npf_portmap.c revision 1.2 1 /*-
2 * Copyright (c) 2019 Mindaugas Rasiukevicius <rmind at noxt eu>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 /*
28 * NPF port map mechanism.
29 *
30 * The port map is a bitmap used to track TCP/UDP ports used for
31 * translation. Port maps are per IP addresses, therefore multiple
32 * NAT policies operating on the same IP address will share the
33 * same port map.
34 */
35
36 #ifdef _KERNEL
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: npf_portmap.c,v 1.2 2019/07/23 08:25:52 rmind Exp $");
39
40 #include <sys/param.h>
41 #include <sys/types.h>
42
43 #include <sys/atomic.h>
44 #include <sys/bitops.h>
45 #include <sys/kmem.h>
46 #include <sys/mutex.h>
47 #include <sys/cprng.h>
48 #include <sys/thmap.h>
49 #endif
50
51 #include "npf_impl.h"
52
53 /*
54 * Port map uses two-level bitmaps with compression to efficiently
55 * represent the maximum of 65536 (2^16) values.
56 *
57 * Level 0: 64 chunks each representing 1048 bits in two modes:
58 *
59 * a) If PORTMAP_L1_TAG, then up to 5 values are packed in the
60 * 64-bit integer using 12 bits for each value, starting from the
61 * most significant bits. The four 4 least significant bits are
62 * unused or reserved for pointer tagging.
63 *
64 * b) If there are more than 5 values, then PORTMAP_L1_TAG is set
65 * and the value serves as a pointer to the second level bitmap.
66 *
67 * Level 1: 16 chunks each representing 64 bits in plain uint64_t.
68 */
69
70 #define PORTMAP_MAX_BITS (65536U)
71 #define PORTMAP_MASK (PORTMAP_MAX_BITS - 1)
72
73 #define PORTMAP_L0_SHIFT (10) // or 11
74 #define PORTMAP_L0_MASK ((1U << PORTMAP_L0_SHIFT) - 1)
75 #define PORTMAP_L0_WORDS (PORTMAP_MAX_BITS >> PORTMAP_L0_SHIFT)
76
77 #define PORTMAP_L1_SHIFT (6)
78 #define PORTMAP_L1_MASK ((1U << PORTMAP_L1_SHIFT) - 1)
79 #define PORTMAP_L1_WORDS \
80 ((PORTMAP_MAX_BITS / PORTMAP_L0_WORDS) >> PORTMAP_L1_SHIFT)
81
82 #define PORTMAP_L1_TAG (UINT64_C(1)) // use level 1
83 #define PORTMAP_L1_GET(p) ((void *)((uintptr_t)(p) & ~(uintptr_t)3))
84
85 CTASSERT(sizeof(uint64_t) >= sizeof(uintptr_t));
86
87 typedef struct {
88 volatile uint64_t bits1[PORTMAP_L1_WORDS];
89 } bitmap_l1_t;
90
91 typedef struct bitmap {
92 npf_addr_t addr;
93 volatile uint64_t bits0[PORTMAP_L0_WORDS];
94 LIST_ENTRY(bitmap) entry;
95 unsigned addr_len;
96 } bitmap_t;
97
98 struct npf_portmap {
99 thmap_t * addr_map;
100 LIST_HEAD(, bitmap) bitmap_list;
101 kmutex_t list_lock;
102 };
103
104 typedef struct {
105 int min_port;
106 int max_port;
107 } npf_portmap_params_t;
108
109 static kmutex_t portmap_lock;
110
111 void
112 npf_portmap_init(npf_t *npf)
113 {
114 npf_portmap_params_t *params = npf_param_allocgroup(npf,
115 NPF_PARAMS_PORTMAP, sizeof(npf_portmap_params_t));
116 npf_param_t param_map[] = {
117 {
118 "portmap.min_port",
119 ¶ms->min_port,
120 .default_val = 1024,
121 .min = 1024, .max = 65535
122 },
123 {
124 "portmap.max_port",
125 ¶ms->max_port,
126 .default_val = 65535,
127 .min = 1024, .max = 65535
128 }
129 };
130 npf_param_register(npf, param_map, __arraycount(param_map));
131
132 npf->portmap = kmem_zalloc(sizeof(npf_portmap_t), KM_SLEEP);
133 mutex_init(&npf->portmap->list_lock, MUTEX_DEFAULT, IPL_SOFTNET);
134 npf->portmap->addr_map = thmap_create(0, NULL, THMAP_NOCOPY);
135
136 mutex_init(&portmap_lock, MUTEX_DEFAULT, IPL_SOFTNET);
137 }
138
139 void
140 npf_portmap_fini(npf_t *npf)
141 {
142 const size_t len = sizeof(npf_portmap_params_t);
143 npf_portmap_t *pm = npf->portmap;
144
145 npf_param_freegroup(npf, NPF_PARAMS_PORTMAP, len);
146
147 npf_portmap_flush(npf);
148 KASSERT(LIST_EMPTY(&pm->bitmap_list));
149
150 thmap_destroy(pm->addr_map);
151 mutex_destroy(&pm->list_lock);
152 kmem_free(pm, sizeof(npf_portmap_t));
153
154 mutex_destroy(&portmap_lock);
155 }
156
157 /////////////////////////////////////////////////////////////////////////
158
159 #if defined(_LP64)
160 #define __npf_atomic_cas_64 atomic_cas_64
161 #else
162 static uint64_t
163 __npf_atomic_cas_64(volatile uint64_t *ptr, uint64_t old, uint64_t new)
164 {
165 uint64_t prev;
166
167 mutex_enter(&portmap_lock);
168 prev = *ptr;
169 if (prev == old) {
170 *ptr = new;
171 }
172 mutex_exit(&portmap_lock);
173
174 return prev;
175 }
176 #endif
177
178 /*
179 * bitmap_word_isset: test whether the bit value is in the packed array.
180 *
181 * => Return true if any value equals the bit number value.
182 *
183 * Packed array: 60 MSB bits, 5 values, 12 bits each.
184 *
185 * Reference: "Bit Twiddling Hacks" by S.E. Anderson, Stanford.
186 * Based on the hasvalue() and haszero() ideas. Since values are
187 * represented by upper 60 bits, we shift right by 4.
188 */
189 static bool
190 bitmap_word_isset(uint64_t x, unsigned bit)
191 {
192 uint64_t m, r;
193
194 bit++;
195 KASSERT((x & PORTMAP_L1_TAG) == 0);
196 KASSERT(bit <= (PORTMAP_L0_MASK + 1));
197
198 m = (x >> 4) ^ (UINT64_C(0x1001001001001) * bit);
199 r = (m - UINT64_C(0x1001001001001)) & (~m & UINT64_C(0x800800800800800));
200 return r != 0;
201 }
202
203 /*
204 * bitmap_word_cax: compare-and-xor on packed array elements.
205 */
206 static uint64_t
207 bitmap_word_cax(uint64_t x, int exp, int bit)
208 {
209 unsigned e = exp + 1;
210
211 /*
212 * We need to distinguish "no value" from zero. Just add one,
213 * since we use 12 bits to represent 11 bit values.
214 */
215 bit++;
216 KASSERT((unsigned)bit <= (PORTMAP_L0_MASK + 1));
217 KASSERT((x & PORTMAP_L1_TAG) == 0);
218
219 if (((x >> 52) & 0xfff) == e)
220 return x ^ ((uint64_t)bit << 52);
221 if (((x >> 40) & 0xfff) == e)
222 return x ^ ((uint64_t)bit << 40);
223 if (((x >> 28) & 0xfff) == e)
224 return x ^ ((uint64_t)bit << 28);
225 if (((x >> 16) & 0xfff) == e)
226 return x ^ ((uint64_t)bit << 16);
227 if (((x >> 4) & 0xfff) == e)
228 return x ^ ((uint64_t)bit << 4);
229 return 0;
230 }
231
232 static unsigned
233 bitmap_word_unpack(uint64_t x, unsigned bitvals[static 5])
234 {
235 unsigned n = 0;
236 uint64_t v;
237
238 KASSERT((x & PORTMAP_L1_TAG) == 0);
239
240 if ((v = ((x >> 52)) & 0xfff) != 0)
241 bitvals[n++] = v - 1;
242 if ((v = ((x >> 40)) & 0xfff) != 0)
243 bitvals[n++] = v - 1;
244 if ((v = ((x >> 28)) & 0xfff) != 0)
245 bitvals[n++] = v - 1;
246 if ((v = ((x >> 16)) & 0xfff) != 0)
247 bitvals[n++] = v - 1;
248 if ((v = ((x >> 4)) & 0xfff) != 0)
249 bitvals[n++] = v - 1;
250 return n;
251 }
252
253 #if 0
254 static bool
255 bitmap_isset(const bitmap_t *bm, unsigned bit)
256 {
257 unsigned i, chunk_bit;
258 uint64_t bval, b;
259 bitmap_l1_t *bm1;
260
261 KASSERT(bit < PORTMAP_MAX_BITS);
262 i = bit >> PORTMAP_L0_SHIFT;
263 bval = bm->bits0[i];
264
265 /*
266 * Empty check. Note: we can test the whole word against zero,
267 * since zero bit values in the packed array result in bits set.
268 */
269 if (bval == 0)
270 return false;
271
272 /* Level 0 check. */
273 chunk_bit = bit & PORTMAP_L0_MASK;
274 if ((bval & PORTMAP_L1_TAG) == 0)
275 return bitmap_word_isset(bval, chunk_bit);
276
277 /* Level 1 check. */
278 bm1 = PORTMAP_L1_GET(bval);
279 KASSERT(bm1 != NULL);
280 i = chunk_bit >> PORTMAP_L1_SHIFT;
281 b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
282 return (bm1->bits1[i] & b) != 0;
283 }
284 #endif
285
286 static bool
287 bitmap_set(bitmap_t *bm, unsigned bit)
288 {
289 unsigned i, chunk_bit;
290 uint64_t bval, b, oval, nval;
291 bitmap_l1_t *bm1;
292 again:
293 KASSERT(bit < PORTMAP_MAX_BITS);
294 i = bit >> PORTMAP_L0_SHIFT;
295 chunk_bit = bit & PORTMAP_L0_MASK;
296 bval = bm->bits0[i]; // atomic fetch
297
298 if ((bval & PORTMAP_L1_TAG) == 0) {
299 unsigned n = 0, bitvals[5];
300 uint64_t bm1p;
301
302 if (bitmap_word_isset(bval, chunk_bit)) {
303 return false;
304 }
305
306 /*
307 * Look for a zero-slot and put a value there.
308 */
309 if ((nval = bitmap_word_cax(bval, -1, chunk_bit)) != 0) {
310 KASSERT((nval & PORTMAP_L1_TAG) == 0);
311 if (__npf_atomic_cas_64(&bm->bits0[i], bval, nval) != bval) {
312 goto again;
313 }
314 return true;
315 }
316
317 /*
318 * Full: allocate L1 block and copy over the current
319 * values into the level.
320 */
321 bm1 = kmem_intr_zalloc(sizeof(bitmap_l1_t), KM_NOSLEEP);
322 if (bm1 == NULL) {
323 return false; // error
324 }
325 n = bitmap_word_unpack(bval, bitvals);
326 while (n--) {
327 const unsigned v = bitvals[n];
328 const unsigned off = v >> PORTMAP_L1_SHIFT;
329
330 KASSERT(v <= PORTMAP_L0_MASK);
331 KASSERT(off < (sizeof(uint64_t) * CHAR_BIT));
332 bm1->bits1[off] |= UINT64_C(1) << (v & PORTMAP_L1_MASK);
333 }
334
335 /*
336 * Attempt to set the L1 structure. Note: there is no
337 * ABA problem since the we compare the actual values.
338 * Note: CAS serves as a memory barrier.
339 */
340 bm1p = (uintptr_t)bm1;
341 KASSERT((bm1p & PORTMAP_L1_TAG) == 0);
342 bm1p |= PORTMAP_L1_TAG;
343 if (__npf_atomic_cas_64(&bm->bits0[i], bval, bm1p) != bval) {
344 kmem_intr_free(bm1, sizeof(bitmap_l1_t));
345 goto again;
346 }
347 bval = bm1p;
348 }
349
350 bm1 = PORTMAP_L1_GET(bval);
351 KASSERT(bm1 != NULL);
352 i = chunk_bit >> PORTMAP_L1_SHIFT;
353 b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
354
355 oval = bm1->bits1[i]; // atomic fetch
356 if (oval & b) {
357 return false;
358 }
359 nval = oval | b;
360 if (__npf_atomic_cas_64(&bm1->bits1[i], oval, nval) != oval) {
361 goto again;
362 }
363 return true;
364 }
365
366 static bool
367 bitmap_clr(bitmap_t *bm, unsigned bit)
368 {
369 unsigned i, chunk_bit;
370 uint64_t bval, b, oval, nval;
371 bitmap_l1_t *bm1;
372 again:
373 KASSERT(bit < PORTMAP_MAX_BITS);
374 i = bit >> PORTMAP_L0_SHIFT;
375 chunk_bit = bit & PORTMAP_L0_MASK;
376 bval = bm->bits0[i];
377
378 if ((bval & PORTMAP_L1_TAG) == 0) {
379 if (!bitmap_word_isset(bval, chunk_bit)) {
380 return false;
381 }
382 nval = bitmap_word_cax(bval, chunk_bit, chunk_bit);
383 KASSERT((nval & PORTMAP_L1_TAG) == 0);
384 if (__npf_atomic_cas_64(&bm->bits0[i], bval, nval) != bval) {
385 goto again;
386 }
387 return true;
388 }
389
390 bm1 = PORTMAP_L1_GET(bval);
391 KASSERT(bm1 != NULL);
392 i = chunk_bit >> PORTMAP_L1_SHIFT;
393 b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
394
395 oval = bm1->bits1[i]; // atomic fetch
396 if ((oval & b) == 0) {
397 return false;
398 }
399 nval = oval & ~b;
400 if (__npf_atomic_cas_64(&bm1->bits1[i], oval, nval) != oval) {
401 goto again;
402 }
403 return true;
404 }
405
406 /////////////////////////////////////////////////////////////////////////
407
408 static bitmap_t *
409 npf_portmap_autoget(npf_t *npf, unsigned alen, const npf_addr_t *addr)
410 {
411 npf_portmap_t *pm = npf->portmap;
412 bitmap_t *bm;
413
414 KASSERT(pm && pm->addr_map);
415 KASSERT(alen && alen <= sizeof(npf_addr_t));
416
417 /* Lookup the port map for this address. */
418 bm = thmap_get(pm->addr_map, addr, alen);
419 if (bm == NULL) {
420 void *ret;
421
422 /*
423 * Allocate a new port map for this address and
424 * attempt to insert it.
425 */
426 bm = kmem_intr_zalloc(sizeof(bitmap_t), KM_NOSLEEP);
427 if (bm == NULL) {
428 return NULL;
429 }
430 memcpy(&bm->addr, addr, alen);
431 bm->addr_len = alen;
432
433 int s = splsoftnet();
434 ret = thmap_put(pm->addr_map, &bm->addr, alen, bm);
435 splx(s);
436
437 if (ret == bm) {
438 /* Success: insert the bitmap into the list. */
439 mutex_enter(&pm->list_lock);
440 LIST_INSERT_HEAD(&pm->bitmap_list, bm, entry);
441 mutex_exit(&pm->list_lock);
442 } else {
443 /* Race: use an existing bitmap. */
444 kmem_free(bm, sizeof(bitmap_t));
445 bm = ret;
446 }
447 }
448 return bm;
449 }
450
451
452 /*
453 * npf_portmap_flush: free all bitmaps and remove all addresses.
454 *
455 * => Concurrent calls to this routine are not allowed; therefore no
456 * need to acquire locks.
457 */
458 void
459 npf_portmap_flush(npf_t *npf)
460 {
461 npf_portmap_t *pm = npf->portmap;
462 bitmap_t *bm;
463
464 KASSERT(npf_config_locked_p(npf));
465
466 while ((bm = LIST_FIRST(&pm->bitmap_list)) != NULL) {
467 for (unsigned i = 0; i < PORTMAP_L0_WORDS; i++) {
468 uintptr_t bm1 = bm->bits0[i];
469
470 if (bm1 & PORTMAP_L1_TAG) {
471 bitmap_l1_t *bm1p = PORTMAP_L1_GET(bm1);
472 kmem_intr_free(bm1p, sizeof(bitmap_l1_t));
473 }
474 bm->bits0[i] = UINT64_C(0);
475 }
476 LIST_REMOVE(bm, entry);
477 thmap_del(pm->addr_map, &bm->addr, bm->addr_len);
478 kmem_intr_free(bm, sizeof(bitmap_t));
479 }
480 /* Note: the caller ensures there are no active references. */
481 thmap_gc(pm->addr_map, thmap_stage_gc(pm->addr_map));
482 }
483
484 /*
485 * npf_portmap_get: allocate and return a port from the given portmap.
486 *
487 * => Returns the port value in network byte-order.
488 * => Zero indicates a failure.
489 */
490 in_port_t
491 npf_portmap_get(npf_t *npf, int alen, const npf_addr_t *addr)
492 {
493 const npf_portmap_params_t *params = npf->params[NPF_PARAMS_PORTMAP];
494 const unsigned port_delta = params->max_port - params->min_port;
495 unsigned bit, target;
496 bitmap_t *bm;
497
498 bm = npf_portmap_autoget(npf, alen, addr);
499 if (bm == NULL) {
500 /* No memory. */
501 return 0;
502 }
503
504 /* Randomly select a port. */
505 target = params->min_port + (cprng_fast32() % port_delta);
506 bit = target;
507 next:
508 if (bitmap_set(bm, bit)) {
509 /* Success. */
510 return htons(bit);
511 }
512 bit = params->min_port + ((bit + 1) % port_delta);
513 if (target != bit) {
514 /* Next.. */
515 goto next;
516 }
517 /* No space. */
518 return 0;
519 }
520
521 /*
522 * npf_portmap_take: allocate a specific port in the portmap.
523 */
524 bool
525 npf_portmap_take(npf_t *npf, int alen, const npf_addr_t *addr, in_port_t port)
526 {
527 const npf_portmap_params_t *params = npf->params[NPF_PARAMS_PORTMAP];
528 bitmap_t *bm = npf_portmap_autoget(npf, alen, addr);
529
530 port = ntohs(port);
531 if (!bm || port < params->min_port || port > params->max_port) {
532 /* Out of memory / invalid port. */
533 return false;
534 }
535 return bitmap_set(bm, port);
536 }
537
538 /*
539 * npf_portmap_put: release the port, making it available in the portmap.
540 *
541 * => The port value should be in network byte-order.
542 */
543 void
544 npf_portmap_put(npf_t *npf, int alen, const npf_addr_t *addr, in_port_t port)
545 {
546 bitmap_t *bm;
547
548 bm = npf_portmap_autoget(npf, alen, addr);
549 if (bm) {
550 port = ntohs(port);
551 bitmap_clr(bm, port);
552 }
553 }
554