npf_portmap.c revision 1.4 1 /*-
2 * Copyright (c) 2019 Mindaugas Rasiukevicius <rmind at noxt eu>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27 /*
28 * NPF port map mechanism.
29 *
30 * The port map is a bitmap used to track TCP/UDP ports used for
31 * translation. Port maps are per IP addresses, therefore multiple
32 * NAT policies operating on the same IP address will share the
33 * same port map.
34 */
35
36 #ifdef _KERNEL
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: npf_portmap.c,v 1.4 2019/08/11 20:26:34 rmind Exp $");
39
40 #include <sys/param.h>
41 #include <sys/types.h>
42
43 #include <sys/atomic.h>
44 #include <sys/bitops.h>
45 #include <sys/kmem.h>
46 #include <sys/mutex.h>
47 #include <sys/cprng.h>
48 #include <sys/thmap.h>
49 #endif
50
51 #include "npf_impl.h"
52
53 /*
54 * Port map uses two-level bitmaps with compression to efficiently
55 * represent the maximum of 65536 (2^16) values.
56 *
57 * Level 0: 64 chunks each representing 1048 bits in two modes:
58 *
59 * a) If PORTMAP_L1_TAG, then up to 5 values are packed in the
60 * 64-bit integer using 12 bits for each value, starting from the
61 * most significant bits. The four 4 least significant bits are
62 * unused or reserved for pointer tagging.
63 *
64 * b) If there are more than 5 values, then PORTMAP_L1_TAG is set
65 * and the value serves as a pointer to the second level bitmap.
66 *
67 * Level 1: 16 chunks each representing 64 bits in plain uint64_t.
68 */
69
70 #define PORTMAP_MAX_BITS (65536U)
71 #define PORTMAP_MASK (PORTMAP_MAX_BITS - 1)
72
73 #define PORTMAP_L0_SHIFT (10) // or 11
74 #define PORTMAP_L0_MASK ((1U << PORTMAP_L0_SHIFT) - 1)
75 #define PORTMAP_L0_WORDS (PORTMAP_MAX_BITS >> PORTMAP_L0_SHIFT)
76
77 #define PORTMAP_L1_SHIFT (6)
78 #define PORTMAP_L1_MASK ((1U << PORTMAP_L1_SHIFT) - 1)
79 #define PORTMAP_L1_WORDS \
80 ((PORTMAP_MAX_BITS / PORTMAP_L0_WORDS) >> PORTMAP_L1_SHIFT)
81
82 #define PORTMAP_L1_TAG (UINT64_C(1)) // use level 1
83 #define PORTMAP_L1_GET(p) ((void *)((uintptr_t)(p) & ~(uintptr_t)3))
84
85 CTASSERT(sizeof(uint64_t) >= sizeof(uintptr_t));
86
87 typedef struct {
88 volatile uint64_t bits1[PORTMAP_L1_WORDS];
89 } bitmap_l1_t;
90
91 typedef struct bitmap {
92 npf_addr_t addr;
93 volatile uint64_t bits0[PORTMAP_L0_WORDS];
94 LIST_ENTRY(bitmap) entry;
95 unsigned addr_len;
96 } bitmap_t;
97
98 #define NPF_PORTMAP_MINPORT 1024
99 #define NPF_PORTMAP_MAXPORT 65535
100
101 struct npf_portmap {
102 thmap_t * addr_map;
103 LIST_HEAD(, bitmap) bitmap_list;
104 kmutex_t list_lock;
105 int min_port;
106 int max_port;
107 };
108
109 static kmutex_t portmap_lock;
110
111 void
112 npf_portmap_init(npf_t *npf)
113 {
114 npf_portmap_t *pm = npf_portmap_create(
115 NPF_PORTMAP_MINPORT, NPF_PORTMAP_MAXPORT);
116 npf_param_t param_map[] = {
117 {
118 "portmap.min_port",
119 &pm->min_port,
120 .default_val = NPF_PORTMAP_MINPORT,
121 .min = 1024, .max = 65535
122 },
123 {
124 "portmap.max_port",
125 &pm->max_port,
126 .default_val = NPF_PORTMAP_MAXPORT,
127 .min = 1024, .max = 65535
128 }
129 };
130 npf_param_register(npf, param_map, __arraycount(param_map));
131 mutex_init(&portmap_lock, MUTEX_DEFAULT, IPL_SOFTNET);
132 npf->portmap = pm;
133 }
134
135 void
136 npf_portmap_fini(npf_t *npf)
137 {
138 npf_portmap_destroy(npf->portmap);
139 mutex_destroy(&portmap_lock);
140 npf->portmap = NULL; // diagnostic
141 }
142
143 npf_portmap_t *
144 npf_portmap_create(int min_port, int max_port)
145 {
146 npf_portmap_t *pm;
147
148 pm = kmem_zalloc(sizeof(npf_portmap_t), KM_SLEEP);
149 mutex_init(&pm->list_lock, MUTEX_DEFAULT, IPL_SOFTNET);
150 pm->addr_map = thmap_create(0, NULL, THMAP_NOCOPY);
151 pm->min_port = min_port;
152 pm->max_port = max_port;
153 return pm;
154 }
155
156 void
157 npf_portmap_destroy(npf_portmap_t *pm)
158 {
159 npf_portmap_flush(pm);
160 KASSERT(LIST_EMPTY(&pm->bitmap_list));
161
162 thmap_destroy(pm->addr_map);
163 mutex_destroy(&pm->list_lock);
164 kmem_free(pm, sizeof(npf_portmap_t));
165 }
166
167 /////////////////////////////////////////////////////////////////////////
168
169 #if defined(_LP64)
170 #define __npf_atomic_cas_64 atomic_cas_64
171 #else
172 static uint64_t
173 __npf_atomic_cas_64(volatile uint64_t *ptr, uint64_t old, uint64_t new)
174 {
175 uint64_t prev;
176
177 mutex_enter(&portmap_lock);
178 prev = *ptr;
179 if (prev == old) {
180 *ptr = new;
181 }
182 mutex_exit(&portmap_lock);
183
184 return prev;
185 }
186 #endif
187
188 /*
189 * bitmap_word_isset: test whether the bit value is in the packed array.
190 *
191 * => Return true if any value equals the bit number value.
192 *
193 * Packed array: 60 MSB bits, 5 values, 12 bits each.
194 *
195 * Reference: "Bit Twiddling Hacks" by S.E. Anderson, Stanford.
196 * Based on the hasvalue() and haszero() ideas. Since values are
197 * represented by upper 60 bits, we shift right by 4.
198 */
199 static bool
200 bitmap_word_isset(uint64_t x, unsigned bit)
201 {
202 uint64_t m, r;
203
204 bit++;
205 KASSERT((x & PORTMAP_L1_TAG) == 0);
206 KASSERT(bit <= (PORTMAP_L0_MASK + 1));
207
208 m = (x >> 4) ^ (UINT64_C(0x1001001001001) * bit);
209 r = (m - UINT64_C(0x1001001001001)) & (~m & UINT64_C(0x800800800800800));
210 return r != 0;
211 }
212
213 /*
214 * bitmap_word_cax: compare-and-xor on packed array elements.
215 */
216 static uint64_t
217 bitmap_word_cax(uint64_t x, int exp, int bit)
218 {
219 unsigned e = exp + 1;
220
221 /*
222 * We need to distinguish "no value" from zero. Just add one,
223 * since we use 12 bits to represent 11 bit values.
224 */
225 bit++;
226 KASSERT((unsigned)bit <= (PORTMAP_L0_MASK + 1));
227 KASSERT((x & PORTMAP_L1_TAG) == 0);
228
229 if (((x >> 52) & 0xfff) == e)
230 return x ^ ((uint64_t)bit << 52);
231 if (((x >> 40) & 0xfff) == e)
232 return x ^ ((uint64_t)bit << 40);
233 if (((x >> 28) & 0xfff) == e)
234 return x ^ ((uint64_t)bit << 28);
235 if (((x >> 16) & 0xfff) == e)
236 return x ^ ((uint64_t)bit << 16);
237 if (((x >> 4) & 0xfff) == e)
238 return x ^ ((uint64_t)bit << 4);
239 return 0;
240 }
241
242 static unsigned
243 bitmap_word_unpack(uint64_t x, unsigned bitvals[static 5])
244 {
245 unsigned n = 0;
246 uint64_t v;
247
248 KASSERT((x & PORTMAP_L1_TAG) == 0);
249
250 if ((v = ((x >> 52)) & 0xfff) != 0)
251 bitvals[n++] = v - 1;
252 if ((v = ((x >> 40)) & 0xfff) != 0)
253 bitvals[n++] = v - 1;
254 if ((v = ((x >> 28)) & 0xfff) != 0)
255 bitvals[n++] = v - 1;
256 if ((v = ((x >> 16)) & 0xfff) != 0)
257 bitvals[n++] = v - 1;
258 if ((v = ((x >> 4)) & 0xfff) != 0)
259 bitvals[n++] = v - 1;
260 return n;
261 }
262
263 #if 0
264 static bool
265 bitmap_isset(const bitmap_t *bm, unsigned bit)
266 {
267 unsigned i, chunk_bit;
268 uint64_t bval, b;
269 bitmap_l1_t *bm1;
270
271 KASSERT(bit < PORTMAP_MAX_BITS);
272 i = bit >> PORTMAP_L0_SHIFT;
273 bval = bm->bits0[i];
274
275 /*
276 * Empty check. Note: we can test the whole word against zero,
277 * since zero bit values in the packed array result in bits set.
278 */
279 if (bval == 0)
280 return false;
281
282 /* Level 0 check. */
283 chunk_bit = bit & PORTMAP_L0_MASK;
284 if ((bval & PORTMAP_L1_TAG) == 0)
285 return bitmap_word_isset(bval, chunk_bit);
286
287 /* Level 1 check. */
288 bm1 = PORTMAP_L1_GET(bval);
289 KASSERT(bm1 != NULL);
290 i = chunk_bit >> PORTMAP_L1_SHIFT;
291 b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
292 return (bm1->bits1[i] & b) != 0;
293 }
294 #endif
295
296 static bool
297 bitmap_set(bitmap_t *bm, unsigned bit)
298 {
299 unsigned i, chunk_bit;
300 uint64_t bval, b, oval, nval;
301 bitmap_l1_t *bm1;
302 again:
303 KASSERT(bit < PORTMAP_MAX_BITS);
304 i = bit >> PORTMAP_L0_SHIFT;
305 chunk_bit = bit & PORTMAP_L0_MASK;
306 bval = bm->bits0[i]; // atomic fetch
307
308 if ((bval & PORTMAP_L1_TAG) == 0) {
309 unsigned n = 0, bitvals[5];
310 uint64_t bm1p;
311
312 if (bitmap_word_isset(bval, chunk_bit)) {
313 return false;
314 }
315
316 /*
317 * Look for a zero-slot and put a value there.
318 */
319 if ((nval = bitmap_word_cax(bval, -1, chunk_bit)) != 0) {
320 KASSERT((nval & PORTMAP_L1_TAG) == 0);
321 if (__npf_atomic_cas_64(&bm->bits0[i], bval, nval) != bval) {
322 goto again;
323 }
324 return true;
325 }
326
327 /*
328 * Full: allocate L1 block and copy over the current
329 * values into the level.
330 */
331 bm1 = kmem_intr_zalloc(sizeof(bitmap_l1_t), KM_NOSLEEP);
332 if (bm1 == NULL) {
333 return false; // error
334 }
335 n = bitmap_word_unpack(bval, bitvals);
336 while (n--) {
337 const unsigned v = bitvals[n];
338 const unsigned off = v >> PORTMAP_L1_SHIFT;
339
340 KASSERT(v <= PORTMAP_L0_MASK);
341 KASSERT(off < (sizeof(uint64_t) * CHAR_BIT));
342 bm1->bits1[off] |= UINT64_C(1) << (v & PORTMAP_L1_MASK);
343 }
344
345 /*
346 * Attempt to set the L1 structure. Note: there is no
347 * ABA problem since the we compare the actual values.
348 * Note: CAS serves as a memory barrier.
349 */
350 bm1p = (uintptr_t)bm1;
351 KASSERT((bm1p & PORTMAP_L1_TAG) == 0);
352 bm1p |= PORTMAP_L1_TAG;
353 if (__npf_atomic_cas_64(&bm->bits0[i], bval, bm1p) != bval) {
354 kmem_intr_free(bm1, sizeof(bitmap_l1_t));
355 goto again;
356 }
357 bval = bm1p;
358 }
359
360 bm1 = PORTMAP_L1_GET(bval);
361 KASSERT(bm1 != NULL);
362 i = chunk_bit >> PORTMAP_L1_SHIFT;
363 b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
364
365 oval = bm1->bits1[i]; // atomic fetch
366 if (oval & b) {
367 return false;
368 }
369 nval = oval | b;
370 if (__npf_atomic_cas_64(&bm1->bits1[i], oval, nval) != oval) {
371 goto again;
372 }
373 return true;
374 }
375
376 static bool
377 bitmap_clr(bitmap_t *bm, unsigned bit)
378 {
379 unsigned i, chunk_bit;
380 uint64_t bval, b, oval, nval;
381 bitmap_l1_t *bm1;
382 again:
383 KASSERT(bit < PORTMAP_MAX_BITS);
384 i = bit >> PORTMAP_L0_SHIFT;
385 chunk_bit = bit & PORTMAP_L0_MASK;
386 bval = bm->bits0[i];
387
388 if ((bval & PORTMAP_L1_TAG) == 0) {
389 if (!bitmap_word_isset(bval, chunk_bit)) {
390 return false;
391 }
392 nval = bitmap_word_cax(bval, chunk_bit, chunk_bit);
393 KASSERT((nval & PORTMAP_L1_TAG) == 0);
394 if (__npf_atomic_cas_64(&bm->bits0[i], bval, nval) != bval) {
395 goto again;
396 }
397 return true;
398 }
399
400 bm1 = PORTMAP_L1_GET(bval);
401 KASSERT(bm1 != NULL);
402 i = chunk_bit >> PORTMAP_L1_SHIFT;
403 b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
404
405 oval = bm1->bits1[i]; // atomic fetch
406 if ((oval & b) == 0) {
407 return false;
408 }
409 nval = oval & ~b;
410 if (__npf_atomic_cas_64(&bm1->bits1[i], oval, nval) != oval) {
411 goto again;
412 }
413 return true;
414 }
415
416 /////////////////////////////////////////////////////////////////////////
417
418 static bitmap_t *
419 npf_portmap_autoget(npf_portmap_t *pm, unsigned alen, const npf_addr_t *addr)
420 {
421 bitmap_t *bm;
422
423 KASSERT(pm && pm->addr_map);
424 KASSERT(alen && alen <= sizeof(npf_addr_t));
425
426 /* Lookup the port map for this address. */
427 bm = thmap_get(pm->addr_map, addr, alen);
428 if (bm == NULL) {
429 void *ret;
430
431 /*
432 * Allocate a new port map for this address and
433 * attempt to insert it.
434 */
435 bm = kmem_intr_zalloc(sizeof(bitmap_t), KM_NOSLEEP);
436 if (bm == NULL) {
437 return NULL;
438 }
439 memcpy(&bm->addr, addr, alen);
440 bm->addr_len = alen;
441
442 int s = splsoftnet();
443 ret = thmap_put(pm->addr_map, &bm->addr, alen, bm);
444 splx(s);
445
446 if (ret == bm) {
447 /* Success: insert the bitmap into the list. */
448 mutex_enter(&pm->list_lock);
449 LIST_INSERT_HEAD(&pm->bitmap_list, bm, entry);
450 mutex_exit(&pm->list_lock);
451 } else {
452 /* Race: use an existing bitmap. */
453 kmem_free(bm, sizeof(bitmap_t));
454 bm = ret;
455 }
456 }
457 return bm;
458 }
459
460
461 /*
462 * npf_portmap_flush: free all bitmaps and remove all addresses.
463 *
464 * => Concurrent calls to this routine are not allowed; therefore no
465 * need to acquire locks.
466 */
467 void
468 npf_portmap_flush(npf_portmap_t *pm)
469 {
470 bitmap_t *bm;
471
472 while ((bm = LIST_FIRST(&pm->bitmap_list)) != NULL) {
473 for (unsigned i = 0; i < PORTMAP_L0_WORDS; i++) {
474 uintptr_t bm1 = bm->bits0[i];
475
476 if (bm1 & PORTMAP_L1_TAG) {
477 bitmap_l1_t *bm1p = PORTMAP_L1_GET(bm1);
478 kmem_intr_free(bm1p, sizeof(bitmap_l1_t));
479 }
480 bm->bits0[i] = UINT64_C(0);
481 }
482 LIST_REMOVE(bm, entry);
483 thmap_del(pm->addr_map, &bm->addr, bm->addr_len);
484 kmem_intr_free(bm, sizeof(bitmap_t));
485 }
486 /* Note: the caller ensures there are no active references. */
487 thmap_gc(pm->addr_map, thmap_stage_gc(pm->addr_map));
488 }
489
490 /*
491 * npf_portmap_get: allocate and return a port from the given portmap.
492 *
493 * => Returns the port value in network byte-order.
494 * => Zero indicates a failure.
495 */
496 in_port_t
497 npf_portmap_get(npf_portmap_t *pm, int alen, const npf_addr_t *addr)
498 {
499 const unsigned port_delta = pm->max_port - pm->min_port;
500 unsigned bit, target;
501 bitmap_t *bm;
502
503 bm = npf_portmap_autoget(pm, alen, addr);
504 if (bm == NULL) {
505 /* No memory. */
506 return 0;
507 }
508
509 /* Randomly select a port. */
510 target = pm->min_port + (cprng_fast32() % port_delta);
511 bit = target;
512 next:
513 if (bitmap_set(bm, bit)) {
514 /* Success. */
515 return htons(bit);
516 }
517 bit = pm->min_port + ((bit + 1) % port_delta);
518 if (target != bit) {
519 /* Next.. */
520 goto next;
521 }
522 /* No space. */
523 return 0;
524 }
525
526 /*
527 * npf_portmap_take: allocate a specific port in the portmap.
528 */
529 bool
530 npf_portmap_take(npf_portmap_t *pm, int alen,
531 const npf_addr_t *addr, in_port_t port)
532 {
533 bitmap_t *bm = npf_portmap_autoget(pm, alen, addr);
534
535 port = ntohs(port);
536 if (!bm || port < pm->min_port || port > pm->max_port) {
537 /* Out of memory / invalid port. */
538 return false;
539 }
540 return bitmap_set(bm, port);
541 }
542
543 /*
544 * npf_portmap_put: release the port, making it available in the portmap.
545 *
546 * => The port value should be in network byte-order.
547 */
548 void
549 npf_portmap_put(npf_portmap_t *pm, int alen,
550 const npf_addr_t *addr, in_port_t port)
551 {
552 bitmap_t *bm;
553
554 bm = npf_portmap_autoget(pm, alen, addr);
555 if (bm) {
556 port = ntohs(port);
557 bitmap_clr(bm, port);
558 }
559 }
560