npf_ruleset.c revision 1.14.2.2 1 1.14.2.2 tls /* $NetBSD: npf_ruleset.c,v 1.14.2.2 2013/06/23 06:20:25 tls Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.14.2.1 tls * Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This material is based upon work partially supported by The
8 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.1 rmind /*
33 1.1 rmind * NPF ruleset module.
34 1.1 rmind */
35 1.1 rmind
36 1.1 rmind #include <sys/cdefs.h>
37 1.14.2.2 tls __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.14.2.2 2013/06/23 06:20:25 tls Exp $");
38 1.1 rmind
39 1.1 rmind #include <sys/param.h>
40 1.11 rmind #include <sys/types.h>
41 1.1 rmind
42 1.14.2.2 tls #include <sys/atomic.h>
43 1.1 rmind #include <sys/kmem.h>
44 1.1 rmind #include <sys/queue.h>
45 1.14.2.1 tls #include <sys/mbuf.h>
46 1.1 rmind #include <sys/types.h>
47 1.1 rmind
48 1.14.2.1 tls #include <net/bpf.h>
49 1.14.2.2 tls #include <net/bpfjit.h>
50 1.3 rmind #include <net/pfil.h>
51 1.1 rmind #include <net/if.h>
52 1.1 rmind
53 1.1 rmind #include "npf_ncode.h"
54 1.1 rmind #include "npf_impl.h"
55 1.1 rmind
56 1.4 rmind struct npf_ruleset {
57 1.14.2.1 tls /*
58 1.14.2.1 tls * - List of all rules.
59 1.14.2.1 tls * - Dynamic (i.e. named) rules.
60 1.14.2.1 tls * - G/C list for convenience.
61 1.14.2.1 tls */
62 1.14.2.1 tls LIST_HEAD(, npf_rule) rs_all;
63 1.14.2.1 tls LIST_HEAD(, npf_rule) rs_dynamic;
64 1.14.2.1 tls LIST_HEAD(, npf_rule) rs_gc;
65 1.14.2.1 tls
66 1.14.2.1 tls /* Unique ID counter. */
67 1.14.2.1 tls uint64_t rs_idcnt;
68 1.14.2.1 tls
69 1.14.2.1 tls /* Number of array slots and active rules. */
70 1.14.2.1 tls u_int rs_slots;
71 1.14.2.1 tls u_int rs_nitems;
72 1.4 rmind
73 1.14.2.1 tls /* Array of ordered rules. */
74 1.14.2.1 tls npf_rule_t * rs_rules[];
75 1.14.2.1 tls };
76 1.7 rmind
77 1.1 rmind struct npf_rule {
78 1.14.2.1 tls /* Attributes, interface and skip slot. */
79 1.4 rmind uint32_t r_attr;
80 1.4 rmind u_int r_ifid;
81 1.14.2.1 tls u_int r_skip_to;
82 1.14.2.1 tls
83 1.14.2.1 tls /* Code to process, if any. */
84 1.14.2.1 tls int r_type;
85 1.14.2.2 tls bpfjit_function_t r_jcode;
86 1.14.2.1 tls void * r_code;
87 1.14.2.1 tls size_t r_clen;
88 1.14.2.1 tls
89 1.14.2.1 tls /* NAT policy (optional), rule procedure and subset. */
90 1.14.2.1 tls npf_natpolicy_t * r_natp;
91 1.4 rmind npf_rproc_t * r_rproc;
92 1.14.2.1 tls
93 1.14.2.1 tls /* Rule priority: (highest) 1, 2 ... n (lowest). */
94 1.14.2.1 tls pri_t r_priority;
95 1.14.2.1 tls
96 1.14.2.1 tls /*
97 1.14.2.1 tls * Dynamic group: subset queue and a dynamic group list entry.
98 1.14.2.1 tls * Dynamic rule: entry and the parent rule (the group).
99 1.14.2.1 tls */
100 1.14.2.1 tls union {
101 1.14.2.1 tls TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
102 1.14.2.1 tls TAILQ_ENTRY(npf_rule) r_entry;
103 1.14.2.1 tls } /* C11 */;
104 1.14.2.1 tls union {
105 1.14.2.1 tls LIST_ENTRY(npf_rule) r_dentry;
106 1.14.2.1 tls npf_rule_t * r_parent;
107 1.14.2.1 tls } /* C11 */;
108 1.14.2.1 tls
109 1.14.2.1 tls /* Rule ID and the original dictionary. */
110 1.14.2.1 tls uint64_t r_id;
111 1.14.2.1 tls prop_dictionary_t r_dict;
112 1.14.2.1 tls
113 1.14.2.1 tls /* Rule name and all-list entry. */
114 1.14.2.1 tls char r_name[NPF_RULE_MAXNAMELEN];
115 1.14.2.1 tls LIST_ENTRY(npf_rule) r_aentry;
116 1.14.2.1 tls
117 1.14.2.1 tls /* Key (optional). */
118 1.14.2.1 tls uint8_t r_key[NPF_RULE_MAXKEYLEN];
119 1.1 rmind };
120 1.1 rmind
121 1.14.2.1 tls #define NPF_DYNAMIC_GROUP_P(attr) \
122 1.14.2.1 tls (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
123 1.14.2.1 tls
124 1.14.2.1 tls #define NPF_DYNAMIC_RULE_P(attr) \
125 1.14.2.1 tls (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
126 1.14.2.1 tls
127 1.1 rmind npf_ruleset_t *
128 1.14.2.1 tls npf_ruleset_create(size_t slots)
129 1.1 rmind {
130 1.14.2.1 tls size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
131 1.1 rmind npf_ruleset_t *rlset;
132 1.1 rmind
133 1.14.2.1 tls rlset = kmem_zalloc(len, KM_SLEEP);
134 1.14.2.1 tls LIST_INIT(&rlset->rs_dynamic);
135 1.14.2.1 tls LIST_INIT(&rlset->rs_all);
136 1.14.2.1 tls LIST_INIT(&rlset->rs_gc);
137 1.14.2.1 tls rlset->rs_slots = slots;
138 1.14.2.1 tls
139 1.1 rmind return rlset;
140 1.1 rmind }
141 1.1 rmind
142 1.14.2.1 tls static void
143 1.14.2.1 tls npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
144 1.14.2.1 tls {
145 1.14.2.1 tls if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
146 1.14.2.1 tls LIST_REMOVE(rl, r_dentry);
147 1.14.2.1 tls }
148 1.14.2.1 tls if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
149 1.14.2.1 tls npf_rule_t *rg = rl->r_parent;
150 1.14.2.1 tls TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
151 1.14.2.1 tls }
152 1.14.2.1 tls LIST_REMOVE(rl, r_aentry);
153 1.14.2.1 tls }
154 1.14.2.1 tls
155 1.1 rmind void
156 1.1 rmind npf_ruleset_destroy(npf_ruleset_t *rlset)
157 1.1 rmind {
158 1.14.2.1 tls size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
159 1.1 rmind npf_rule_t *rl;
160 1.1 rmind
161 1.14.2.1 tls while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
162 1.14.2.1 tls npf_ruleset_unlink(rlset, rl);
163 1.1 rmind npf_rule_free(rl);
164 1.1 rmind }
165 1.14.2.1 tls KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
166 1.14.2.1 tls KASSERT(LIST_EMPTY(&rlset->rs_gc));
167 1.14.2.1 tls kmem_free(rlset, len);
168 1.1 rmind }
169 1.1 rmind
170 1.1 rmind /*
171 1.1 rmind * npf_ruleset_insert: insert the rule into the specified ruleset.
172 1.1 rmind */
173 1.1 rmind void
174 1.1 rmind npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
175 1.1 rmind {
176 1.14.2.1 tls u_int n = rlset->rs_nitems;
177 1.14.2.1 tls
178 1.14.2.1 tls KASSERT(n < rlset->rs_slots);
179 1.14.2.1 tls
180 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
181 1.14.2.1 tls if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
182 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
183 1.14.2.1 tls }
184 1.14.2.1 tls
185 1.14.2.1 tls rlset->rs_rules[n] = rl;
186 1.14.2.1 tls rlset->rs_nitems++;
187 1.1 rmind
188 1.14.2.1 tls if (rl->r_skip_to < ++n) {
189 1.14.2.1 tls rl->r_skip_to = n;
190 1.14.2.1 tls }
191 1.14.2.1 tls }
192 1.14.2.1 tls
193 1.14.2.1 tls static npf_rule_t *
194 1.14.2.1 tls npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
195 1.14.2.1 tls {
196 1.14.2.1 tls npf_rule_t *rl;
197 1.14.2.1 tls
198 1.14.2.1 tls KASSERT(npf_config_locked_p());
199 1.14.2.1 tls
200 1.14.2.1 tls LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
201 1.14.2.1 tls KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
202 1.14.2.1 tls if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
203 1.1 rmind break;
204 1.1 rmind }
205 1.14.2.1 tls return rl;
206 1.14.2.1 tls }
207 1.14.2.1 tls
208 1.14.2.1 tls int
209 1.14.2.1 tls npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
210 1.14.2.1 tls {
211 1.14.2.1 tls npf_rule_t *rg, *it;
212 1.14.2.1 tls pri_t priocmd;
213 1.14.2.1 tls
214 1.14.2.1 tls rg = npf_ruleset_lookup(rlset, rname);
215 1.14.2.1 tls if (rg == NULL) {
216 1.14.2.1 tls return ESRCH;
217 1.14.2.1 tls }
218 1.14.2.1 tls if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
219 1.14.2.1 tls return EINVAL;
220 1.14.2.1 tls }
221 1.14.2.1 tls
222 1.14.2.1 tls /* Dynamic rule - assign a unique ID and save the parent. */
223 1.14.2.1 tls rl->r_id = ++rlset->rs_idcnt;
224 1.14.2.1 tls rl->r_parent = rg;
225 1.14.2.1 tls
226 1.14.2.1 tls /*
227 1.14.2.1 tls * Rule priority: (highest) 1, 2 ... n (lowest).
228 1.14.2.1 tls * Negative priority indicates an operation and is reset to zero.
229 1.14.2.1 tls */
230 1.14.2.1 tls if ((priocmd = rl->r_priority) < 0) {
231 1.14.2.1 tls rl->r_priority = 0;
232 1.14.2.1 tls }
233 1.14.2.1 tls
234 1.14.2.1 tls switch (priocmd) {
235 1.14.2.1 tls case NPF_PRI_FIRST:
236 1.14.2.1 tls TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
237 1.14.2.1 tls if (rl->r_priority <= it->r_priority)
238 1.14.2.1 tls break;
239 1.14.2.1 tls }
240 1.14.2.1 tls if (it) {
241 1.14.2.1 tls TAILQ_INSERT_BEFORE(it, rl, r_entry);
242 1.14.2.1 tls } else {
243 1.14.2.1 tls TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
244 1.14.2.1 tls }
245 1.14.2.1 tls break;
246 1.14.2.1 tls case NPF_PRI_LAST:
247 1.14.2.1 tls default:
248 1.14.2.1 tls TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
249 1.14.2.1 tls if (rl->r_priority < it->r_priority)
250 1.14.2.1 tls break;
251 1.14.2.1 tls }
252 1.14.2.1 tls if (it) {
253 1.14.2.1 tls TAILQ_INSERT_BEFORE(it, rl, r_entry);
254 1.14.2.1 tls } else {
255 1.14.2.1 tls TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
256 1.14.2.1 tls }
257 1.14.2.1 tls break;
258 1.14.2.1 tls }
259 1.14.2.1 tls
260 1.14.2.1 tls /* Finally, add into the all-list. */
261 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
262 1.14.2.1 tls return 0;
263 1.14.2.1 tls }
264 1.14.2.1 tls
265 1.14.2.1 tls int
266 1.14.2.1 tls npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
267 1.14.2.1 tls {
268 1.14.2.1 tls npf_rule_t *rg, *rl;
269 1.14.2.1 tls
270 1.14.2.1 tls if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
271 1.14.2.1 tls return ESRCH;
272 1.14.2.1 tls }
273 1.14.2.1 tls TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
274 1.14.2.1 tls /* Compare ID. On match, remove and return. */
275 1.14.2.1 tls if (rl->r_id == id) {
276 1.14.2.1 tls npf_ruleset_unlink(rlset, rl);
277 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
278 1.14.2.1 tls return 0;
279 1.14.2.1 tls }
280 1.14.2.1 tls }
281 1.14.2.1 tls return ENOENT;
282 1.14.2.1 tls }
283 1.14.2.1 tls
284 1.14.2.1 tls int
285 1.14.2.1 tls npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
286 1.14.2.1 tls const void *key, size_t len)
287 1.14.2.1 tls {
288 1.14.2.1 tls npf_rule_t *rg, *rl;
289 1.14.2.1 tls
290 1.14.2.1 tls KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
291 1.14.2.1 tls
292 1.14.2.1 tls if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
293 1.14.2.1 tls return ESRCH;
294 1.14.2.1 tls }
295 1.14.2.1 tls
296 1.14.2.1 tls /* Find the last in the list. */
297 1.14.2.1 tls TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
298 1.14.2.1 tls /* Compare the key. On match, remove and return. */
299 1.14.2.1 tls if (memcmp(rl->r_key, key, len) == 0) {
300 1.14.2.1 tls npf_ruleset_unlink(rlset, rl);
301 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
302 1.14.2.1 tls return 0;
303 1.14.2.1 tls }
304 1.14.2.1 tls }
305 1.14.2.1 tls return ENOENT;
306 1.14.2.1 tls }
307 1.14.2.1 tls
308 1.14.2.1 tls prop_dictionary_t
309 1.14.2.1 tls npf_ruleset_list(npf_ruleset_t *rlset, const char *rname)
310 1.14.2.1 tls {
311 1.14.2.1 tls prop_dictionary_t rldict;
312 1.14.2.1 tls prop_array_t rules;
313 1.14.2.1 tls npf_rule_t *rg, *rl;
314 1.14.2.1 tls
315 1.14.2.1 tls if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
316 1.14.2.1 tls return NULL;
317 1.14.2.1 tls }
318 1.14.2.1 tls if ((rldict = prop_dictionary_create()) == NULL) {
319 1.14.2.1 tls return NULL;
320 1.14.2.1 tls }
321 1.14.2.1 tls if ((rules = prop_array_create()) == NULL) {
322 1.14.2.1 tls prop_object_release(rldict);
323 1.14.2.1 tls return NULL;
324 1.14.2.1 tls }
325 1.14.2.1 tls
326 1.14.2.1 tls TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
327 1.14.2.1 tls if (rl->r_dict && !prop_array_add(rules, rl->r_dict)) {
328 1.14.2.1 tls prop_object_release(rldict);
329 1.14.2.1 tls prop_object_release(rules);
330 1.14.2.1 tls return NULL;
331 1.14.2.1 tls }
332 1.14.2.1 tls }
333 1.14.2.1 tls
334 1.14.2.1 tls if (!prop_dictionary_set(rldict, "rules", rules)) {
335 1.14.2.1 tls prop_object_release(rldict);
336 1.14.2.1 tls rldict = NULL;
337 1.14.2.1 tls }
338 1.14.2.1 tls prop_object_release(rules);
339 1.14.2.1 tls return rldict;
340 1.14.2.1 tls }
341 1.14.2.1 tls
342 1.14.2.1 tls int
343 1.14.2.1 tls npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
344 1.14.2.1 tls {
345 1.14.2.1 tls npf_rule_t *rg, *rl;
346 1.14.2.1 tls
347 1.14.2.1 tls if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
348 1.14.2.1 tls return ESRCH;
349 1.14.2.1 tls }
350 1.14.2.1 tls while ((rl = TAILQ_FIRST(&rg->r_subset)) != NULL) {
351 1.14.2.1 tls npf_ruleset_unlink(rlset, rl);
352 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
353 1.14.2.1 tls }
354 1.14.2.1 tls return 0;
355 1.14.2.1 tls }
356 1.14.2.1 tls
357 1.14.2.1 tls void
358 1.14.2.1 tls npf_ruleset_gc(npf_ruleset_t *rlset)
359 1.14.2.1 tls {
360 1.14.2.1 tls npf_rule_t *rl;
361 1.14.2.1 tls
362 1.14.2.1 tls while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
363 1.14.2.1 tls LIST_REMOVE(rl, r_aentry);
364 1.14.2.1 tls npf_rule_free(rl);
365 1.14.2.1 tls }
366 1.14.2.1 tls }
367 1.14.2.1 tls
368 1.14.2.1 tls /*
369 1.14.2.1 tls * npf_ruleset_reload: share the dynamic rules.
370 1.14.2.1 tls *
371 1.14.2.1 tls * => Active ruleset should be exclusively locked.
372 1.14.2.1 tls */
373 1.14.2.1 tls void
374 1.14.2.1 tls npf_ruleset_reload(npf_ruleset_t *rlset, npf_ruleset_t *arlset)
375 1.14.2.1 tls {
376 1.14.2.1 tls npf_rule_t *rg;
377 1.14.2.1 tls
378 1.14.2.1 tls KASSERT(npf_config_locked_p());
379 1.14.2.1 tls
380 1.14.2.1 tls LIST_FOREACH(rg, &rlset->rs_dynamic, r_dentry) {
381 1.14.2.1 tls npf_rule_t *arg, *rl;
382 1.14.2.1 tls
383 1.14.2.1 tls if ((arg = npf_ruleset_lookup(arlset, rg->r_name)) == NULL) {
384 1.14.2.1 tls continue;
385 1.14.2.1 tls }
386 1.14.2.1 tls
387 1.14.2.1 tls /*
388 1.14.2.1 tls * Copy the list-head structure and move the rules from the
389 1.14.2.1 tls * old ruleset to the new by reinserting to a new all-rules
390 1.14.2.1 tls * list and resetting the parent rule. Note that the rules
391 1.14.2.1 tls * are still active and therefore accessible for inspection
392 1.14.2.1 tls * via the old ruleset.
393 1.14.2.1 tls */
394 1.14.2.1 tls memcpy(&rg->r_subset, &arg->r_subset, sizeof(rg->r_subset));
395 1.14.2.1 tls TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
396 1.14.2.1 tls LIST_REMOVE(rl, r_aentry);
397 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
398 1.14.2.1 tls rl->r_parent = rg;
399 1.14.2.1 tls }
400 1.1 rmind }
401 1.14.2.1 tls
402 1.14.2.1 tls /* Inherit the ID counter. */
403 1.14.2.1 tls rlset->rs_idcnt = arlset->rs_idcnt;
404 1.1 rmind }
405 1.1 rmind
406 1.1 rmind /*
407 1.4 rmind * npf_ruleset_matchnat: find a matching NAT policy in the ruleset.
408 1.1 rmind */
409 1.4 rmind npf_rule_t *
410 1.4 rmind npf_ruleset_matchnat(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
411 1.1 rmind {
412 1.4 rmind npf_rule_t *rl;
413 1.1 rmind
414 1.4 rmind /* Find a matching NAT policy in the old ruleset. */
415 1.14.2.1 tls LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
416 1.4 rmind if (npf_nat_matchpolicy(rl->r_natp, mnp))
417 1.4 rmind break;
418 1.4 rmind }
419 1.4 rmind return rl;
420 1.1 rmind }
421 1.1 rmind
422 1.6 rmind npf_rule_t *
423 1.6 rmind npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
424 1.6 rmind {
425 1.6 rmind npf_natpolicy_t *np;
426 1.6 rmind npf_rule_t *rl;
427 1.6 rmind
428 1.6 rmind /* Find a matching NAT policy in the old ruleset. */
429 1.14.2.1 tls LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
430 1.6 rmind /*
431 1.6 rmind * NAT policy might not yet be set during the creation of
432 1.6 rmind * the ruleset (in such case, rule is for our policy), or
433 1.6 rmind * policies might be equal due to rule exchange on reload.
434 1.6 rmind */
435 1.6 rmind np = rl->r_natp;
436 1.6 rmind if (np == NULL || np == mnp)
437 1.6 rmind continue;
438 1.6 rmind if (npf_nat_sharepm(np, mnp))
439 1.6 rmind break;
440 1.6 rmind }
441 1.6 rmind return rl;
442 1.6 rmind }
443 1.6 rmind
444 1.1 rmind /*
445 1.13 rmind * npf_ruleset_freealg: inspect the ruleset and disassociate specified
446 1.13 rmind * ALG from all NAT entries using it.
447 1.13 rmind */
448 1.13 rmind void
449 1.13 rmind npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
450 1.13 rmind {
451 1.13 rmind npf_rule_t *rl;
452 1.14.2.1 tls npf_natpolicy_t *np;
453 1.13 rmind
454 1.14.2.1 tls LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
455 1.14.2.1 tls if ((np = rl->r_natp) != NULL) {
456 1.13 rmind npf_nat_freealg(np, alg);
457 1.13 rmind }
458 1.13 rmind }
459 1.13 rmind }
460 1.13 rmind
461 1.13 rmind /*
462 1.4 rmind * npf_ruleset_natreload: minimum reload of NAT policies by maching
463 1.6 rmind * two (active and new) NAT rulesets.
464 1.4 rmind *
465 1.4 rmind * => Active ruleset should be exclusively locked.
466 1.1 rmind */
467 1.4 rmind void
468 1.4 rmind npf_ruleset_natreload(npf_ruleset_t *nrlset, npf_ruleset_t *arlset)
469 1.1 rmind {
470 1.4 rmind npf_natpolicy_t *np, *anp;
471 1.4 rmind npf_rule_t *rl, *arl;
472 1.4 rmind
473 1.4 rmind /* Scan a new NAT ruleset against NAT policies in old ruleset. */
474 1.14.2.1 tls LIST_FOREACH(rl, &nrlset->rs_all, r_aentry) {
475 1.4 rmind np = rl->r_natp;
476 1.4 rmind arl = npf_ruleset_matchnat(arlset, np);
477 1.4 rmind if (arl == NULL) {
478 1.4 rmind continue;
479 1.4 rmind }
480 1.4 rmind /* On match - we exchange NAT policies. */
481 1.4 rmind anp = arl->r_natp;
482 1.4 rmind rl->r_natp = anp;
483 1.4 rmind arl->r_natp = np;
484 1.6 rmind /* Update other NAT policies to share portmap. */
485 1.6 rmind (void)npf_ruleset_sharepm(nrlset, anp);
486 1.1 rmind }
487 1.4 rmind }
488 1.4 rmind
489 1.1 rmind /*
490 1.6 rmind * npf_rule_alloc: allocate a rule and copy n-code from user-space.
491 1.1 rmind */
492 1.4 rmind npf_rule_t *
493 1.14.2.1 tls npf_rule_alloc(prop_dictionary_t rldict)
494 1.1 rmind {
495 1.4 rmind npf_rule_t *rl;
496 1.7 rmind const char *rname;
497 1.1 rmind
498 1.4 rmind /* Allocate a rule structure. */
499 1.11 rmind rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
500 1.14.2.1 tls TAILQ_INIT(&rl->r_subset);
501 1.4 rmind rl->r_natp = NULL;
502 1.4 rmind
503 1.11 rmind /* Name (optional) */
504 1.7 rmind if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
505 1.14.2.1 tls strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
506 1.7 rmind } else {
507 1.7 rmind rl->r_name[0] = '\0';
508 1.7 rmind }
509 1.7 rmind
510 1.11 rmind /* Attributes, priority and interface ID (optional). */
511 1.7 rmind prop_dictionary_get_uint32(rldict, "attributes", &rl->r_attr);
512 1.7 rmind prop_dictionary_get_int32(rldict, "priority", &rl->r_priority);
513 1.7 rmind prop_dictionary_get_uint32(rldict, "interface", &rl->r_ifid);
514 1.4 rmind
515 1.14.2.1 tls /* Get the skip-to index. No need to validate it. */
516 1.14.2.1 tls prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
517 1.14.2.1 tls
518 1.14.2.1 tls /* Key (optional). */
519 1.14.2.1 tls prop_object_t obj = prop_dictionary_get(rldict, "key");
520 1.14.2.1 tls const void *key = prop_data_data_nocopy(obj);
521 1.14.2.1 tls
522 1.14.2.1 tls if (key) {
523 1.14.2.1 tls size_t len = prop_data_size(obj);
524 1.14.2.1 tls if (len > NPF_RULE_MAXKEYLEN) {
525 1.14.2.1 tls kmem_free(rl, sizeof(npf_rule_t));
526 1.14.2.1 tls return NULL;
527 1.14.2.1 tls }
528 1.14.2.1 tls memcpy(rl->r_key, key, len);
529 1.14.2.1 tls }
530 1.14.2.1 tls
531 1.14.2.1 tls if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
532 1.14.2.1 tls rl->r_dict = prop_dictionary_copy(rldict);
533 1.4 rmind }
534 1.6 rmind
535 1.4 rmind return rl;
536 1.1 rmind }
537 1.1 rmind
538 1.1 rmind /*
539 1.14.2.1 tls * npf_rule_setcode: assign filter code to the rule.
540 1.14.2.1 tls *
541 1.14.2.2 tls * => The code must be validated by the caller.
542 1.14.2.2 tls * => JIT compilation may be performed here.
543 1.14.2.1 tls */
544 1.14.2.1 tls void
545 1.14.2.1 tls npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
546 1.14.2.1 tls {
547 1.14.2.2 tls /* Perform BPF JIT if possible. */
548 1.14.2.2 tls if (type == NPF_CODE_BPF && (membar_consumer(),
549 1.14.2.2 tls bpfjit_module_ops.bj_generate_code != NULL)) {
550 1.14.2.2 tls KASSERT(rl->r_jcode == NULL);
551 1.14.2.2 tls rl->r_jcode = bpfjit_module_ops.bj_generate_code(code, size);
552 1.14.2.2 tls }
553 1.14.2.1 tls rl->r_type = type;
554 1.14.2.1 tls rl->r_code = code;
555 1.14.2.1 tls rl->r_clen = size;
556 1.14.2.1 tls }
557 1.14.2.1 tls
558 1.14.2.1 tls /*
559 1.14.2.1 tls * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
560 1.14.2.1 tls */
561 1.14.2.1 tls void
562 1.14.2.1 tls npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
563 1.14.2.1 tls {
564 1.14.2.1 tls npf_rproc_acquire(rp);
565 1.14.2.1 tls rl->r_rproc = rp;
566 1.14.2.1 tls }
567 1.14.2.1 tls
568 1.14.2.1 tls /*
569 1.1 rmind * npf_rule_free: free the specified rule.
570 1.1 rmind */
571 1.1 rmind void
572 1.1 rmind npf_rule_free(npf_rule_t *rl)
573 1.1 rmind {
574 1.4 rmind npf_natpolicy_t *np = rl->r_natp;
575 1.4 rmind npf_rproc_t *rp = rl->r_rproc;
576 1.1 rmind
577 1.4 rmind if (np) {
578 1.4 rmind /* Free NAT policy. */
579 1.4 rmind npf_nat_freepolicy(np);
580 1.4 rmind }
581 1.4 rmind if (rp) {
582 1.6 rmind /* Release rule procedure. */
583 1.4 rmind npf_rproc_release(rp);
584 1.4 rmind }
585 1.14.2.1 tls if (rl->r_code) {
586 1.14.2.2 tls /* Free byte-code. */
587 1.14.2.1 tls kmem_free(rl->r_code, rl->r_clen);
588 1.14.2.1 tls }
589 1.14.2.2 tls if (rl->r_jcode) {
590 1.14.2.2 tls /* Free JIT code. */
591 1.14.2.2 tls KASSERT(bpfjit_module_ops.bj_free_code != NULL);
592 1.14.2.2 tls bpfjit_module_ops.bj_free_code(rl->r_jcode);
593 1.14.2.2 tls }
594 1.14.2.1 tls if (rl->r_dict) {
595 1.14.2.1 tls /* Destroy the dictionary. */
596 1.14.2.1 tls prop_object_release(rl->r_dict);
597 1.1 rmind }
598 1.4 rmind kmem_free(rl, sizeof(npf_rule_t));
599 1.1 rmind }
600 1.1 rmind
601 1.1 rmind /*
602 1.14.2.1 tls * npf_rule_getid: return the unique ID of a rule.
603 1.10 rmind * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
604 1.1 rmind * npf_rule_getnat: get NAT policy assigned to the rule.
605 1.1 rmind */
606 1.1 rmind
607 1.14.2.1 tls uint64_t
608 1.14.2.1 tls npf_rule_getid(const npf_rule_t *rl)
609 1.1 rmind {
610 1.14.2.1 tls KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
611 1.14.2.1 tls return rl->r_id;
612 1.1 rmind }
613 1.1 rmind
614 1.10 rmind npf_rproc_t *
615 1.10 rmind npf_rule_getrproc(npf_rule_t *rl)
616 1.10 rmind {
617 1.10 rmind npf_rproc_t *rp = rl->r_rproc;
618 1.10 rmind
619 1.10 rmind if (rp) {
620 1.10 rmind npf_rproc_acquire(rp);
621 1.10 rmind }
622 1.10 rmind return rp;
623 1.10 rmind }
624 1.10 rmind
625 1.1 rmind npf_natpolicy_t *
626 1.1 rmind npf_rule_getnat(const npf_rule_t *rl)
627 1.1 rmind {
628 1.4 rmind return rl->r_natp;
629 1.1 rmind }
630 1.1 rmind
631 1.4 rmind /*
632 1.4 rmind * npf_rule_setnat: assign NAT policy to the rule and insert into the
633 1.4 rmind * NAT policy list in the ruleset.
634 1.4 rmind */
635 1.1 rmind void
636 1.1 rmind npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
637 1.1 rmind {
638 1.3 rmind
639 1.4 rmind KASSERT(rl->r_natp == NULL);
640 1.4 rmind rl->r_natp = np;
641 1.1 rmind }
642 1.1 rmind
643 1.14.2.1 tls /*
644 1.14.2.1 tls * npf_rule_inspect: match the interface, direction and run the filter code.
645 1.14.2.1 tls * Returns true if rule matches, false otherise.
646 1.14.2.1 tls */
647 1.14.2.1 tls static inline bool
648 1.14.2.1 tls npf_rule_inspect(npf_cache_t *npc, nbuf_t *nbuf, const npf_rule_t *rl,
649 1.14.2.1 tls const int di_mask, const int layer)
650 1.7 rmind {
651 1.14.2.1 tls const ifnet_t *ifp = nbuf->nb_ifp;
652 1.14.2.1 tls const void *code;
653 1.7 rmind
654 1.14.2.1 tls /* Match the interface. */
655 1.14.2.1 tls if (rl->r_ifid && rl->r_ifid != ifp->if_index) {
656 1.14.2.1 tls return false;
657 1.14.2.1 tls }
658 1.14.2.1 tls
659 1.14.2.1 tls /* Match the direction. */
660 1.14.2.1 tls if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
661 1.14.2.1 tls if ((rl->r_attr & di_mask) == 0)
662 1.14.2.1 tls return false;
663 1.14.2.1 tls }
664 1.14.2.1 tls
665 1.14.2.2 tls /* Execute JIT code, if any. */
666 1.14.2.2 tls if (__predict_true(rl->r_jcode)) {
667 1.14.2.2 tls struct mbuf *m = nbuf_head_mbuf(nbuf);
668 1.14.2.2 tls size_t pktlen = m_length(m);
669 1.14.2.2 tls
670 1.14.2.2 tls return rl->r_jcode((unsigned char *)m, pktlen, 0) != 0;
671 1.14.2.2 tls }
672 1.14.2.2 tls
673 1.14.2.2 tls /* Execute the byte-code, if any. */
674 1.14.2.1 tls if ((code = rl->r_code) == NULL) {
675 1.14.2.1 tls return true;
676 1.14.2.1 tls }
677 1.14.2.1 tls
678 1.14.2.1 tls switch (rl->r_type) {
679 1.14.2.1 tls case NPF_CODE_NC:
680 1.14.2.1 tls return npf_ncode_process(npc, code, nbuf, layer) == 0;
681 1.14.2.1 tls case NPF_CODE_BPF: {
682 1.14.2.1 tls struct mbuf *m = nbuf_head_mbuf(nbuf);
683 1.14.2.1 tls size_t pktlen = m_length(m);
684 1.14.2.1 tls return bpf_filter(code, (unsigned char *)m, pktlen, 0) != 0;
685 1.14.2.1 tls }
686 1.14.2.1 tls default:
687 1.14.2.1 tls KASSERT(false);
688 1.14.2.1 tls }
689 1.14.2.1 tls return false;
690 1.14.2.1 tls }
691 1.14.2.1 tls
692 1.14.2.1 tls /*
693 1.14.2.1 tls * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
694 1.14.2.1 tls * This is only for the dynamic rules. Subrules cannot have nested rules.
695 1.14.2.1 tls */
696 1.14.2.1 tls static npf_rule_t *
697 1.14.2.1 tls npf_rule_reinspect(npf_cache_t *npc, nbuf_t *nbuf, const npf_rule_t *drl,
698 1.14.2.1 tls const int di_mask, const int layer)
699 1.14.2.1 tls {
700 1.14.2.1 tls npf_rule_t *final_rl = NULL, *rl;
701 1.14.2.1 tls
702 1.14.2.1 tls KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
703 1.14.2.1 tls
704 1.14.2.1 tls TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
705 1.14.2.1 tls if (!npf_rule_inspect(npc, nbuf, rl, di_mask, layer)) {
706 1.7 rmind continue;
707 1.14.2.1 tls }
708 1.14.2.1 tls if (rl->r_attr & NPF_RULE_FINAL) {
709 1.14.2.1 tls return rl;
710 1.14.2.1 tls }
711 1.14.2.1 tls final_rl = rl;
712 1.7 rmind }
713 1.14.2.1 tls return final_rl;
714 1.7 rmind }
715 1.1 rmind
716 1.1 rmind /*
717 1.7 rmind * npf_ruleset_inspect: inspect the packet against the given ruleset.
718 1.1 rmind *
719 1.7 rmind * Loop through the rules in the set and run n-code processor of each rule
720 1.7 rmind * against the packet (nbuf chain). If sub-ruleset is found, inspect it.
721 1.7 rmind *
722 1.9 rmind * => Caller is responsible for nbuf chain protection.
723 1.1 rmind */
724 1.1 rmind npf_rule_t *
725 1.14.2.1 tls npf_ruleset_inspect(npf_cache_t *npc, nbuf_t *nbuf,
726 1.14.2.1 tls const npf_ruleset_t *rlset, const int di, const int layer)
727 1.1 rmind {
728 1.7 rmind const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
729 1.14.2.1 tls const u_int nitems = rlset->rs_nitems;
730 1.14.2.1 tls npf_rule_t *final_rl = NULL;
731 1.14.2.1 tls u_int n = 0;
732 1.1 rmind
733 1.1 rmind KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
734 1.14.2.1 tls
735 1.14.2.1 tls while (n < nitems) {
736 1.14.2.1 tls npf_rule_t *rl = rlset->rs_rules[n];
737 1.14.2.1 tls const u_int skip_to = rl->r_skip_to;
738 1.14.2.1 tls const uint32_t attr = rl->r_attr;
739 1.14.2.1 tls
740 1.14.2.1 tls KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
741 1.1 rmind KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
742 1.14.2.1 tls KASSERT(n < skip_to);
743 1.1 rmind
744 1.14.2.1 tls /* Group is a barrier: return a matching if found any. */
745 1.14.2.1 tls if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
746 1.14.2.1 tls break;
747 1.1 rmind }
748 1.14.2.1 tls
749 1.14.2.1 tls /* Main inspection of the rule. */
750 1.14.2.1 tls if (!npf_rule_inspect(npc, nbuf, rl, di_mask, layer)) {
751 1.14.2.1 tls n = skip_to;
752 1.1 rmind continue;
753 1.1 rmind }
754 1.14.2.1 tls
755 1.14.2.1 tls if (NPF_DYNAMIC_GROUP_P(attr)) {
756 1.14.2.1 tls /*
757 1.14.2.1 tls * If this is a dynamic rule, re-inspect the subrules.
758 1.14.2.1 tls * If it has any matching rule, then it is final.
759 1.14.2.1 tls */
760 1.14.2.1 tls rl = npf_rule_reinspect(npc, nbuf, rl, di_mask, layer);
761 1.14.2.1 tls if (rl != NULL) {
762 1.14.2.1 tls final_rl = rl;
763 1.14.2.1 tls break;
764 1.14.2.1 tls }
765 1.14.2.1 tls } else if ((attr & NPF_RULE_GROUP) == 0) {
766 1.14.2.1 tls /*
767 1.14.2.1 tls * Groups themselves are not matching.
768 1.14.2.1 tls */
769 1.14.2.1 tls final_rl = rl;
770 1.14.2.1 tls }
771 1.14.2.1 tls
772 1.1 rmind /* Set the matching rule and check for "final". */
773 1.14.2.1 tls if (attr & NPF_RULE_FINAL) {
774 1.2 rmind break;
775 1.1 rmind }
776 1.14.2.1 tls n++;
777 1.1 rmind }
778 1.2 rmind
779 1.14.2.1 tls KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
780 1.7 rmind return final_rl;
781 1.1 rmind }
782 1.1 rmind
783 1.1 rmind /*
784 1.14.2.1 tls * npf_rule_conclude: return decision and the flags for conclusion.
785 1.1 rmind *
786 1.1 rmind * => Returns ENETUNREACH if "block" and 0 if "pass".
787 1.1 rmind */
788 1.1 rmind int
789 1.14.2.1 tls npf_rule_conclude(const npf_rule_t *rl, int *retfl)
790 1.1 rmind {
791 1.1 rmind /* If not passing - drop the packet. */
792 1.4 rmind *retfl = rl->r_attr;
793 1.14.2.1 tls return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
794 1.1 rmind }
795 1.1 rmind
796 1.1 rmind #if defined(DDB) || defined(_NPF_TESTING)
797 1.1 rmind
798 1.1 rmind void
799 1.12 rmind npf_rulenc_dump(const npf_rule_t *rl)
800 1.1 rmind {
801 1.14.2.1 tls const uint32_t *op = rl->r_code;
802 1.14.2.1 tls size_t n = rl->r_clen;
803 1.1 rmind
804 1.2 rmind while (n) {
805 1.1 rmind printf("\t> |0x%02x|\n", (uint32_t)*op);
806 1.1 rmind op++;
807 1.1 rmind n -= sizeof(*op);
808 1.2 rmind }
809 1.1 rmind printf("-> %s\n", (rl->r_attr & NPF_RULE_PASS) ? "pass" : "block");
810 1.1 rmind }
811 1.1 rmind
812 1.1 rmind #endif
813