npf_ruleset.c revision 1.14.2.3 1 1.14.2.2 tls /* $NetBSD: npf_ruleset.c,v 1.14.2.3 2014/08/20 00:04:35 tls Exp $ */
2 1.1 rmind
3 1.1 rmind /*-
4 1.14.2.1 tls * Copyright (c) 2009-2013 The NetBSD Foundation, Inc.
5 1.1 rmind * All rights reserved.
6 1.1 rmind *
7 1.1 rmind * This material is based upon work partially supported by The
8 1.1 rmind * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9 1.1 rmind *
10 1.1 rmind * Redistribution and use in source and binary forms, with or without
11 1.1 rmind * modification, are permitted provided that the following conditions
12 1.1 rmind * are met:
13 1.1 rmind * 1. Redistributions of source code must retain the above copyright
14 1.1 rmind * notice, this list of conditions and the following disclaimer.
15 1.1 rmind * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 rmind * notice, this list of conditions and the following disclaimer in the
17 1.1 rmind * documentation and/or other materials provided with the distribution.
18 1.1 rmind *
19 1.1 rmind * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 rmind * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 rmind * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 rmind * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 rmind * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 rmind * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 rmind * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 rmind * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 rmind * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 rmind * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 rmind * POSSIBILITY OF SUCH DAMAGE.
30 1.1 rmind */
31 1.1 rmind
32 1.1 rmind /*
33 1.1 rmind * NPF ruleset module.
34 1.1 rmind */
35 1.1 rmind
36 1.1 rmind #include <sys/cdefs.h>
37 1.14.2.2 tls __KERNEL_RCSID(0, "$NetBSD: npf_ruleset.c,v 1.14.2.3 2014/08/20 00:04:35 tls Exp $");
38 1.1 rmind
39 1.1 rmind #include <sys/param.h>
40 1.11 rmind #include <sys/types.h>
41 1.1 rmind
42 1.14.2.2 tls #include <sys/atomic.h>
43 1.1 rmind #include <sys/kmem.h>
44 1.1 rmind #include <sys/queue.h>
45 1.14.2.1 tls #include <sys/mbuf.h>
46 1.1 rmind #include <sys/types.h>
47 1.1 rmind
48 1.14.2.1 tls #include <net/bpf.h>
49 1.14.2.2 tls #include <net/bpfjit.h>
50 1.3 rmind #include <net/pfil.h>
51 1.1 rmind #include <net/if.h>
52 1.1 rmind
53 1.1 rmind #include "npf_impl.h"
54 1.1 rmind
55 1.4 rmind struct npf_ruleset {
56 1.14.2.1 tls /*
57 1.14.2.1 tls * - List of all rules.
58 1.14.2.1 tls * - Dynamic (i.e. named) rules.
59 1.14.2.1 tls * - G/C list for convenience.
60 1.14.2.1 tls */
61 1.14.2.1 tls LIST_HEAD(, npf_rule) rs_all;
62 1.14.2.1 tls LIST_HEAD(, npf_rule) rs_dynamic;
63 1.14.2.1 tls LIST_HEAD(, npf_rule) rs_gc;
64 1.14.2.1 tls
65 1.14.2.1 tls /* Unique ID counter. */
66 1.14.2.1 tls uint64_t rs_idcnt;
67 1.14.2.1 tls
68 1.14.2.1 tls /* Number of array slots and active rules. */
69 1.14.2.1 tls u_int rs_slots;
70 1.14.2.1 tls u_int rs_nitems;
71 1.4 rmind
72 1.14.2.1 tls /* Array of ordered rules. */
73 1.14.2.1 tls npf_rule_t * rs_rules[];
74 1.14.2.1 tls };
75 1.7 rmind
76 1.1 rmind struct npf_rule {
77 1.14.2.1 tls /* Attributes, interface and skip slot. */
78 1.4 rmind uint32_t r_attr;
79 1.4 rmind u_int r_ifid;
80 1.14.2.1 tls u_int r_skip_to;
81 1.14.2.1 tls
82 1.14.2.1 tls /* Code to process, if any. */
83 1.14.2.1 tls int r_type;
84 1.14.2.3 tls bpfjit_func_t r_jcode;
85 1.14.2.1 tls void * r_code;
86 1.14.2.3 tls u_int r_clen;
87 1.14.2.1 tls
88 1.14.2.1 tls /* NAT policy (optional), rule procedure and subset. */
89 1.14.2.1 tls npf_natpolicy_t * r_natp;
90 1.4 rmind npf_rproc_t * r_rproc;
91 1.14.2.1 tls
92 1.14.2.1 tls /* Rule priority: (highest) 1, 2 ... n (lowest). */
93 1.14.2.1 tls pri_t r_priority;
94 1.14.2.1 tls
95 1.14.2.1 tls /*
96 1.14.2.1 tls * Dynamic group: subset queue and a dynamic group list entry.
97 1.14.2.1 tls * Dynamic rule: entry and the parent rule (the group).
98 1.14.2.1 tls */
99 1.14.2.1 tls union {
100 1.14.2.1 tls TAILQ_HEAD(npf_ruleq, npf_rule) r_subset;
101 1.14.2.1 tls TAILQ_ENTRY(npf_rule) r_entry;
102 1.14.2.1 tls } /* C11 */;
103 1.14.2.1 tls union {
104 1.14.2.1 tls LIST_ENTRY(npf_rule) r_dentry;
105 1.14.2.1 tls npf_rule_t * r_parent;
106 1.14.2.1 tls } /* C11 */;
107 1.14.2.1 tls
108 1.14.2.3 tls /* Rule ID, name and the optional key. */
109 1.14.2.1 tls uint64_t r_id;
110 1.14.2.1 tls char r_name[NPF_RULE_MAXNAMELEN];
111 1.14.2.1 tls uint8_t r_key[NPF_RULE_MAXKEYLEN];
112 1.14.2.3 tls
113 1.14.2.3 tls /* All-list entry and the auxiliary info. */
114 1.14.2.3 tls LIST_ENTRY(npf_rule) r_aentry;
115 1.14.2.3 tls prop_data_t r_info;
116 1.1 rmind };
117 1.1 rmind
118 1.14.2.3 tls #define SKIPTO_ADJ_FLAG (1U << 31)
119 1.14.2.3 tls #define SKIPTO_MASK (SKIPTO_ADJ_FLAG - 1)
120 1.14.2.3 tls
121 1.14.2.3 tls static int npf_rule_export(const npf_ruleset_t *,
122 1.14.2.3 tls const npf_rule_t *, prop_dictionary_t);
123 1.14.2.3 tls
124 1.14.2.3 tls /*
125 1.14.2.3 tls * Private attributes - must be in the NPF_RULE_PRIVMASK range.
126 1.14.2.3 tls */
127 1.14.2.3 tls #define NPF_RULE_KEEPNAT (0x01000000 & NPF_RULE_PRIVMASK)
128 1.14.2.3 tls
129 1.14.2.1 tls #define NPF_DYNAMIC_GROUP_P(attr) \
130 1.14.2.1 tls (((attr) & NPF_DYNAMIC_GROUP) == NPF_DYNAMIC_GROUP)
131 1.14.2.1 tls
132 1.14.2.1 tls #define NPF_DYNAMIC_RULE_P(attr) \
133 1.14.2.1 tls (((attr) & NPF_DYNAMIC_GROUP) == NPF_RULE_DYNAMIC)
134 1.14.2.1 tls
135 1.1 rmind npf_ruleset_t *
136 1.14.2.1 tls npf_ruleset_create(size_t slots)
137 1.1 rmind {
138 1.14.2.1 tls size_t len = offsetof(npf_ruleset_t, rs_rules[slots]);
139 1.1 rmind npf_ruleset_t *rlset;
140 1.1 rmind
141 1.14.2.1 tls rlset = kmem_zalloc(len, KM_SLEEP);
142 1.14.2.1 tls LIST_INIT(&rlset->rs_dynamic);
143 1.14.2.1 tls LIST_INIT(&rlset->rs_all);
144 1.14.2.1 tls LIST_INIT(&rlset->rs_gc);
145 1.14.2.1 tls rlset->rs_slots = slots;
146 1.14.2.1 tls
147 1.1 rmind return rlset;
148 1.1 rmind }
149 1.1 rmind
150 1.14.2.1 tls static void
151 1.14.2.1 tls npf_ruleset_unlink(npf_ruleset_t *rlset, npf_rule_t *rl)
152 1.14.2.1 tls {
153 1.14.2.1 tls if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
154 1.14.2.1 tls LIST_REMOVE(rl, r_dentry);
155 1.14.2.1 tls }
156 1.14.2.1 tls if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
157 1.14.2.1 tls npf_rule_t *rg = rl->r_parent;
158 1.14.2.1 tls TAILQ_REMOVE(&rg->r_subset, rl, r_entry);
159 1.14.2.1 tls }
160 1.14.2.1 tls LIST_REMOVE(rl, r_aentry);
161 1.14.2.1 tls }
162 1.14.2.1 tls
163 1.1 rmind void
164 1.1 rmind npf_ruleset_destroy(npf_ruleset_t *rlset)
165 1.1 rmind {
166 1.14.2.1 tls size_t len = offsetof(npf_ruleset_t, rs_rules[rlset->rs_slots]);
167 1.1 rmind npf_rule_t *rl;
168 1.1 rmind
169 1.14.2.1 tls while ((rl = LIST_FIRST(&rlset->rs_all)) != NULL) {
170 1.14.2.1 tls npf_ruleset_unlink(rlset, rl);
171 1.1 rmind npf_rule_free(rl);
172 1.1 rmind }
173 1.14.2.1 tls KASSERT(LIST_EMPTY(&rlset->rs_dynamic));
174 1.14.2.1 tls KASSERT(LIST_EMPTY(&rlset->rs_gc));
175 1.14.2.1 tls kmem_free(rlset, len);
176 1.1 rmind }
177 1.1 rmind
178 1.1 rmind /*
179 1.1 rmind * npf_ruleset_insert: insert the rule into the specified ruleset.
180 1.1 rmind */
181 1.1 rmind void
182 1.1 rmind npf_ruleset_insert(npf_ruleset_t *rlset, npf_rule_t *rl)
183 1.1 rmind {
184 1.14.2.1 tls u_int n = rlset->rs_nitems;
185 1.14.2.1 tls
186 1.14.2.1 tls KASSERT(n < rlset->rs_slots);
187 1.14.2.1 tls
188 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
189 1.14.2.1 tls if (NPF_DYNAMIC_GROUP_P(rl->r_attr)) {
190 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_dynamic, rl, r_dentry);
191 1.14.2.3 tls } else {
192 1.14.2.3 tls KASSERTMSG(rl->r_parent == NULL, "cannot be dynamic rule");
193 1.14.2.3 tls rl->r_attr &= ~NPF_RULE_DYNAMIC;
194 1.14.2.1 tls }
195 1.14.2.1 tls
196 1.14.2.1 tls rlset->rs_rules[n] = rl;
197 1.14.2.1 tls rlset->rs_nitems++;
198 1.1 rmind
199 1.14.2.1 tls if (rl->r_skip_to < ++n) {
200 1.14.2.3 tls rl->r_skip_to = SKIPTO_ADJ_FLAG | n;
201 1.14.2.1 tls }
202 1.14.2.1 tls }
203 1.14.2.1 tls
204 1.14.2.1 tls static npf_rule_t *
205 1.14.2.1 tls npf_ruleset_lookup(npf_ruleset_t *rlset, const char *name)
206 1.14.2.1 tls {
207 1.14.2.1 tls npf_rule_t *rl;
208 1.14.2.1 tls
209 1.14.2.1 tls KASSERT(npf_config_locked_p());
210 1.14.2.1 tls
211 1.14.2.1 tls LIST_FOREACH(rl, &rlset->rs_dynamic, r_dentry) {
212 1.14.2.1 tls KASSERT(NPF_DYNAMIC_GROUP_P(rl->r_attr));
213 1.14.2.1 tls if (strncmp(rl->r_name, name, NPF_RULE_MAXNAMELEN) == 0)
214 1.1 rmind break;
215 1.1 rmind }
216 1.14.2.1 tls return rl;
217 1.14.2.1 tls }
218 1.14.2.1 tls
219 1.14.2.1 tls int
220 1.14.2.1 tls npf_ruleset_add(npf_ruleset_t *rlset, const char *rname, npf_rule_t *rl)
221 1.14.2.1 tls {
222 1.14.2.1 tls npf_rule_t *rg, *it;
223 1.14.2.1 tls pri_t priocmd;
224 1.14.2.1 tls
225 1.14.2.1 tls rg = npf_ruleset_lookup(rlset, rname);
226 1.14.2.1 tls if (rg == NULL) {
227 1.14.2.1 tls return ESRCH;
228 1.14.2.1 tls }
229 1.14.2.1 tls if (!NPF_DYNAMIC_RULE_P(rl->r_attr)) {
230 1.14.2.1 tls return EINVAL;
231 1.14.2.1 tls }
232 1.14.2.1 tls
233 1.14.2.1 tls /* Dynamic rule - assign a unique ID and save the parent. */
234 1.14.2.1 tls rl->r_id = ++rlset->rs_idcnt;
235 1.14.2.1 tls rl->r_parent = rg;
236 1.14.2.1 tls
237 1.14.2.1 tls /*
238 1.14.2.1 tls * Rule priority: (highest) 1, 2 ... n (lowest).
239 1.14.2.1 tls * Negative priority indicates an operation and is reset to zero.
240 1.14.2.1 tls */
241 1.14.2.1 tls if ((priocmd = rl->r_priority) < 0) {
242 1.14.2.1 tls rl->r_priority = 0;
243 1.14.2.1 tls }
244 1.14.2.1 tls
245 1.14.2.1 tls switch (priocmd) {
246 1.14.2.1 tls case NPF_PRI_FIRST:
247 1.14.2.1 tls TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
248 1.14.2.1 tls if (rl->r_priority <= it->r_priority)
249 1.14.2.1 tls break;
250 1.14.2.1 tls }
251 1.14.2.1 tls if (it) {
252 1.14.2.1 tls TAILQ_INSERT_BEFORE(it, rl, r_entry);
253 1.14.2.1 tls } else {
254 1.14.2.1 tls TAILQ_INSERT_HEAD(&rg->r_subset, rl, r_entry);
255 1.14.2.1 tls }
256 1.14.2.1 tls break;
257 1.14.2.1 tls case NPF_PRI_LAST:
258 1.14.2.1 tls default:
259 1.14.2.1 tls TAILQ_FOREACH(it, &rg->r_subset, r_entry) {
260 1.14.2.1 tls if (rl->r_priority < it->r_priority)
261 1.14.2.1 tls break;
262 1.14.2.1 tls }
263 1.14.2.1 tls if (it) {
264 1.14.2.1 tls TAILQ_INSERT_BEFORE(it, rl, r_entry);
265 1.14.2.1 tls } else {
266 1.14.2.1 tls TAILQ_INSERT_TAIL(&rg->r_subset, rl, r_entry);
267 1.14.2.1 tls }
268 1.14.2.1 tls break;
269 1.14.2.1 tls }
270 1.14.2.1 tls
271 1.14.2.1 tls /* Finally, add into the all-list. */
272 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_all, rl, r_aentry);
273 1.14.2.1 tls return 0;
274 1.14.2.1 tls }
275 1.14.2.1 tls
276 1.14.2.1 tls int
277 1.14.2.1 tls npf_ruleset_remove(npf_ruleset_t *rlset, const char *rname, uint64_t id)
278 1.14.2.1 tls {
279 1.14.2.1 tls npf_rule_t *rg, *rl;
280 1.14.2.1 tls
281 1.14.2.1 tls if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
282 1.14.2.1 tls return ESRCH;
283 1.14.2.1 tls }
284 1.14.2.1 tls TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
285 1.14.2.3 tls KASSERT(rl->r_parent == rg);
286 1.14.2.3 tls
287 1.14.2.1 tls /* Compare ID. On match, remove and return. */
288 1.14.2.1 tls if (rl->r_id == id) {
289 1.14.2.1 tls npf_ruleset_unlink(rlset, rl);
290 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
291 1.14.2.1 tls return 0;
292 1.14.2.1 tls }
293 1.14.2.1 tls }
294 1.14.2.1 tls return ENOENT;
295 1.14.2.1 tls }
296 1.14.2.1 tls
297 1.14.2.1 tls int
298 1.14.2.1 tls npf_ruleset_remkey(npf_ruleset_t *rlset, const char *rname,
299 1.14.2.1 tls const void *key, size_t len)
300 1.14.2.1 tls {
301 1.14.2.1 tls npf_rule_t *rg, *rl;
302 1.14.2.1 tls
303 1.14.2.1 tls KASSERT(len && len <= NPF_RULE_MAXKEYLEN);
304 1.14.2.1 tls
305 1.14.2.1 tls if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
306 1.14.2.1 tls return ESRCH;
307 1.14.2.1 tls }
308 1.14.2.1 tls
309 1.14.2.1 tls /* Find the last in the list. */
310 1.14.2.1 tls TAILQ_FOREACH_REVERSE(rl, &rg->r_subset, npf_ruleq, r_entry) {
311 1.14.2.3 tls KASSERT(rl->r_parent == rg);
312 1.14.2.3 tls
313 1.14.2.1 tls /* Compare the key. On match, remove and return. */
314 1.14.2.1 tls if (memcmp(rl->r_key, key, len) == 0) {
315 1.14.2.1 tls npf_ruleset_unlink(rlset, rl);
316 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
317 1.14.2.1 tls return 0;
318 1.14.2.1 tls }
319 1.14.2.1 tls }
320 1.14.2.1 tls return ENOENT;
321 1.14.2.1 tls }
322 1.14.2.1 tls
323 1.14.2.1 tls prop_dictionary_t
324 1.14.2.1 tls npf_ruleset_list(npf_ruleset_t *rlset, const char *rname)
325 1.14.2.1 tls {
326 1.14.2.3 tls prop_dictionary_t rgdict;
327 1.14.2.1 tls prop_array_t rules;
328 1.14.2.1 tls npf_rule_t *rg, *rl;
329 1.14.2.1 tls
330 1.14.2.3 tls KASSERT(npf_config_locked_p());
331 1.14.2.3 tls
332 1.14.2.1 tls if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
333 1.14.2.1 tls return NULL;
334 1.14.2.1 tls }
335 1.14.2.3 tls if ((rgdict = prop_dictionary_create()) == NULL) {
336 1.14.2.1 tls return NULL;
337 1.14.2.1 tls }
338 1.14.2.1 tls if ((rules = prop_array_create()) == NULL) {
339 1.14.2.3 tls prop_object_release(rgdict);
340 1.14.2.1 tls return NULL;
341 1.14.2.1 tls }
342 1.14.2.1 tls
343 1.14.2.1 tls TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
344 1.14.2.3 tls prop_dictionary_t rldict;
345 1.14.2.3 tls
346 1.14.2.3 tls rldict = prop_dictionary_create();
347 1.14.2.3 tls KASSERT(rl->r_parent == rg);
348 1.14.2.3 tls
349 1.14.2.3 tls if (npf_rule_export(rlset, rl, rldict)) {
350 1.14.2.1 tls prop_object_release(rldict);
351 1.14.2.1 tls prop_object_release(rules);
352 1.14.2.1 tls return NULL;
353 1.14.2.1 tls }
354 1.14.2.3 tls prop_array_add(rules, rldict);
355 1.14.2.3 tls prop_object_release(rldict);
356 1.14.2.1 tls }
357 1.14.2.1 tls
358 1.14.2.3 tls if (!prop_dictionary_set(rgdict, "rules", rules)) {
359 1.14.2.3 tls prop_object_release(rgdict);
360 1.14.2.3 tls rgdict = NULL;
361 1.14.2.1 tls }
362 1.14.2.1 tls prop_object_release(rules);
363 1.14.2.3 tls return rgdict;
364 1.14.2.1 tls }
365 1.14.2.1 tls
366 1.14.2.1 tls int
367 1.14.2.1 tls npf_ruleset_flush(npf_ruleset_t *rlset, const char *rname)
368 1.14.2.1 tls {
369 1.14.2.1 tls npf_rule_t *rg, *rl;
370 1.14.2.1 tls
371 1.14.2.1 tls if ((rg = npf_ruleset_lookup(rlset, rname)) == NULL) {
372 1.14.2.1 tls return ESRCH;
373 1.14.2.1 tls }
374 1.14.2.1 tls while ((rl = TAILQ_FIRST(&rg->r_subset)) != NULL) {
375 1.14.2.3 tls KASSERT(rl->r_parent == rg);
376 1.14.2.1 tls npf_ruleset_unlink(rlset, rl);
377 1.14.2.1 tls LIST_INSERT_HEAD(&rlset->rs_gc, rl, r_aentry);
378 1.14.2.1 tls }
379 1.14.2.1 tls return 0;
380 1.14.2.1 tls }
381 1.14.2.1 tls
382 1.14.2.3 tls int
383 1.14.2.3 tls npf_ruleset_export(const npf_ruleset_t *rlset, prop_array_t rules)
384 1.14.2.3 tls {
385 1.14.2.3 tls const u_int nitems = rlset->rs_nitems;
386 1.14.2.3 tls int error = 0;
387 1.14.2.3 tls u_int n = 0;
388 1.14.2.3 tls
389 1.14.2.3 tls KASSERT(npf_config_locked_p());
390 1.14.2.3 tls
391 1.14.2.3 tls while (n < nitems) {
392 1.14.2.3 tls const npf_rule_t *rl = rlset->rs_rules[n];
393 1.14.2.3 tls const npf_natpolicy_t *natp = rl->r_natp;
394 1.14.2.3 tls prop_dictionary_t rldict;
395 1.14.2.3 tls
396 1.14.2.3 tls rldict = prop_dictionary_create();
397 1.14.2.3 tls if ((error = npf_rule_export(rlset, rl, rldict)) != 0) {
398 1.14.2.3 tls prop_object_release(rldict);
399 1.14.2.3 tls break;
400 1.14.2.3 tls }
401 1.14.2.3 tls if (natp && (error = npf_nat_policyexport(natp, rldict)) != 0) {
402 1.14.2.3 tls prop_object_release(rldict);
403 1.14.2.3 tls break;
404 1.14.2.3 tls }
405 1.14.2.3 tls prop_array_add(rules, rldict);
406 1.14.2.3 tls prop_object_release(rldict);
407 1.14.2.3 tls n++;
408 1.14.2.3 tls }
409 1.14.2.3 tls return error;
410 1.14.2.3 tls }
411 1.14.2.3 tls
412 1.14.2.1 tls void
413 1.14.2.1 tls npf_ruleset_gc(npf_ruleset_t *rlset)
414 1.14.2.1 tls {
415 1.14.2.1 tls npf_rule_t *rl;
416 1.14.2.1 tls
417 1.14.2.1 tls while ((rl = LIST_FIRST(&rlset->rs_gc)) != NULL) {
418 1.14.2.1 tls LIST_REMOVE(rl, r_aentry);
419 1.14.2.1 tls npf_rule_free(rl);
420 1.14.2.1 tls }
421 1.14.2.1 tls }
422 1.14.2.1 tls
423 1.14.2.1 tls /*
424 1.14.2.3 tls * npf_ruleset_cmpnat: find a matching NAT policy in the ruleset.
425 1.14.2.3 tls */
426 1.14.2.3 tls static inline npf_rule_t *
427 1.14.2.3 tls npf_ruleset_cmpnat(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
428 1.14.2.3 tls {
429 1.14.2.3 tls npf_rule_t *rl;
430 1.14.2.3 tls
431 1.14.2.3 tls /* Find a matching NAT policy in the old ruleset. */
432 1.14.2.3 tls LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
433 1.14.2.3 tls if (rl->r_natp && npf_nat_cmppolicy(rl->r_natp, mnp))
434 1.14.2.3 tls break;
435 1.14.2.3 tls }
436 1.14.2.3 tls return rl;
437 1.14.2.3 tls }
438 1.14.2.3 tls
439 1.14.2.3 tls /*
440 1.14.2.3 tls * npf_ruleset_reload: prepare the new ruleset by scanning the active
441 1.14.2.3 tls * ruleset and 1) sharing the dynamic rules 2) sharing NAT policies.
442 1.14.2.1 tls *
443 1.14.2.3 tls * => The active (old) ruleset should be exclusively locked.
444 1.14.2.1 tls */
445 1.14.2.1 tls void
446 1.14.2.3 tls npf_ruleset_reload(npf_ruleset_t *newset, npf_ruleset_t *oldset)
447 1.14.2.1 tls {
448 1.14.2.3 tls npf_rule_t *rg, *rl;
449 1.14.2.3 tls uint64_t nid = 0;
450 1.14.2.1 tls
451 1.14.2.1 tls KASSERT(npf_config_locked_p());
452 1.14.2.1 tls
453 1.14.2.3 tls /*
454 1.14.2.3 tls * Scan the dynamic rules and share (migrate) if needed.
455 1.14.2.3 tls */
456 1.14.2.3 tls LIST_FOREACH(rg, &newset->rs_dynamic, r_dentry) {
457 1.14.2.3 tls npf_rule_t *actrg;
458 1.14.2.1 tls
459 1.14.2.3 tls /* Look for a dynamic ruleset group with such name. */
460 1.14.2.3 tls actrg = npf_ruleset_lookup(oldset, rg->r_name);
461 1.14.2.3 tls if (actrg == NULL) {
462 1.14.2.1 tls continue;
463 1.14.2.1 tls }
464 1.14.2.1 tls
465 1.14.2.1 tls /*
466 1.14.2.3 tls * Copy the list-head structure. This is necessary because
467 1.14.2.3 tls * the rules are still active and therefore accessible for
468 1.14.2.3 tls * inspection via the old ruleset.
469 1.14.2.1 tls */
470 1.14.2.3 tls memcpy(&rg->r_subset, &actrg->r_subset, sizeof(rg->r_subset));
471 1.14.2.1 tls TAILQ_FOREACH(rl, &rg->r_subset, r_entry) {
472 1.14.2.3 tls /*
473 1.14.2.3 tls * We can safely migrate to the new all-rule list
474 1.14.2.3 tls * and re-set the parent rule, though.
475 1.14.2.3 tls */
476 1.14.2.1 tls LIST_REMOVE(rl, r_aentry);
477 1.14.2.3 tls LIST_INSERT_HEAD(&newset->rs_all, rl, r_aentry);
478 1.14.2.1 tls rl->r_parent = rg;
479 1.14.2.1 tls }
480 1.1 rmind }
481 1.14.2.1 tls
482 1.14.2.3 tls /*
483 1.14.2.3 tls * Scan all rules in the new ruleset and share NAT policies.
484 1.14.2.3 tls * Also, assign a unique ID for each policy here.
485 1.14.2.3 tls */
486 1.14.2.3 tls LIST_FOREACH(rl, &newset->rs_all, r_aentry) {
487 1.14.2.3 tls npf_natpolicy_t *np;
488 1.14.2.3 tls npf_rule_t *actrl;
489 1.1 rmind
490 1.14.2.3 tls /* Does the rule have a NAT policy associated? */
491 1.14.2.3 tls if ((np = rl->r_natp) == NULL) {
492 1.14.2.3 tls continue;
493 1.14.2.3 tls }
494 1.1 rmind
495 1.14.2.3 tls /* Does it match with any policy in the active ruleset? */
496 1.14.2.3 tls if ((actrl = npf_ruleset_cmpnat(oldset, np)) == NULL) {
497 1.14.2.3 tls npf_nat_setid(np, ++nid);
498 1.14.2.3 tls continue;
499 1.14.2.3 tls }
500 1.14.2.3 tls
501 1.14.2.3 tls /*
502 1.14.2.3 tls * Inherit the matching NAT policy and check other ones
503 1.14.2.3 tls * in the new ruleset for sharing the portmap.
504 1.14.2.3 tls */
505 1.14.2.3 tls rl->r_natp = actrl->r_natp;
506 1.14.2.3 tls npf_ruleset_sharepm(newset, rl->r_natp);
507 1.14.2.3 tls npf_nat_setid(rl->r_natp, ++nid);
508 1.14.2.3 tls
509 1.14.2.3 tls /*
510 1.14.2.3 tls * Finally, mark the active rule to not destroy its NAT
511 1.14.2.3 tls * policy later as we inherited it (but the rule must be
512 1.14.2.3 tls * kept active for now). Destroy the new/unused policy.
513 1.14.2.3 tls */
514 1.14.2.3 tls actrl->r_attr |= NPF_RULE_KEEPNAT;
515 1.14.2.3 tls npf_nat_freepolicy(np);
516 1.4 rmind }
517 1.14.2.3 tls
518 1.14.2.3 tls /* Inherit the ID counter. */
519 1.14.2.3 tls newset->rs_idcnt = oldset->rs_idcnt;
520 1.1 rmind }
521 1.1 rmind
522 1.6 rmind npf_rule_t *
523 1.6 rmind npf_ruleset_sharepm(npf_ruleset_t *rlset, npf_natpolicy_t *mnp)
524 1.6 rmind {
525 1.6 rmind npf_natpolicy_t *np;
526 1.6 rmind npf_rule_t *rl;
527 1.6 rmind
528 1.6 rmind /* Find a matching NAT policy in the old ruleset. */
529 1.14.2.1 tls LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
530 1.6 rmind /*
531 1.6 rmind * NAT policy might not yet be set during the creation of
532 1.6 rmind * the ruleset (in such case, rule is for our policy), or
533 1.6 rmind * policies might be equal due to rule exchange on reload.
534 1.6 rmind */
535 1.6 rmind np = rl->r_natp;
536 1.6 rmind if (np == NULL || np == mnp)
537 1.6 rmind continue;
538 1.6 rmind if (npf_nat_sharepm(np, mnp))
539 1.6 rmind break;
540 1.6 rmind }
541 1.6 rmind return rl;
542 1.6 rmind }
543 1.6 rmind
544 1.14.2.3 tls npf_natpolicy_t *
545 1.14.2.3 tls npf_ruleset_findnat(npf_ruleset_t *rlset, uint64_t id)
546 1.13 rmind {
547 1.13 rmind npf_rule_t *rl;
548 1.13 rmind
549 1.14.2.1 tls LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
550 1.14.2.3 tls npf_natpolicy_t *np = rl->r_natp;
551 1.14.2.3 tls if (np && npf_nat_getid(np) == id) {
552 1.14.2.3 tls return np;
553 1.13 rmind }
554 1.13 rmind }
555 1.14.2.3 tls return NULL;
556 1.13 rmind }
557 1.13 rmind
558 1.13 rmind /*
559 1.14.2.3 tls * npf_ruleset_freealg: inspect the ruleset and disassociate specified
560 1.14.2.3 tls * ALG from all NAT entries using it.
561 1.1 rmind */
562 1.4 rmind void
563 1.14.2.3 tls npf_ruleset_freealg(npf_ruleset_t *rlset, npf_alg_t *alg)
564 1.1 rmind {
565 1.14.2.3 tls npf_rule_t *rl;
566 1.14.2.3 tls npf_natpolicy_t *np;
567 1.4 rmind
568 1.14.2.3 tls LIST_FOREACH(rl, &rlset->rs_all, r_aentry) {
569 1.14.2.3 tls if ((np = rl->r_natp) != NULL) {
570 1.14.2.3 tls npf_nat_freealg(np, alg);
571 1.4 rmind }
572 1.1 rmind }
573 1.4 rmind }
574 1.4 rmind
575 1.1 rmind /*
576 1.14.2.3 tls * npf_rule_alloc: allocate a rule and initialise it.
577 1.1 rmind */
578 1.4 rmind npf_rule_t *
579 1.14.2.1 tls npf_rule_alloc(prop_dictionary_t rldict)
580 1.1 rmind {
581 1.4 rmind npf_rule_t *rl;
582 1.7 rmind const char *rname;
583 1.14.2.3 tls prop_data_t d;
584 1.1 rmind
585 1.4 rmind /* Allocate a rule structure. */
586 1.11 rmind rl = kmem_zalloc(sizeof(npf_rule_t), KM_SLEEP);
587 1.14.2.1 tls TAILQ_INIT(&rl->r_subset);
588 1.4 rmind rl->r_natp = NULL;
589 1.4 rmind
590 1.11 rmind /* Name (optional) */
591 1.7 rmind if (prop_dictionary_get_cstring_nocopy(rldict, "name", &rname)) {
592 1.14.2.1 tls strlcpy(rl->r_name, rname, NPF_RULE_MAXNAMELEN);
593 1.7 rmind } else {
594 1.7 rmind rl->r_name[0] = '\0';
595 1.7 rmind }
596 1.7 rmind
597 1.11 rmind /* Attributes, priority and interface ID (optional). */
598 1.14.2.3 tls prop_dictionary_get_uint32(rldict, "attr", &rl->r_attr);
599 1.14.2.3 tls prop_dictionary_get_int32(rldict, "prio", &rl->r_priority);
600 1.14.2.3 tls rl->r_attr &= ~NPF_RULE_PRIVMASK;
601 1.14.2.3 tls
602 1.14.2.3 tls if (prop_dictionary_get_cstring_nocopy(rldict, "ifname", &rname)) {
603 1.14.2.3 tls if ((rl->r_ifid = npf_ifmap_register(rname)) == 0) {
604 1.14.2.3 tls kmem_free(rl, sizeof(npf_rule_t));
605 1.14.2.3 tls return NULL;
606 1.14.2.3 tls }
607 1.14.2.3 tls } else {
608 1.14.2.3 tls rl->r_ifid = 0;
609 1.14.2.3 tls }
610 1.4 rmind
611 1.14.2.1 tls /* Get the skip-to index. No need to validate it. */
612 1.14.2.1 tls prop_dictionary_get_uint32(rldict, "skip-to", &rl->r_skip_to);
613 1.14.2.1 tls
614 1.14.2.1 tls /* Key (optional). */
615 1.14.2.1 tls prop_object_t obj = prop_dictionary_get(rldict, "key");
616 1.14.2.1 tls const void *key = prop_data_data_nocopy(obj);
617 1.14.2.1 tls
618 1.14.2.1 tls if (key) {
619 1.14.2.1 tls size_t len = prop_data_size(obj);
620 1.14.2.1 tls if (len > NPF_RULE_MAXKEYLEN) {
621 1.14.2.1 tls kmem_free(rl, sizeof(npf_rule_t));
622 1.14.2.1 tls return NULL;
623 1.14.2.1 tls }
624 1.14.2.1 tls memcpy(rl->r_key, key, len);
625 1.14.2.1 tls }
626 1.14.2.1 tls
627 1.14.2.3 tls if ((d = prop_dictionary_get(rldict, "info")) != NULL) {
628 1.14.2.3 tls rl->r_info = prop_data_copy(d);
629 1.4 rmind }
630 1.4 rmind return rl;
631 1.1 rmind }
632 1.1 rmind
633 1.14.2.3 tls static int
634 1.14.2.3 tls npf_rule_export(const npf_ruleset_t *rlset, const npf_rule_t *rl,
635 1.14.2.3 tls prop_dictionary_t rldict)
636 1.14.2.3 tls {
637 1.14.2.3 tls u_int skip_to = 0;
638 1.14.2.3 tls prop_data_t d;
639 1.14.2.3 tls
640 1.14.2.3 tls prop_dictionary_set_uint32(rldict, "attr", rl->r_attr);
641 1.14.2.3 tls prop_dictionary_set_int32(rldict, "prio", rl->r_priority);
642 1.14.2.3 tls if ((rl->r_skip_to & SKIPTO_ADJ_FLAG) == 0) {
643 1.14.2.3 tls skip_to = rl->r_skip_to & SKIPTO_MASK;
644 1.14.2.3 tls }
645 1.14.2.3 tls prop_dictionary_set_uint32(rldict, "skip-to", skip_to);
646 1.14.2.3 tls prop_dictionary_set_int32(rldict, "code-type", rl->r_type);
647 1.14.2.3 tls if (rl->r_code) {
648 1.14.2.3 tls d = prop_data_create_data(rl->r_code, rl->r_clen);
649 1.14.2.3 tls prop_dictionary_set_and_rel(rldict, "code", d);
650 1.14.2.3 tls }
651 1.14.2.3 tls
652 1.14.2.3 tls if (rl->r_ifid) {
653 1.14.2.3 tls const char *ifname = npf_ifmap_getname(rl->r_ifid);
654 1.14.2.3 tls prop_dictionary_set_cstring(rldict, "ifname", ifname);
655 1.14.2.3 tls }
656 1.14.2.3 tls prop_dictionary_set_uint64(rldict, "id", rl->r_id);
657 1.14.2.3 tls
658 1.14.2.3 tls if (rl->r_name[0]) {
659 1.14.2.3 tls prop_dictionary_set_cstring(rldict, "name", rl->r_name);
660 1.14.2.3 tls }
661 1.14.2.3 tls if (NPF_DYNAMIC_RULE_P(rl->r_attr)) {
662 1.14.2.3 tls d = prop_data_create_data(rl->r_key, NPF_RULE_MAXKEYLEN);
663 1.14.2.3 tls prop_dictionary_set_and_rel(rldict, "key", d);
664 1.14.2.3 tls }
665 1.14.2.3 tls if (rl->r_info) {
666 1.14.2.3 tls prop_dictionary_set(rldict, "info", rl->r_info);
667 1.14.2.3 tls }
668 1.14.2.3 tls return 0;
669 1.14.2.3 tls }
670 1.14.2.3 tls
671 1.1 rmind /*
672 1.14.2.1 tls * npf_rule_setcode: assign filter code to the rule.
673 1.14.2.1 tls *
674 1.14.2.2 tls * => The code must be validated by the caller.
675 1.14.2.2 tls * => JIT compilation may be performed here.
676 1.14.2.1 tls */
677 1.14.2.1 tls void
678 1.14.2.1 tls npf_rule_setcode(npf_rule_t *rl, const int type, void *code, size_t size)
679 1.14.2.1 tls {
680 1.14.2.3 tls KASSERT(type == NPF_CODE_BPF);
681 1.14.2.3 tls
682 1.14.2.1 tls rl->r_type = type;
683 1.14.2.1 tls rl->r_code = code;
684 1.14.2.1 tls rl->r_clen = size;
685 1.14.2.3 tls rl->r_jcode = npf_bpf_compile(code, size);
686 1.14.2.1 tls }
687 1.14.2.1 tls
688 1.14.2.1 tls /*
689 1.14.2.1 tls * npf_rule_setrproc: assign a rule procedure and hold a reference on it.
690 1.14.2.1 tls */
691 1.14.2.1 tls void
692 1.14.2.1 tls npf_rule_setrproc(npf_rule_t *rl, npf_rproc_t *rp)
693 1.14.2.1 tls {
694 1.14.2.1 tls npf_rproc_acquire(rp);
695 1.14.2.1 tls rl->r_rproc = rp;
696 1.14.2.1 tls }
697 1.14.2.1 tls
698 1.14.2.1 tls /*
699 1.1 rmind * npf_rule_free: free the specified rule.
700 1.1 rmind */
701 1.1 rmind void
702 1.1 rmind npf_rule_free(npf_rule_t *rl)
703 1.1 rmind {
704 1.4 rmind npf_natpolicy_t *np = rl->r_natp;
705 1.4 rmind npf_rproc_t *rp = rl->r_rproc;
706 1.1 rmind
707 1.14.2.3 tls if (np && (rl->r_attr & NPF_RULE_KEEPNAT) == 0) {
708 1.4 rmind /* Free NAT policy. */
709 1.4 rmind npf_nat_freepolicy(np);
710 1.4 rmind }
711 1.4 rmind if (rp) {
712 1.6 rmind /* Release rule procedure. */
713 1.4 rmind npf_rproc_release(rp);
714 1.4 rmind }
715 1.14.2.1 tls if (rl->r_code) {
716 1.14.2.2 tls /* Free byte-code. */
717 1.14.2.1 tls kmem_free(rl->r_code, rl->r_clen);
718 1.14.2.1 tls }
719 1.14.2.2 tls if (rl->r_jcode) {
720 1.14.2.2 tls /* Free JIT code. */
721 1.14.2.3 tls bpf_jit_freecode(rl->r_jcode);
722 1.14.2.2 tls }
723 1.14.2.3 tls if (rl->r_info) {
724 1.14.2.3 tls prop_object_release(rl->r_info);
725 1.1 rmind }
726 1.4 rmind kmem_free(rl, sizeof(npf_rule_t));
727 1.1 rmind }
728 1.1 rmind
729 1.1 rmind /*
730 1.14.2.1 tls * npf_rule_getid: return the unique ID of a rule.
731 1.10 rmind * npf_rule_getrproc: acquire a reference and return rule procedure, if any.
732 1.1 rmind * npf_rule_getnat: get NAT policy assigned to the rule.
733 1.1 rmind */
734 1.1 rmind
735 1.14.2.1 tls uint64_t
736 1.14.2.1 tls npf_rule_getid(const npf_rule_t *rl)
737 1.1 rmind {
738 1.14.2.1 tls KASSERT(NPF_DYNAMIC_RULE_P(rl->r_attr));
739 1.14.2.1 tls return rl->r_id;
740 1.1 rmind }
741 1.1 rmind
742 1.10 rmind npf_rproc_t *
743 1.14.2.3 tls npf_rule_getrproc(const npf_rule_t *rl)
744 1.10 rmind {
745 1.10 rmind npf_rproc_t *rp = rl->r_rproc;
746 1.10 rmind
747 1.10 rmind if (rp) {
748 1.10 rmind npf_rproc_acquire(rp);
749 1.10 rmind }
750 1.10 rmind return rp;
751 1.10 rmind }
752 1.10 rmind
753 1.1 rmind npf_natpolicy_t *
754 1.1 rmind npf_rule_getnat(const npf_rule_t *rl)
755 1.1 rmind {
756 1.4 rmind return rl->r_natp;
757 1.1 rmind }
758 1.1 rmind
759 1.4 rmind /*
760 1.4 rmind * npf_rule_setnat: assign NAT policy to the rule and insert into the
761 1.4 rmind * NAT policy list in the ruleset.
762 1.4 rmind */
763 1.1 rmind void
764 1.1 rmind npf_rule_setnat(npf_rule_t *rl, npf_natpolicy_t *np)
765 1.1 rmind {
766 1.4 rmind KASSERT(rl->r_natp == NULL);
767 1.4 rmind rl->r_natp = np;
768 1.1 rmind }
769 1.1 rmind
770 1.14.2.1 tls /*
771 1.14.2.1 tls * npf_rule_inspect: match the interface, direction and run the filter code.
772 1.14.2.3 tls * Returns true if rule matches and false otherwise.
773 1.14.2.1 tls */
774 1.14.2.1 tls static inline bool
775 1.14.2.3 tls npf_rule_inspect(const npf_rule_t *rl, bpf_args_t *bc_args,
776 1.14.2.3 tls const int di_mask, const u_int ifid)
777 1.7 rmind {
778 1.14.2.1 tls /* Match the interface. */
779 1.14.2.3 tls if (rl->r_ifid && rl->r_ifid != ifid) {
780 1.14.2.1 tls return false;
781 1.14.2.1 tls }
782 1.14.2.1 tls
783 1.14.2.1 tls /* Match the direction. */
784 1.14.2.1 tls if ((rl->r_attr & NPF_RULE_DIMASK) != NPF_RULE_DIMASK) {
785 1.14.2.1 tls if ((rl->r_attr & di_mask) == 0)
786 1.14.2.1 tls return false;
787 1.14.2.1 tls }
788 1.14.2.1 tls
789 1.14.2.3 tls /* Any code? */
790 1.14.2.3 tls if (!rl->r_code) {
791 1.14.2.3 tls KASSERT(rl->r_jcode == NULL);
792 1.14.2.1 tls return true;
793 1.14.2.1 tls }
794 1.14.2.3 tls KASSERT(rl->r_type == NPF_CODE_BPF);
795 1.14.2.3 tls return npf_bpf_filter(bc_args, rl->r_code, rl->r_jcode) != 0;
796 1.14.2.1 tls }
797 1.14.2.1 tls
798 1.14.2.1 tls /*
799 1.14.2.1 tls * npf_rule_reinspect: re-inspect the dynamic rule by iterating its list.
800 1.14.2.1 tls * This is only for the dynamic rules. Subrules cannot have nested rules.
801 1.14.2.1 tls */
802 1.14.2.1 tls static npf_rule_t *
803 1.14.2.3 tls npf_rule_reinspect(const npf_rule_t *drl, bpf_args_t *bc_args,
804 1.14.2.3 tls const int di_mask, const u_int ifid)
805 1.14.2.1 tls {
806 1.14.2.1 tls npf_rule_t *final_rl = NULL, *rl;
807 1.14.2.1 tls
808 1.14.2.1 tls KASSERT(NPF_DYNAMIC_GROUP_P(drl->r_attr));
809 1.14.2.1 tls
810 1.14.2.1 tls TAILQ_FOREACH(rl, &drl->r_subset, r_entry) {
811 1.14.2.3 tls if (!npf_rule_inspect(rl, bc_args, di_mask, ifid)) {
812 1.7 rmind continue;
813 1.14.2.1 tls }
814 1.14.2.1 tls if (rl->r_attr & NPF_RULE_FINAL) {
815 1.14.2.1 tls return rl;
816 1.14.2.1 tls }
817 1.14.2.1 tls final_rl = rl;
818 1.7 rmind }
819 1.14.2.1 tls return final_rl;
820 1.7 rmind }
821 1.1 rmind
822 1.1 rmind /*
823 1.7 rmind * npf_ruleset_inspect: inspect the packet against the given ruleset.
824 1.1 rmind *
825 1.14.2.3 tls * Loop through the rules in the set and run the byte-code of each rule
826 1.7 rmind * against the packet (nbuf chain). If sub-ruleset is found, inspect it.
827 1.1 rmind */
828 1.1 rmind npf_rule_t *
829 1.14.2.3 tls npf_ruleset_inspect(npf_cache_t *npc, const npf_ruleset_t *rlset,
830 1.14.2.3 tls const int di, const int layer)
831 1.1 rmind {
832 1.14.2.3 tls nbuf_t *nbuf = npc->npc_nbuf;
833 1.7 rmind const int di_mask = (di & PFIL_IN) ? NPF_RULE_IN : NPF_RULE_OUT;
834 1.14.2.1 tls const u_int nitems = rlset->rs_nitems;
835 1.14.2.3 tls const u_int ifid = nbuf->nb_ifid;
836 1.14.2.1 tls npf_rule_t *final_rl = NULL;
837 1.14.2.3 tls bpf_args_t bc_args;
838 1.14.2.1 tls u_int n = 0;
839 1.1 rmind
840 1.1 rmind KASSERT(((di & PFIL_IN) != 0) ^ ((di & PFIL_OUT) != 0));
841 1.14.2.1 tls
842 1.14.2.3 tls /*
843 1.14.2.3 tls * Prepare the external memory store and the arguments for
844 1.14.2.3 tls * the BPF programs to be executed.
845 1.14.2.3 tls */
846 1.14.2.3 tls uint32_t bc_words[NPF_BPF_NWORDS];
847 1.14.2.3 tls npf_bpf_prepare(npc, &bc_args, bc_words);
848 1.14.2.3 tls
849 1.14.2.1 tls while (n < nitems) {
850 1.14.2.1 tls npf_rule_t *rl = rlset->rs_rules[n];
851 1.14.2.3 tls const u_int skip_to = rl->r_skip_to & SKIPTO_MASK;
852 1.14.2.1 tls const uint32_t attr = rl->r_attr;
853 1.14.2.1 tls
854 1.14.2.1 tls KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
855 1.1 rmind KASSERT(!final_rl || rl->r_priority >= final_rl->r_priority);
856 1.14.2.1 tls KASSERT(n < skip_to);
857 1.1 rmind
858 1.14.2.1 tls /* Group is a barrier: return a matching if found any. */
859 1.14.2.1 tls if ((attr & NPF_RULE_GROUP) != 0 && final_rl) {
860 1.14.2.1 tls break;
861 1.1 rmind }
862 1.14.2.1 tls
863 1.14.2.1 tls /* Main inspection of the rule. */
864 1.14.2.3 tls if (!npf_rule_inspect(rl, &bc_args, di_mask, ifid)) {
865 1.14.2.1 tls n = skip_to;
866 1.1 rmind continue;
867 1.1 rmind }
868 1.14.2.1 tls
869 1.14.2.1 tls if (NPF_DYNAMIC_GROUP_P(attr)) {
870 1.14.2.1 tls /*
871 1.14.2.1 tls * If this is a dynamic rule, re-inspect the subrules.
872 1.14.2.1 tls * If it has any matching rule, then it is final.
873 1.14.2.1 tls */
874 1.14.2.3 tls rl = npf_rule_reinspect(rl, &bc_args, di_mask, ifid);
875 1.14.2.1 tls if (rl != NULL) {
876 1.14.2.1 tls final_rl = rl;
877 1.14.2.1 tls break;
878 1.14.2.1 tls }
879 1.14.2.1 tls } else if ((attr & NPF_RULE_GROUP) == 0) {
880 1.14.2.1 tls /*
881 1.14.2.1 tls * Groups themselves are not matching.
882 1.14.2.1 tls */
883 1.14.2.1 tls final_rl = rl;
884 1.14.2.1 tls }
885 1.14.2.1 tls
886 1.1 rmind /* Set the matching rule and check for "final". */
887 1.14.2.1 tls if (attr & NPF_RULE_FINAL) {
888 1.2 rmind break;
889 1.1 rmind }
890 1.14.2.1 tls n++;
891 1.1 rmind }
892 1.2 rmind
893 1.14.2.1 tls KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
894 1.7 rmind return final_rl;
895 1.1 rmind }
896 1.1 rmind
897 1.1 rmind /*
898 1.14.2.1 tls * npf_rule_conclude: return decision and the flags for conclusion.
899 1.1 rmind *
900 1.1 rmind * => Returns ENETUNREACH if "block" and 0 if "pass".
901 1.1 rmind */
902 1.1 rmind int
903 1.14.2.1 tls npf_rule_conclude(const npf_rule_t *rl, int *retfl)
904 1.1 rmind {
905 1.1 rmind /* If not passing - drop the packet. */
906 1.4 rmind *retfl = rl->r_attr;
907 1.14.2.1 tls return (rl->r_attr & NPF_RULE_PASS) ? 0 : ENETUNREACH;
908 1.1 rmind }
909