry.
931 */
932 npf_nat_t *
933 npf_nat_import(npf_t *npf, const nvlist_t *nat,
934 npf_ruleset_t *natlist, npf_conn_t *con)
935 {
936 npf_natpolicy_t *np;
937 npf_nat_t *nt;
938 const char *ifname;
939 const void *taddr, *oaddr;
940 size_t alen, len;
941 uint64_t np_id;
942
943 np_id = dnvlist_get_number(nat, "nat-policy", UINT64_MAX);
944 if ((np = npf_ruleset_findnat(natlist, np_id)) == NULL) {
945 return NULL;
946 }
947 nt = pool_cache_get(nat_cache, PR_WAITOK);
948 memset(nt, 0, sizeof(npf_nat_t));
949
950 ifname = dnvlist_get_string(nat, "ifname", NULL);
951 if (ifname && (nt->nt_ifid = npf_ifmap_register(npf, ifname)) == 0) {
952 goto err;
953 }
954
955 alen = dnvlist_get_number(nat, "alen", 0);
956 if (alen == 0 || alen > sizeof(npf_addr_t)) {
957 goto err;
958 }
959
960 taddr = dnvlist_get_binary(nat, "taddr", &len, NULL, 0);
961 if (!taddr || len != alen) {
962 goto err;
963 }
964 memcpy(&nt->nt_taddr, taddr, sizeof(npf_addr_t));
965
966 oaddr = dnvlist_get_binary(nat, "oaddr", &len, NULL, 0);
967 if (!oaddr || len != alen) {
968 goto err;
969 }
970 memcpy(&nt->nt_oaddr, oaddr, sizeof(npf_addr_t));
971
972 nt->nt_oport = dnvlist_get_number(nat, "oport", 0);
973 nt->nt_tport = dnvlist_get_number(nat, "tport", 0);
974
975 /* Take a specific port from port-map. */
976 if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
977 npf_portmap_t *pm = npf->portmap;
978
979 if (!npf_portmap_take(pm, nt->nt_alen,
980 &nt->nt_taddr, nt->nt_tport)) {
981 goto err;
982 }
983 }
984 npf_stats_inc(npf, NPF_STAT_NAT_CREATE);
985
986 /*
987 * Associate, take a reference and insert. Unlocked/non-atomic
988 * since the policy is not yet globally visible.
989 */
990 nt->nt_natpolicy = np;
991 nt->nt_conn = con;
992 atomic_store_relaxed(&np->n_refcnt,
993 atomic_load_relaxed(&np->n_refcnt) + 1);
994 LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
995 return nt;
996 err:
997 pool_cache_put(nat_cache, nt);
998 return NULL;
999 }
1000
1001 #if defined(DDB) || defined(_NPF_TESTING)
1002
1003 void
1004 npf_nat_dump(const npf_nat_t *nt)
1005 {
1006 const npf_natpolicy_t *np;
1007 struct in_addr ip;
1008
1009 np = nt->nt_natpolicy;
1010 memcpy(&ip, &nt->nt_taddr, sizeof(ip));
1011 printf("\tNATP(%p): type %u flags 0x%x taddr %s tport %d\n", np,
1012 np->n_type, np->n_flags, inet_ntoa(ip), ntohs(np->n_tport));
1013 memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
1014 printf("\tNAT: original address %s oport %d tport %d\n",
1015 inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
1016 if (nt->nt_alg) {
1017 printf("\tNAT ALG = %p, ARG = %p\n",
1018 nt->nt_alg, (void *)nt->nt_alg_arg);
1019 }
1020 }
1021
1022 #endif
1023